
信息科学与技术丛书

嵌入式可配置实时操作系统

ｅＣｏｓ开发与应用

蒋句平 编著

机 械 工 业 出 版 社

嵌入式可配置实时操作系统ｅＣｏｓ是一种完全免费的开放源代码的软
件，适合于深度嵌入式应用。本书全面介绍ｅＣｏｓ系统的基本结构，详细
描述ｅＣｏｓ开发环境的建立及其配置方法，从各个层次对ｅＣｏｓ的各个组成
部分进行阐述和分析，并通过实例说明如何开发基于ｅＣｏｓ的嵌入式应用。
本书附带光盘包含了最新版本的ｅＣｏｓ２０源代码、联机说明、开发工具源
代码以及应用程序ｅＣｏｓ嵌入式Ｗｅｂ服务器，可以直接使用光盘内容建立
完整的ｅＣｏｓ开发环境。
本书可作为广大嵌入式系统研发人员及其他相关科研人员的技术参考

书，也可作为在校学生学习嵌入式系统的参考教材。

图书在版编目（ＣＩＰ）数据

嵌入式可配置实时操作系统ｅＣｏｓ开发与应用／蒋句平编著．—北京：机械
工业出版社，２００４１
（信息科学与技术丛书）

ＩＳＢＮ７１１１１３２４２４

Ⅰ嵌．．． Ⅱ蒋．．． Ⅲ实时操作系统，ｅＣｏｓ ⅣＴＰ３１６２

中国版本图书馆ＣＩＰ数据核字（２００３）第０９４９１８号

机械工业出版社（北京市百万庄大街２２号 邮政编码 １０００３７）

策 划：胡毓坚

责任编辑：时 静

责任印制：

·新华书店北京发行所发行

２００４年１月第１版·第１次印刷

７８７ｍｍ×１０９２ｍｍ·２３印张·５６９千字

０００１—５０００册

定价：３４００元

凡购本图书，如有缺页、倒页、脱页，由本社发行部调换

本社购书热线电话：（０１０）６８９９３８２１、８８３７９６４６
封面无防伪标均为盗版

出 版 说 明

随着信息科学与技术的迅速发展，人类每时每刻都会面对层出不穷的新技术、新概念。毫

无疑问，在节奏越来越快的工作和生活中，人们需要通过阅读和学习大量信息丰富、具备实践

指导意义的图书，来获取新知识和新技能，从而不断提高自身素质，紧跟信息化时代发展的步

伐。

众所周知，在计算机硬件方面，高性价比的解决方案和新型技术的应用一直备受青睐；在

软件技术方面，随着计算机软件的规模和复杂性与日俱增，软件技术受到不断挑战，人们一直

在为寻求更先进的软件技术而奋斗不止。目前，计算机在社会生活中日益普及，随着因特网延

伸到人类世界的层层面面，掌握计算机网络技术和理论已成为大众的文化需求。也正是由于

信息科学与技术在电工、电子、通信、工业控制、智能建筑、工业产品设计与制造等专业领域中

已经得到充分、广泛的应用，所以这些专业领域中的研究人员和工程技术人员将越来越迫切需

要汲取自身领域信息化所带来的新理念和新方法。

针对人们对了解和掌握新知识、新技能的热切期待以及由此促成的人们对语言简洁、内容

充实、融合实践经验的图书迫切需要的现状，机械工业出版社适时推出了“信息科学与技术丛

书”。这套丛书涉及计算机软件、硬件、网络、工程应用等内容，注重理论与实践相结合，内容实

用，层次分明，语言流畅，是信息科学与技术领域专业人员不可或缺的图书。

现今，信息科学与技术的发展可谓一日千里，机械工业出版社欢迎从事信息技术方面工作

的科研人员、工程技术人员积极参与我们的工作，为推进我国的信息化建设作出贡献。

机械工业出版社

Ⅲ

前 言

嵌入式产品是一类充满巨大商机的产业。在开发嵌入式产品的时候，开发人员将面临选

择哪种嵌入式操作系统的问题。有许多因素值得考虑：软件的价格问题、版税问题、开发工具

的好坏、是否提供源代码、所提供的实时操作系统具有哪些特性等等。在许多情况下，价格和

版税是首先考虑的因素，低成本的解决方案是一种最好的选择，降低成本价格是提高产品竞争

力的一个重要举措。另一个必须考虑的问题是前期投资问题，将现有软件代码移植到新的硬

件平台上时这一问题显得尤为突出，软件的移植能力在很大程度上会直接影响产品的开发周

期。另外，软件的可重用性和配置能力也是开发嵌入式产品必须考虑的因素。采用嵌入式可

配置实时操作系统ｅＣｏｓ便是针对所有这些问题的一个很好的解决方案。

ｅＣｏｓ于１９９７年起源于Ｃｙｇｎｕｓ公司，后来成为ＲｅｄＨａｔ的一个非Ｌｉｎｕｘ嵌入式操作系统。
在短短的几年时间内，ｅＣｏｓ的发展极为迅速，它已逐渐被人们接受，并受到越来越多的嵌入式
产品开发人员的青睐，目前市场上已经有了许多成功应用ｅＣｏｓ的嵌入式产品。ｅＣｏｓ是一种适
合于深度嵌入式应用的实时操作系统，它是一种免费的、无版权限制（无版税）的开放源代码的

软件。ｅＣｏｓ的独特之处是它的可配置能力和配置机制，这是其他嵌入式操作系统无法比拟
的。此外，ｅＣｏｓ还具有良好的开放性、兼容性和可扩展性，可移植能力强，目前它能支持十余
种市场上流行的嵌入式处理器。开发人员在不同平台上进行移植时，几乎不用修改或稍加修

改就可以完成应用程序的移植工作。

ｅＣｏｓ不仅是开发嵌入式产品的一个很好的选择，还是学习嵌入式操作系统原理与方法的
一个很好的实例教材。ｅＣｏｓ除了提供了嵌入式实时操作系统所必须具备的全部功能外，它的
配置机制、组织结构以及软件源码都值得其他软件借鉴。与其他嵌入式操作系统相比，ｅＣｏｓ
简单、易学、易于操作，利用普通微机就可以很容易地建立一个完整的开发环境，而且不需要特

殊的设备。加之它又是一种免费软件，因此特别适合国内学生将其作为学习和研究嵌入式系

统的理想平台。为此，本书大部分操作和例子都以普通微机作为目标系统。本书光盘提供了

ｅＣｏｓ的全部源码、开发工具和应用程序，读者可以直接使用光盘提供的内容建立完整的开发
平台。

全书共分十三章，为兼顾初学者和有经验的开发人员，采用从简到繁、由浅入深的方式对

ｅＣｏｓ进行全面阐述，读者按照本书内容的编排可以逐步了解和掌握ｅＣｏｓ，并且可以着手开发
自己的ｅＣｏｓ应用。
本书读者对象包括广大嵌入式系统研发人员、在校学生以及其他嵌入式系统爱好者，要求

具有一定的软件（Ｃ语言）编程经验和基本的硬件知识。
本书的编写得到了我的同事及家人的帮助和支持，窦强博士对本书初稿进行了细致的审

阅，在此谨向他们表示衷心的感谢！

由于编者水平有限，书中难免存在一些错误和缺点，殷切希望读者批评指正。

编 者

Ⅳ

目 录

出版说明

前言

第１章 概述 １⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１．１ 什么是ｅＣｏｓ １⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１．１．１ 起源与历史 ２⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１．１．２ 功能与特性 ３⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１．１．３ ｅＣｏｓ核心组件 ４⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１．１．４ 对硬件的支持 ５⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１．１．５ ｅＣｏｓ资源 ５⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１．２ ｅＣｏｓ的可配置性 ６⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１．２．１ 配置的必要性 ７⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１．２．２ 配置方法 ７⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１．３ ｅＣｏｓ的组织结构 ８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１．３．１ ｅＣｏｓ的层次结构 ９⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１．３．２ ｅＣｏｓ源码结构 １１⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１．４ ｅＣｏｓ的一些基本概念 １２⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１．４．１ 组件框架 １２⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１．４．２ 配置选项 １２⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１．４．３ 组件 １２⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１．４．４ 包 １３⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１．４．５ 组件仓库 １３⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１．４．６ 配置 １３⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１．４．７ 目标系统 １４⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１．４．８ 模板 １４⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１．４．９ 属性 １４⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１．４．１０ 约束条件 １５⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１．４．１１ 冲突 １５⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１．４．１２ 组件定义语言ＣＤＬ １５⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

第２章 ｅＣｏｓ开发环境的建立 １６⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

２．１ 系统需求 １６⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

２．１．１ 主机系统需求 １６⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

２．１．２ 目标系统需求 １６⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

２．２ 开发工具 １７⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

２．２．１ Ｃｙｇｗｉｎ １８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

２．２．２ 交叉编译工具 １８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

２．２．３ ｅＣｏｓ配置工具 １９⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

２．３ Ｃｙｇｗｉｎ的安装与设置 １９⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

２．４ ＧＮＵ交叉编译工具的编译与配置 ２２⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

Ⅴ

２．５ ｅＣｏｓ源码与配置工具的安装 ２５⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

２．５．１ ｅＣｏｓ的安装 ２６⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

２．５．２ ｅＣｏｓ配置工具 ２８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

２．６ 建立ｅＣｏｓ开发环境 ３０⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

２．６．１ 基于ｘ８６的ｅＣｏｓ开发平台 ３０⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

２．６．２ 建立ＲｅｄＢｏｏｔ引导环境 ３１⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

第３章 ｅＣｏｓ配置工具与编程实例 ３４⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

３．１ ｅＣｏｓ图形配置工具 ３４⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

３．２ 图形配置工具的使用 ３５⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

３．２．１ 组件仓库位置 ３５⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

３．２．２ 配置文件的管理 ３６⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

３．２．３ 模板选择 ３６⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

３．２．４ 选项配置 ３７⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

３．２．５ 冲突的解决 ３９⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

３．２．６ 配置选项的查找 ４０⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

３．２．７ 编译 ４０⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

３．２．８ 执行 ４２⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

３．３ 命令行配置工具 ４４⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

３．３．１ ｅｃｏｓｃｏｎｆｉｇ配置工具 ４４⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

３．３．２ 使用ｅｃｏｓｃｏｎｆｉｇ配置ｅＣｏｓ ４５⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

３．４ ｅＣｏｓ应用程序 ４６⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

３．４．１ 使用编译工具 ４６⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

３．４．２ 简单的ｈｅｌｌｏ程序 ４７⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

３．４．３ 多线程编程例子 ４９⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

３．４．４ 时钟和告警处理程序 ５１⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

第４章 ＲｅｄＢｏｏｔ ５５⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

４．１ 功能与应用 ５５⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

４．１．１ ＲｅｄＢｏｏｔ的安装 ５５⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

４．１．２ ＲｅｄＢｏｏｔ用户界面 ５６⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

４．１．３ ＲｅｄＢｏｏｔ环境配置 ５６⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

４．２ ＲｅｄＢｏｏｔ命令 ５８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

４．２．１ 基本命令格式 ５８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

４．２．２ ＲｅｄＢｏｏｔ普通命令 ６０⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

４．２．３ Ｆｌａｓｈ映像系统（ＦＩＳ） ６３⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

４．２．４ Ｆｌａｓｈ内配置信息的管理 ６６⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

４．２．５ ＲｅｄＢｏｏｔ程序执行控制 ６８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

４．３ ＲｅｄＢｏｏｔ的配置与编译 ６８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

４．３．１ ＲｅｄＢｏｏｔ软件结构 ６８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

４．３．２ 使用ｅＣｏｓ图形配置工具 ６９⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

４．３．３ 使用命令行配置工具ｅｃｏｓｃｏｎｆｉｇ ７２⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

４．４ ＲｅｄＢｏｏｔ的更新与运行 ７３⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

Ⅵ

第５章 系统内核 ７６⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

５．１ 系统内核结构 ７６⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

５．２ 内核调度机制 ７７⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

５．２．１ 位图调度器 ７８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

５．２．２ 多级队列调度器 ７８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

５．２．３ 调度器操作及ＡＰＩ函数 ７９⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

５．３ 内存分配 ８０⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

５．３．１ 内存分配机制 ８１⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

５．３．２ 固定长度内存分配ＡＰＩ ８２⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

５．３．３ 可变长度内存分配ＡＰＩ ８４⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

５．４ 中断处理 ８６⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

５．４．１ 线程与中断处理程序 ８６⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

５．４．２ 中断的处理 ８７⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

５．４．３ 内核中断处理ＡＰＩ函数 ８８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

５．５ 例外处理 ９１⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

５．５．１ 例外处理程序 ９２⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

５．５．２ 例外处理内核ＡＰＩ函数 ９３⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

５．６ ＳＭＰ支持 ９３⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

５．６．１ ＳＭＰ系统的启动 ９４⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

５．６．２ ＳＭＰ系统的调度 ９４⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

５．６．３ ＳＭＰ系统的中断处理 ９５⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

５．７ 计数器与时钟 ９５⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

５．７．１ 计数器 ９６⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

５．７．２ 时钟 ９８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

５．７．３ 告警器 １００⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

５．８ 应用程序入口 １０２⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

５．８．１ 调用环境 １０２⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

５．８．２ 应用程序编程要求 １０３⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

５．８．３ 应用程序的启动 １０４⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

第６章 线程与同步 １０６⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

６．１ 线程的创建 １０６⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

６．１．１ 创建新线程 １０６⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

６．１．２ 线程入口函数 １０７⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

６．１．３ 线程优先级 １０８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

６．１．４ 堆栈和堆栈大小 １０８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

６．１．５ 线程创建例子程序 １０９⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

６．２ 线程信息的获取 １１０⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

６．３ 线程的控制 １１１⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

６．４ 线程的终止和消除 １１２⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

６．４．１ 线程终止函数 １１２⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

６．４．２ 线程消除函数 １１３⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

Ⅶ

６．５ 线程优先级操作 １１３⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

６．６ ｐｅｒｔｈｒｅａｄ数据 １１４⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

６．７ 同步原语 １１６⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

６．８ 互斥体 １１７⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

６．８．１ 互斥体的实现与操作 １１８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

６．８．２ 互斥体ＡＰＩ函数 １１８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

６．８．３ 优先级倒置 １２０⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

６．９ 条件变量 １２２⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

６．９．１ 条件变量的使用 １２２⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

６．９．２ 条件变量ＡＰＩ函数 １２４⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

６．１０ 信号量 １２５⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

６．１０．１ 信号量的使用 １２６⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

６．１０．２ 信号量ＡＰＩ函数 １２６⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

６．１１ 信箱 １２８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

６．１１．１ 信箱的使用 １２８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

６．１１．２ 信箱ＡＰＩ函数 １２９⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

６．１２ 事件标志 １３１⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

６．１２．１ 事件标志的使用 １３２⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

６．１２．２ 事件标志ＡＰＩ函数 １３３⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

６．１３ Ｓｐｉｎｌｏｃｋ １３５⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

６．１３．１ Ｓｐｉｎｌｏｃｋ的使用 １３５⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

６．１３．２ Ｓｐｉｎｌｏｃｋ内核ＡＰＩ函数 １３６⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

第７章 标准Ｃ与数学库 １３８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

７．１ 标准Ｃ与数学库的配置 １３８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

７．２ 非ＩＳＯ标准函数 １３９⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

７．３ 数学库兼容方式 １４０⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

７．４ 一些实现细节 １４１⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

７．５ 线程安全性 １４３⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

７．６ Ｃ库启动函数 １４４⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

第８章 设备驱动程序与ＰＣＩ库 １４５⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

８．１ 设备驱动程序用户ＡＰＩ １４５⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

８．１．１ 设备的查找 １４６⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

８．１．２ 向设备传送数据 １４６⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

８．１．３ 读取设备数据 １４６⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

８．１．４ 读取设备配置信息 １４６⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

８．１．５ 对设备的配置 １４７⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

８．２ 驱动程序与内核及ＨＡＬ的接口 １４７⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

８．２．１ ｅＣｏｓ中断模块 １４７⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

８．２．２ 同步 １４８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

８．２．３ ＳＭＰ支持 １５０⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

８．２．４ 驱动程序模式 １５０⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

Ⅷ

８．２．５ 驱动程序与内核及ＨＡＬ的接口ＡＰＩ函数 １５１⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

８．３ ｅＣｏｓ驱动程序设计 １６３⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

８．３．１ 设备驱动程序的基本结构 １６３⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

８．３．２ 串口驱动程序设计 １６５⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

８．４ 串口驱动程序 １６８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

８．４．１ 串口（ｒａｗｓｅｒｉａｌ）驱动程序 １６８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

８．４．２ ＴＴＹ驱动程序 １７３⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

８．５ ＰＣＩ库 １７５⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

８．５．１ ＰＣＩ总线操作 １７５⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

８．５．２ ＰＣＩ库ＡＰＩ １８１⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

第９章 文件系统 １８８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

９．１ 文件系统表格 １８８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

９．１．１ 文件系统表（ＦｉｌｅＳｙｓｔｅｍＴａｂｌｅ） １８８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

９．１．２ 安装表（ＭｏｕｎｔＴａｂｌｅ） １９０⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

９．１．３ 文件表 １９２⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

９．２ 文件目录 １９４⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

９．３ 同步 １９４⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

９．４ 初始化和安装 １９５⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

９．５ 文件操作 １９６⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

９．５．１ 文件系统的安装ｍｏｕｎｔ与卸载ｕｍｏｕｎｔ １９７⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

９．５．２ ｏｐｅｎ、ｃｒｅａｔ和ｃｌｏｓｅ函数 １９８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

９．５．３ ｒｅａｄ、ｗｒｉｔｅ和ｌｓｅｅｋ函数 １９８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

９．５．４ ｆｃｎｔｌ函数 １９９⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

９．５．５ ｄｕｐ和ｄｕｐ２函数 ２００⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

９．５．６ ｓｔａｔ和ｆｓｔａｔ函数 ２０１⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

９．５．７ ａｃｃｅｓｓ函数 ２０２⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

９．５．８ ｌｉｎｋ，ｕｎｌｉｎｋ，ｒｅｍｏｖｅ和ｒｅｎａｍｅ函数 ２０２⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

９．５．９ ｍｋｄｉｒ和ｒｍｄｉｒ函数 ２０３⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

９．５．１０ ｏｐｅｎｄｉｒ、ｒｅａｄｄｉｒ、ｒｅｗｉｎｄｄｉｒ和ｃｌｏｓｅｄｉｒ函数 ２０３⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

９．５．１１ ｃｈｄｉｒ和ｇｅｔｃｗｄ函数 ２０４⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

９．５．１２ Ｓｏｃｋｅｔ操作 ２０４⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

９．６ 创建文件系统 ２０５⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

９．７ ＲＡＭ文件系统 ２０９⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

９．７．１ 文件和目录节点 ２０９⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

９．７．２ 目录 ２１１⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

９．７．３ 数据存储机制 ２１１⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

９．８ ＲＯＭ文件系统 ２１３⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

９．９ 文件操作实例 ２１４⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

第１０章 网络支持与编程 ２２２⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１０．１ ｅＣｏｓ网络配置 ２２２⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１０．２ 以太网驱动程序设计 ２２３⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

Ⅸ

１０．２．１ 底层驱动程序基本框架 ２２４⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１０．２．２ 驱动程序内部函数的实现 ２２７⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１０．２．３ 高层驱动程序函数 ２３１⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１０．２．４ 数据的发送和接收过程 ２３１⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１０．３ ＴＣＰ／ＩＰ协议栈支持 ２３２⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１０．３．１ 特性支持与配置 ２３３⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１０．３．２ ＡＰＩ函数 ２３４⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１０．４ ＦＴＰ客户端 ２３６⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１０．５ ＤＮＳ客户端 ２３７⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１０．６ ｅＣｏｓ网络编程实例 ２３８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１０．６．１ 网络通信测试程序 ２３８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１０．６．２ 编程实例———ｐｉｎｇ程序 ２３９⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

第１１章 硬件抽象层与ｅＣｏｓ移植 ２４５⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１１．１ 硬件抽象层ＨＡＬ ２４５⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１１．２ 硬件抽象层的结构 ２４７⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１１．２．１ ＨＡＬ的类型 ２４７⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１１．２．２ 硬件抽象层文件描述 ２４８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１１．３ 硬件抽象层接口 ２５０⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１１．３．１ 基本定义 ２５０⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１１．３．２ 体系结构描述 ２５１⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１１．３．３ 中断处理 ２５５⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１１．３．４ Ｉ／Ｏ操作 ２５８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１１．３．５ Ｃａｃｈｅ控制 ２５９⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１１．３．６ ＳＭＰ支持 ２６１⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１１．３．７ 诊断支持 ２６４⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１１．３．８ 链接脚本 ２６５⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１１．４ 例外处理 ２６６⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１１．４．１ ＨＡＬ的启动处理 ２６６⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１１．４．２ 同步例外与异步中断的处理 ２６７⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１１．５ 虚拟向量 ２６９⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１１．６ ｅＣｏｓ的移植 ２７０⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１１．６．１ 平台抽象层的移植 ２７１⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１１．６．２ 变体抽象层的移植 ２７９⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１１．６．３ 体系结构抽象层的移植 ２８２⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

第１２章 组件结构与ＣＤＬ ２９０⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１２．１ ｅＣｏｓ的配置机制 ２９０⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１２．２ ｅＣｏｓ组织结构及编译过程 ２９１⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１２．２．１ 软件包与组件仓库 ２９１⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１２．２．２ 软件包的内容与格式 ２９２⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１２．２．３ 编译过程 ２９３⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１２．３ 组件定义语言ＣＤＬ ２９４⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

Ⅹ

１２．３．１ ＣＤＬ命令 ２９５⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１２．３．２ ＣＤＬ属性 ２９８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１２．４ 选项命名约定 ３０５⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１２．５ Ｔｃｌ简介 ３０７⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１２．５．１ 基本语法 ３０７⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１２．５．２ 变量 ３０８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１２．５．３ 命令替换 ３０８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１２．５．４ 引号和花括弧的使用 ３０８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１２．５．５ 反斜杠和注释 ３０９⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１２．６ 表达式和值 ３１０⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１２．６．１ 选项的值 ３１０⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１２．６．２ 普通表达式 ３１２⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１２．６．３ 目标表达式 ３１３⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１２．６．４ 列表表达式 ３１４⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１２．７ 接口 ３１４⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１２．８ 更新ｅｃｏｓ．ｄｂ数据库 ３１６⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

第１３章 ｅＣｏｓ嵌入式Ｗｅｂ服务器 ３１８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１３．１ 嵌入式Ｗｅｂ服务器ＬｉｂＨＴＴＰＤ ３１８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１３．２ 配置和建造ｅＣｏｓ ３２０⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１３．３ Ｗｅｂ服务器编程 ３２１⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

１３．４ 运行Ｗｅｂ服务器 ３２８⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

附录

附录Ａ ｅＣｏｓ硬件支持情况 ３３５⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

附录Ｂ ｅＣｏｓ实时特性 ３４１⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

参考文献 ３５９⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

Ⅺ

第１章 概 述

随着信息技术的飞速发展和互联网的迅速普及，人们已经步入了数字化时代。形式多样

的数字化产品已经开始成为继ＰＣ机之后信息处理的主要工具，消费电子、计算机、通信（３Ｃ）
一体化已经成为数字化产品的一种趋势，并且正在逐步形成一个充满商机的巨大产业。在这

样一种数字化潮流下，嵌入式系统已成为当前研究和应用的热点之一。嵌入式产品已经涉及

到人们日常生活和工作的各个方面，手机、个人数字助理ＰＤＡ、ＭＰ３播放器、机顶盒、ＶＣＤ、智
能外设、数码相机、数码电视、网络家电、ＧＰＳ设备、数控机床等各种各样的数字设备都是广泛
使用的嵌入式产品。

嵌入式系统是一种以应用为中心、软硬件可裁减的专用计算机系统。它具有很强的灵活

性，可以适应应用系统对功能、可靠性、成本、体积、功耗等方面的严格要求。嵌入式系统主要

由嵌入式处理器、相关支撑硬件、嵌入式操作系统以及应用软件系统等组成，它是一种集软、硬

件于一体的可独立工作的设备或组件。嵌入式操作系统是一种实时的、支持嵌入式系统应用

的操作系统软件，它是嵌入式系统极为重要的组成部分，通常包括与硬件相关的底层驱动软

件、系统内核、设备驱动接口、通信协议、图形界面等。与通用操作系统相比较，嵌入式操作系

统在系统实时高效性、硬件的相关依赖性、软件固态化以及应用的专用性等方面具有较为突出

的特点。

目前，嵌入式操作系统的种类较多，其中比较流行的有ＶｘＷｏｒｋｓ、ＷｉｎｄｏｗｓＣＥ、ｐＳＯＳ、

ＰａｌｍＯＳ、嵌入式Ｌｉｎｕｘ、ＱＮＸ和Ｎｕｃｌｅａｒ等产品。这些嵌入式操作系统在开放性、实用性以及
性能等方面各有千秋，而且大多数为商用产品。除了商用产品外，另外还有一些免费的嵌入式

操作系统，ｅＣｏｓ就是这些产品的一个典型代表。嵌入式可配置操作系统ｅＣｏｓ（Ｅｍｂｅｄｄｅｄ
ＣｏｎｆｉｇｕｒａｂｌｅＯｐｅｒａｔｉｎｇＳｙｓｔｅｍ）是一种开放源代码软件，它是一种免费、无版权限制的适合于
深度嵌入式应用的实时操作系统。ｅＣｏｓ最为显著的特点是它的可配置性、可裁剪性、可移植
性和实时性，它的一个主要技术创新是其功能强大的配置系统，可以在源码级实现对系统的配

置和裁剪。正是由于这些特性，ｅＣｏｓ已引起越来越多的关注，同时也吸引了越来越多的厂家
使用ｅＣｏｓ开发其新一代嵌入式产品。

１１ 什么是ｅＣｏｓ

ｅＣｏｓ是一种嵌入式可配置实时操作系统，适合于深度嵌入式应用，主要应用对象包括消
费电子、电讯、车载设备、手持设备以及其他一些低成本和便携式应用。ｅＣｏｓ是一种开放源代
码软件，无任何版权费用。ｅＣｏｓ具有很强的可配置能力，而且它的代码量很小，通常为几十到
几百ＫＢ。它的最小配置形式是它的硬件抽象层ＨＡＬ所提供的引导程序ＲｅｄＢｏｏｔ，可以支持
很大范围内许多不同的处理器和平台。它的最大配置形式是一个完整的实时操作系统，所提

供的服务和支持能与其他大多数商用实时操作系统相媲美。ｅＣｏｓ为开发人员提供了一个能
涵盖大范围内各种不同嵌入式产品的公共软件基础结构，使得嵌入式软件开发人员可以集中

１

精力去开发更好的嵌入式产品，而不是停留在对实时操作系统的开发、维护和配置上。

１１１ 起源与历史

ｅＣｏｓ最初起源于Ｃｙｇｎｕｓ公司。Ｃｙｇｎｕｓ创建于１９８９年，创始人为ＭｉｃｈａｅｌＴｉｅｍａｎｎ、Ｄａｖｉｄ
ＨｅｎｋｅｌＷａｌｌａｃｅ和ＪｏｈｎＧｉｌｍｏｒｅ，其目的是为开源软件提供高质量的开发和支持。经过几年的
艰苦努力，最后推出了今天被人们广泛使用的ＧＮＵＰｒｏ开发工具包，包括ＧＣＣ（ＡＮＳＩＣ编译
器）、Ｇ＋＋（Ｃ＋＋编译器）、ＧＤＢ（源码级和汇编级调试工具）、ＧＡＳ（ＧＮＵ汇编器）、ＬＤ（ＧＮＵ链
接器）、Ｃｙｇｗｉｎ（Ｗｉｎｄｏｗｓ下的ＵＮＩＸ环境）、Ｉｎｓｉｇｈｔ（ＧＤＢ图形界面ＧＵＩ）等。

Ｃｙｇｎｕｓ对ｅＣｏｓ的设计始于１９９７年春季，其主要目的是为市场提供一种低成本、高效率、
高质量的嵌入式软件解决方案，同时要求该软件所占系统资源极少。ｅＣｏｓ和ＧＮＵＰｒｏ相辅相
成，扩大了Ｃｙｇｎｕｓ的产品线。ｅＣｏｓ从设计之初就考虑到了嵌入式系统中内存资源的限制以
及嵌入式硬件平台的多样性。通过与其他许多半导体公司的协作，Ｃｙｇｎｕｓ成功构造了一个可
以对硬件层进行抽象的实时操作系统（ＲＴＯＳ），并且具有高度可配置性。这些特性使得ＲＴＯＳ
可以适合于各种各样的嵌入式系统，这种ＲＴＯＳ就是ｅＣｏｓ。ｅＣｏｓ的高度可配置性可以显著缩
短嵌入式产品的开发周期。

Ｃｙｇｎｕｓ对ｅＣｏｓ的另一个设计目标是降低嵌入式产品的成本。低成本是嵌入式系统开发
中必须考虑的一个重要因素。通过使用开放源代码的形式，ｅＣｏｓ基本上不需要任何费用。它
是一种完全免费的软件，任何公司和个人都可以直接从Ｉｎｔｅｒｎｅｔ上下载其源码和相应的开发
工具，并且可以自由地进行修改和扩展，ｅＣｏｓ产品的发布也无需交纳任何版权费用。用户可
以自由使用ｅＣｏｓ，但是要求公布对ｅＣｏｓ的改动，这是为了提高或促进ｅＣｏｓ发展的一种措施。
当然，用户的应用程序不必公开。

Ｃｙｇｎｕｓ于１９９８年１１月发布了第一个ｅＣｏｓ版本（ｅＣｏｓ１．１）。它只支持有限的几种处理
器结构：ＭａｔｓｕｓｈｉｔａＭＮ１０３００、ＴｏｓｈｉｂａＴＸ３９和ＰｏｗｅｒＰＣ。１９９９年５月，Ｃｙｇｎｕｓ发布了ｅＣｏｓ
的第二个版本ｅＣｏｓ１．２．１，它在ｅＣｏｓ１．１的基础上增加了许多新的特性，并扩大了对处理器的
支持范围，包括 ＡＲＭ７、ＳＰＡＲＣｌｉｔｅＭＢ８６８３ｘ系列处理器、ＰｏｗｅｒＰＣ（ＭＰＣ８６０、ＭＰＣ８５０、

ＭＰＣ８２３）、ＶＲ４３００和ＳＨ３等。

１９９９年１１月，ＲｅｄＨａｔ收购了Ｃｙｇｎｕｓ公司。在此后的几年里，ｅＣｏｓ作为ＲｅｄＨａｔ的一个
嵌入式产品得到了迅速的发展。２０００年３月，ＲｅｄＨａｔ发布了ｅＣｏｓ的第三个版本ｅＣｏｓ１．３．１。

ｅＣｏｓ１．３．１在１．２．１版本的基础上又增加了许多新的特性（ＴＣＰ／ＩＰ协议栈、ＰＣＩ支持等），并
扩充了对处理器平台的支持，包括 ＡＲＭ Ｔｈｕｍｂ、ＡＲＭ９、ＳｔｒｏｎｇＡＲＭ、ＡＭ３３、ＰｏｗｅｒＰＣ、

ＶＲ４３００、ＳＨ３、ｘ８６等。２０００年８月，ｅＣｏｓ增加了对目标系统引导和调试固件（Ｆｉｒｍｗａｒｅ）的支
持，即ＲｅｄＢｏｏｔ，它是ＲｅｄＨａｔ的一个标准嵌入式系统引导和Ｄｅｂｕｇ环境。ＲｅｄＢｏｏｔ目前已被
许多嵌入式产品所采用。

２００２年，ＲｅｄＨａｔ由于财务方面的原因，裁减了ｅＣｏｓ开发队伍，这在一定程度上影响了人
们对ｅＣｏｓ的信心。但ｅＣｏｓ的发展并没有因此而停止，ＲｅｄＨａｔ随后宣称将继续支持ｅＣｏｓ的发
展，而原来的ｅＣｏｓ主要开发人员组建了一个新的ｅＣｏｓＣｅｎｔｒｉｃ公司，继续进行ｅＣｏｓ的开发和技
术支持。２００２年４月，ｅＣｏｓＣｅｎｔｒｉｃ发布了ｅＣｏｓ２．０ａｌｐｈａ版，２００３年３月，又发布了ｅＣｏｓ２．０
ｂｅｔａ版，２００３年５月，正式发布了ｅＣｏｓ２．０。它所支持的处理器包括：ＡＲＭ、ＳｔｒｏｎｇＡＲＭ、

ＸＳｃａｌｅ、ＳｕｐｅｒＨ、Ｉｎｔｅｌｘ８６（ＩＡ３２）、ＰｏｗｅｒＰＣ、ＭＩＰＳ、ＡＭ３ｘ、Ｍｏｔｏｒｏｌａ６８Ｋ／Ｃｏｌｄｆｉｒｅ、ＳＰＡＲＣ、

２

ＨｉｔａｃｈｉＨ８／３００Ｈ和ＮＥＣＶ８５０等，能支持近百种当时市场上广泛使用的嵌入式系统开发平台
和评估版。ｅＣｏｓ２．０与它的前一个版本ｅＣｏｓ１．３．１相比，增加和改进的功能包括：

１）ＲｅｄＢｏｏｔ，基于ｅＣｏｓ的引导和调试Ｆｉｒｍｗａｒｅ。

２）ＴＣＰ／ＩＰ协议栈，支持ＢＯＯＴＰ／ＤＨＣＰ、ＤＮＳ、ＴＦＴＰ／ＦＴＰ、ＩＰｖ６和ＨＴＴＰＤ。

３）ＲＡＭ、ＲＯＭ和Ｆｌａｓｈ文件系统。

４）电源管理。

５）ＵＳＢ支持。

６）ＰＯＳＩＸ兼容ＡＰＩ。

７）对称多处理器ＳＭＰ支持。
目前，许多公司都在使用ｅＣｏｓ，并先后成功推出了使用ｅＣｏｓ的嵌入式产品。部分产品有：

ＢｒｏｔｈｅｒＨＬ２４００ＣｅＮ网络彩色激光打印机、ＤｅｌｐｈｉＣｏｍｍｕｎｉｐｏｒｔ车载信息处理系统（ＭＰＵ）、

ＩｏｍｅｇａＨｉｐＺｉｐ数字音频播放器、Ｉｋｅｎｄｉ指纹识别系统、３ＧＬＡＢ移动电话、ＧＰＳ卫星地面设
备、ＭＰ３播放器、ＣｒｏｓＳｔｏｒＲＡＩＤ系统等等。

１１２ 功能与特性

ｅＣｏｓ是一个适合于深度嵌入式应用的开放源代码实时操作系统。它能满足嵌入式Ｌｉｎｕｘ
难以满足的对嵌入空间的需求，Ｌｉｎｕｘ目前内核最小约５００ＫＢ，占用１．５ＭＢ内存，而ｅＣｏｓ只
占用几十到几百ＫＢ。ｅＣｏｓ使用了多任务抢占机制，具有最小的中断延迟，支持嵌入式系统所
需的所有同步原语，并拥有灵活的调度策略和中断处理机制。ｅＣｏｓ还提供了普通嵌入式应用
中所需要的全部功能，包括设备驱动程序、内存管理、例外处理、标准Ｃ、数学库等等。除了这
些对系统运行时的支持外，ｅＣｏｓ所提供的支持还包括开发嵌入式应用所需的所有工具，如

ｅＣｏｓ配置和编译工具、基于ＧＮＵ的编译器、汇编器、链接器、调试器和模拟器。

ｅＣｏｓ提供的基本功能如下：

１）硬件抽象层（ＨＡＬ）。

２）实时内核：

① 中断处理。

② 例外处理。

③ 可选择的调度器。

④ 多线程支持。

⑤ 一组丰富的同步原语。

⑥ 定时器、计数器、告警器。

⑦ 内存分配算法选择。

⑧ 调试和测试支持。

３）μＩＴＲＯＮ３．０兼容ＡＰＩ。

４）ＰＯＳＩＸ兼容ＡＰＩ。

５）ＩＳＯＣ和数学库。

６）串口、以太网、墙上时钟和看门狗设备驱动程序。

７）ＵＳＢ支持。

８）ＴＣＰ／ＩＰ网络栈，包括：

３

①ＢＯＯＴＰ／ＤＨＣＰ。

②ＤＮＳ。

③ＴＦＴＰ／ＦＴＰ。

④ＳＮＭＰ。

⑤ＩＰｖ６。

⑥ＨＴＴＰＤ。

９）文件系统：

①ＪＦＦＳ２Ｆｌａｓｈ文件系统。

②ＲＡＭ文件系统。

③ＲＯＭ文件系统。

１０）电源管理。

１１）ＧＤＢｄｅｂｕｇ支持。

ｅＣｏｓ的主要特性包括：

① 开放源代码。

② 免费软件，无版权费用。

③ 高度可配置性。

④ 易于移植。

⑤ 实时系统。

⑥ 代码量小。

⑦ 符合标准协议。

⑧ 网络支持。

１１３ ｅＣｏｓ核心组件

实时嵌入式操作系统通常应该提供一些标准功能，这些功能包括线程同步机制、调度机

制、中断处理、例外和错误处理、定时机制以及设备驱动程序等。ｅＣｏｓ通过提供以实时内核为
核心的一些核心组件来实现这些标准功能。这些核心组件包括：

（１）硬件抽象层（ＨＡＬ）：对硬件平台进行抽象，为上层软件对硬件的控制和访问提供一个
标准接口。硬件抽象层的实现保证了ｅＣｏｓ系统具有良好的可移植性。
（２）内核：内核包含了中断和例外处理机制、多线程机制、同步机制、可供选择的多种调度
机制、定时机制、计数器等。

（３）ＩＳＯＣ和数学库：提供与标准兼容的函数和调用。
（４）设备驱动程序：对一些典型的设备提供驱动程序支持，包括串口驱动程序、以太网驱
动程序、ＦｌａｓｈＲＯＭ驱动程序、ＵＳＢ驱动程序、ＰＣＭＣＩＡ驱动程序等等。
（５）ＧＮＵｄｅｂｕｇｇｅｒ（ＧＤＢ）支持：为目标平台上的软件与ＧＤＢ主机之间提供通信机制，实
现对目标平台硬件和软件的调试。

ｅＣｏｓ系统及其应用程序以特权方式运行，没有用户方式和内核方式之分。ｅＣｏｓ还提供了
一些对系统基本结构进行测试的测试程序，这些测试程序也可以与系统一样进行类似的配置，

使其能精确地对系统所进行的配置进行测试。

４

１１４ 对硬件的支持

ｅＣｏｓ支持当前流行的大部分嵌入式处理器。ｅＣｏｓ具有很好的可移植特性，它可以在１６
位、３２位和６４位等不同体系结构之间以及它们的各种不同平台之间进行移植。ｅＣｏｓ的内核、
库以及运行组件位于硬件抽象层（ＨＡＬ）之上，只要将硬件抽象层和相关的设备驱动程序进行
移植，ｅＣｏｓ及其应用程序就可以在新的目标平台上运行。因此，厂家在进行产品开发时，在硬
件结构的选型方面具有很大的选择余地。

ｅＣｏｓ目前支持十几种处理器，包括这些处理器的多种变体和多种典型开发板。ｅＣｏｓ源码
支持当前市场上最为流行的各种不同处理器结构的标准商用评估板。下面是ｅＣｏｓ目前所支
持的主要处理器（对硬件的详细支持情况见“附录Ａ”）：

①ＡＲＭ。

②ＦｕｊｉｔｓｕＦＲＶ。

③ＨｉｔａｃｈｉＨ８／３００。

④Ｉｎｔｅｌｘ８６。

⑤ ＭａｔｓｕｓｈｉｔａＡＭ３ｘ。

⑥ ＭＩＰＳ。

⑦ＮＥＣＶ８ｘｘ。

⑧ＰｏｗｅｒＰＣ。

⑨ＳａｍｓｕｎｇＣａｌｍＲＩＳＣ１６／３２。

⑩ＳＰＡＲＣ。

瑏瑡ＳＰＡＲＣｌｉｔｅ。

瑏瑢ＳｕｐｅｒＨ。
读者可以在ｅＣｏｓ网站上查阅ｈｔｔｐ：／／ｓｏｕｒｃｅｓ．ｒｅｄｈａｔ．ｃｏｍ／ｅｃｏｓ／ｈａｒｄｗａｒｅ．ｈｔｍｌ，了解ｅＣｏｓ

对硬件支持的最新情况。

１１５ ｅＣｏｓ资源

ｅＣｏｓ是一种开放源代码的软件，它的源代码和开发工具、配置工具都可以从ｅＣｏｓ网站上
免费下载。相关网站和主要网址如下：

ｅＣｏｓ网址：ｈｔｔｐ：／／ｅｃｏｓ．ｓｏｕｒｃｅｗａｒｅ．ｏｒｇ／或ｈｔｔｐ：／／ｓｏｕｒｃｅｓ．ｒｅｄｈａｔ．ｃｏｍ／ｅｃｏｓ。

ＲｅｄＨａｔ网址：ｈｔｔｐ：／／ｗｗｗ．ｒｅｄｈａｔ．ｃｏｍ。

ｅＣｏｓＣｅｎｔｒｉｃ网址：ｈｔｔｐ：／／ｗｗｗ．ｅｃｏｓｃｅｎｔｒｉｃ．ｃｏｍ。

ＧＮＵ网址：ｈｔｔｐ：／／ｗｗｗ．ｇｎｕ．ｏｒｇ。

Ｃｙｇｗｉｎ网址：ｈｔｔｐ：／／ｗｗｗ．ｃｙｇｗｉｎ．ｃｏｍ。

ｅＣｏｓ源码下载地址：ｆｔｐ：／／ｓｏｕｒｃｅｓ．ｒｅｄｈａｔ．ｃｏｍ／ｐｕｂ／ｅｃｏｓ。

ＧＮＵ开发工具包下载地址：ｆｔｐ：／／ｆｔｐ．ｇｎｕ．ｏｒｇ／ｇｎｕ／。
图形配置工具下载地址：ｈｔｔｐ：／／ｓｏｕｒｃｅｓ．ｒｅｄｈａｔ．ｃｏｍ／ｅｃｏｓ／ｃｔ２．ｈｔｍｌ。

ｅＣｏｓ源码采用ＣＶＳ系统进行版本管理，它的ＣＶＳ服务器上具有最新的ｅＣｏｓ源码。用户
可以登录该ＣＶＳ服务器及时更新ｅＣｏｓ源码。ｅＣｏｓ的ＣＶＳ服务器的登录方式（Ｌｉｎｕｘ或

Ｃｙｇｗｉｎ环境下）为：

５

ｃｖｓｄ：ｐｓｅｒｖｅｒ：ａｎｏｎｃｖｓ＠ｓｏｕｒｃｅｓ．ｒｅｄｈａｔ．ｃｏｍ：／ｃｖｓ／ｅｃｏｓｌｏｇｉｎ
对于一些不能使用ＣＶＳ服务的用户，ｅＣｏｓＣｅｎｔｒｉｃ提供了一个及时下载ｅＣｏｓ源码的方法，

它使用ｅＣｏｓ源码“快照（ｓｎａｐｓｈｏｔ）”的形式，定期将最新的ｅＣｏｓ源码打包并放置到其网址上，
用户可以到下面的网址通过ＦＴＰ或ＨＴＴＰ将其下载：

ｈｔｔｐ：／／ｗｗｗ．ｅｃｏｓｃｅｎｔｒｉｃ．ｃｏｍ／ｓｎａｐｓｈｏｔｓ
在进行嵌入式产品开发时，开发人员最为关心的是开发过程中的技术支持与服务。对于

ｅＣｏｓ来说，可以根据具体情况采用不同的方式来获取技术支持。ｅＣｏｓ提供了六个邮件列表
（见表１１），用户可以在这些邮件列表中查找、订阅以及提交需要咨询的各种问题。用户在使
用邮件列表时，可以先在其主页上查找相关问题的的答案，然后再通过ｅｍａｉｌ寻求更多的帮
助，通常在两到三天内便会得到技术支持。订阅这些邮件列表的网址是：

ｈｔｔｐ：／／ｓｏｕｒｃｅｓ．ｒｅｄｈａｔ．ｃｏｍ／ｅｃｏｓ／ｉｎｔｏｕｃｈ．ｈｔｍｌ

表１１ ｅＣｏｓ邮件列表

邮 件 列 表 描 述 网 址

ＤｉｓｃｕｓｓｉｏｎＬｉｓｔ
开发人员对ｅＣｏｓ的技术

讨论、技术支持和帮助

主页 ｈｔｔｐ：／／ｓｏｕｒｃｅｓ．ｒｅｄｈａｔ．ｃｏｍ／ｍｌ／ｅｃｏｓｄｉｓｃｕｓｓ

ｅｍａｉｌ ｅｃｏｓｄｉｓｃｕｓｓ＠ｓｏｕｒｃｅｓ．ｒｅｄｈａｔ．ｃｏｍ

ＰａｔｃｈｅｓＬｉｓｔ 用于发布ｅＣｏｓ补丁
主页 ｈｔｔｐ：／／ｓｏｕｒｃｅｓ．ｒｅｄｈａｔ．ｃｏｍ／ｍｌ／ｅｃｏｓｐａｔｃｈｅｓ

ｅｍａｉｌ ｅｃｏｓｐａｔｃｈｅｓ＠ｓｏｕｒｃｅｓ．ｒｅｄｈａｔ．ｃｏｍ

ＤｅｖｅｌｏｐｍｅｎｔＬｉｓｔ
ｅＣｏｓ当前开发进展情况，

包括新特性、新的硬件支持

主页 ｈｔｔｐ：／／ｓｏｕｒｃｅｓ．ｒｅｄｈａｔ．ｃｏｍ／ｍｌ／ｅｃｏｓｄｅｖｅｌ

ｅｍａｉｌ ｅｃｏｓｄｅｖｅｌ＠ｓｏｕｒｃｅｓ．ｒｅｄｈａｔ．ｃｏｍ

Ａｎｎｏｕｎｃｅｍｅｎｔ

Ｌｉｓｔ

ｅＣｏｓ重要新闻、新版本的

发布、新特性

主页 ｈｔｔｐ：／／ｓｏｕｒｃｅｓ．ｒｅｄｈａｔ．ｃｏｍ／ｍｌ／ｅｃｏｓａｎｎｏｕｎｃｅ

ｅｍａｉｌ ｅｃｏｓａｎｎｏｕｎｃｅ＠ｓｏｕｒｃｅｓ．ｒｅｄｈａｔ．ｃｏｍ

ＣＶＳＷｅｂ

ＰａｇｅｓＬｉｓｔ

由ＣＶＳ系统维护的ｅＣｏｓ
主页变化通知（只读）

主页 ｈｔｔｐ：／／ｓｏｕｒｃｅｓ．ｒｅｄｈａｔ．ｃｏｍ／ｍｌ／ｅｃｏｓｗｅｂｐａｇｅｓｃｖｓ

ＣＶＳＬｉｓｔ
由ＣＶＳ系统维护的ｅＣｏｓ
源码库变化通知（只读）

主页 ｈｔｔｐ：／／ｓｏｕｒｃｅｓ．ｒｅｄｈａｔ．ｃｏｍ／ｍｌ／ｅｃｏｓｃｖｓ

除了这些对ｅＣｏｓ的免费支持外，ｅＣｏｓＣｅｎｔｒｉｃ公司还提供商业支持。它为客户提供技术咨
询、技术帮助、解决方案、为客户硬件定制软件以及测试等专业支持。

ｅＣｏｓ还提供了一个Ｂｕｇ报告和跟踪的方法。Ｂｕｇ的查询可以在下面的网址内进行：

ｈｔｔｐ：／／ｂｕｇｚｉｌｌａ．ｒｅｄｈａｔ．ｃｏｍ／ｂｕｇｚｉｌｌａ／ｑｕｅｒｙ．ｃｇｉ？ｐｒｏｄｕｃｔ＝ｅＣｏｓ
报告新的Ｂｕｇ可以进入下面的网址：

ｈｔｔｐ：／／ｂｕｇｚｉｌｌａ．ｒｅｄｈａｔ．ｃｏｍ／ｂｕｇｚｉｌｌａ／ｅｎｔｅｒ ｂｕｇ．ｃｇｉ？ｐｒｏｄｕｃｔ＝ｅＣｏｓ

１２ ｅＣｏｓ的可配置性

ｅＣｏｓ在嵌入式系统软件方面最具创新意义的贡献是它的配置结构和配置方法。以往，大
多数嵌入式系统的开发需要开发人员自己对应用进行适当的调整和改变来适应底层的操作系

６

统，但ｅＣｏｓ改变了这种情况。ｅＣｏｓ为开发人员提供了大范围的可选项来对底层操作系统进行
配置，使其能够更好地满足应用的需求，这样就变成了调整操作系统来适应应用。当前，ｅＣｏｓ
提供了２００多个配置选项，典型的配置选项包括调度器的类型和任务优先级别数目等。目前，
已经有一些软件公司正在借鉴ｅＣｏｓ的这种配置方式。

１２１ 配置的必要性

在了解ｅＣｏｓ结构时，首先必须对构成ｅＣｏｓ系统的组件框架（ＣｏｍｐｏｎｅｎｔＦｒａｍｅｗｏｒｋ）有所
了解。ｅＣｏｓ组件框架的主要目的是为了满足嵌入式系统的设计需求，它是对系统进行配置的
一个主要途径。通过组件框架的使用，可以利用具有可重用性的软件组件和软件模块来建造

具有众多功能的应用。ｅＣｏｓ的组件框架可以用来对组件进行控制，减少对内存的使用。它还
允许用户对与时间相关的行为进行控制，从而满足实时系统的需要。采用组件框架后，用户在

编程时可以使用普通的编程语言，包括Ｃ、Ｃ＋＋以及汇编语言（硬件抽象层中的某些功能的实
现必须使用汇编语言）。

目前大多数的嵌入式系统软件都有可能包含了在具体应用中不会被使用的一些功能。这

些嵌入式软件由于包含了一些实际系统不需要的功能，从而产生了多余的代码。这些多余代

码增加了软件的复杂性，并且造成了系统资源的浪费。多余代码越多，系统的可靠性也越低。

举例来说，即使是一个简单的仅仅是输出“ＨｅｌｌｏＷｏｒｌｄ”的应用程序，在大多数的实时操作系统
中也要包含诸如互斥以及任务调度机制等这样一些实际应用根本不需要的功能。而ｅＣｏｓ却
不同，它将系统运行组件的最后控制权交给了开发人员，从而可以非常容易地删除那些实际应

用中不需要的功能和代码。根据具体应用的不同需要，ｅＣｏｓ系统可以被裁剪和扩充，其代码
量可能是几十ＫＢ，也可能是几百ＫＢ。
通过ｅＣｏｓ组件框架的使用，开发人员可以选择满足应用需要的组件，针对应用的实际需

要对某些组件进行配置。这种配置可以是使能或禁止某个特性，也可以是选择组件的某种实

现。以ｅＣｏｓ内核调度器的配置为例，ｅＣｏｓ为开发人员提供了一些选项，如优先级数目的选择、
决定是否使用时间片等等。通过对这些选项进行配置，任何不需要的代码都将从最后所产生

的映像中剔除掉。

ｅＣｏｓ的可配置性还使得建立一个可重用的软件组件库成为可能。由于具有很强的可移
植性和广泛的适用性，可重用软件组件的使用可以显著减少产品的开发周期。ｅＣｏｓ的组件框
架还鼓励第三方软件的开发，从而扩展ｅＣｏｓ核心组件的特性和功能。正是由于越来越多的开
发人员朝着这一目标的努力并将他们的成果返回给ｅＣｏｓ，因此可以说ｅＣｏｓ在功能方面的发展
将是无限的。

１２２ 配置方法

在嵌入式系统向更小、更快、更便宜和更复杂的方向发展时，需要对系统中的软件组件进

行控制。对一个应用映像中所包含的组件进行控制具有多种不同方法。ｅＣｏｓ对组件控制的
原则是尽量减少系统程序代码体积、节省系统资源、降低系统崩溃的可能性。采用这种原则设

计的系统将不会包含那些只有比其更复杂的系统才使用的代码。

对软件组件进行控制的一种方法是在运行时进行控制。这种方法不需要对组件进行预先

配置，它所产生的程序代码相当大，可能包含了大量实际应用不需要的代码。桌面系统通常使

７

用这种方法（如动态链接库）。另一种方法是在链接时进行控制，这种方法只使用需要的组件

函数，不需要的组件函数将被剔除掉。许多链接器（如ＧＮＵ链接器）都支持这种功能。但是，
链接时的控制只能在函数级进行控制，仍然难以满足嵌入式系统的需求。第三种方法是在编

译时进行控制，这种方式可以使开发人员在最初阶段就实现对组件的控制，并且可以根据实际

应用的需要对软件组件本身进行配置。编译阶段的控制方式可以在源码级实现对单条语句进

行控制，而不是在函数级或目标代码级。采用编译阶段的控制方式可以有效地降低程序代码

的大小，它非常适合于嵌入式系统。

ｅＣｏｓ主要使用编译阶段的控制方法来控制软件组件，同时也使用ＧＮＵ链接器提供的链
接时控制方法。编译阶段的控制方法也就是源码级的配置将由Ｃ预处理程序实现，所采用的
主要机制就是Ｃ预处理表达式＃ｉｆｄｅｆ。下面是源码级配置的一个例子：

１＃ｉｆｄｅｆＣＹＧＤＢＧ ＵＳＥ ＡＳＳＥＲＴＳ
２ａｃｔｉｏｎ１
３．．．
４
５＃ｅｌｓｅ
６ａｃｔｉｏｎ２
７．．．
８
９＃ｅｎｄｉｆ

例子中的ＣＹＧＤＢＧ ＵＳＥ ＡＳＳＥＲＴＳ标志（配置选项）的使能或禁止由开发人员进行控
制，当对该段程序进行编译时，只有实际应用真正需要的代码才进入最后的映像中，ａｃｔｉｏｎ１和

ａｃｔｉｏｎ２不可能出现在同一个配置中。当系统中这样的配置选项较多时，选项之间可能会出现
相互依赖关系，这就有可能导致冲突的出现。ｅＣｏｓ提供的配置工具可以很好地解决这种冲突
问题。

在嵌入式软件开发中，采用源码级的配置方式除了可以减少代码量外，还具有以下一些好

处：

（１）系统在运行阶段决定下一步采取什么行为时不需要对变量进行检查，因此运行速度
将会更快。

（２）降低了系统延迟，响应速度将会更快，这在实时系统中尤为重要。
（３）简化了程序代码，使得调试和测试更加容易。
（４）根据实际应用需求对程序代码进行裁减，形成针对具体应用的专用ＲＴＯＳ。
（５）资源的使用受到优化，处理器使用效率被提高，从而降低了硬件成本。
使用ｅＣｏｓ提供的配置工具可以很方便地对软件组件进行选择和配置，它还可以调用

ＧＮＵ交叉编译工具对所选择的软件组件进行编译，形成最后与应用程序进行链接的库。ｅＣｏｓ
配置工具具有命令行配置工具和图形配置工具两种形式，可运行在 Ｗｉｎｄｏｗｓ和Ｌｉｎｕｘ平台
上。

１３ ｅＣｏｓ的组织结构

ｅＣｏｓ的一个主要设计目标是实现系统的高度可配置能力。为实现这一目标，它将系统分

８

成不同的软件组件。这些软件组件具有可重用性，根据目标硬件平台的实际需要，通过其独特

的配置工具可以选择使用相应的组件，从而实现完整的嵌入式系统。对于每一个被选择的组

件，还可以对它的各个选项进行更细致的配置，可以增加和删减组件的某些功能，也可以修改

某些配置选项的值，对组件的配置完全可以根据实际应用的具体需求进行。使用这种方式最

后产生可执行的ｅＣｏｓ映像文件非常紧凑，只包含应用所需的一些功能。相对那些没有经过这
种配置的其他嵌入式软件来说，由于不包含实际应用不需要的多余代码，ｅＣｏｓ具有更快的运
行速度，稳定性也更好。

除了高度可配置能力外，ｅＣｏｓ所追求的还包括移植性和兼容性。它使用硬件抽象层的形
式将上层软件与底层硬件进行隔离，这种特性可以很容易地实现ｅＣｏｓ系统及其应用在不同平
台和不同体系结构之间的移植。ｅＣｏｓ提供了一些标准库，并实现了与μＩＴＲＯＮ和ＰＯＳＩＸ标
准的兼容，这种兼容性为第三方软件迅速移植到ｅＣｏｓ系统提供了保障。

ｅＣｏｓ的可配置性、移植性和兼容性主要得力于它所具备的层次结构，这种层次结构还实
现了它的易扩展性，新的组件可以很容易地加入到ｅＣｏｓ中来。

１３１ ｅＣｏｓ的层次结构

ｅＣｏｓ采用模块化设计，将不同功能的软件分成不同的组件，这些组件具有可重用性，分别
位于系统的不同层次。这种层次结构实现了ｅＣｏｓ的可配置性、可移植性、兼容性和可扩展性。
图１１是ｅＣｏｓ系统的层次结构图。

图１１ ｅＣｏｓ结构图

这种层次结构的最底层是硬件抽象层，它负责对目标系统硬件平台进行操作和控制，包括

对中断和例外的处理，它为上层软件提供硬件操作接口。只需对硬件抽象层进行适当的修改

就可以将整个ｅＣｏｓ系统包括基于ｅＣｏｓ的应用移植到新的硬件平台上。

ＲｅｄＢｏｏｔ是一个无内核的系统引导程序，它是ｅＣｏｓ的一个特殊应用。ＲｅｄＢｏｏｔ可以加载

９

ｅＣｏｓ应用程序，并提供Ｄｅｂｕｇ支持，通过ＲｅｄＢｏｏｔ还可以对目标系统环境参数进行管理。

ＲｅｄＢｏｏｔ不仅可以引导ｅＣｏｓ系统，也可以作为其他嵌入式系统的引导程序，ＩｎｔｅｌＩＱ８０３１０等
许多厂家提供的开发板都使用了ＲｅｄＢｏｏｔ。ＲｅｄＢｏｏｔ具有一个用于Ｄｅｂｕｇ目的的Ｓｔｕｂ程序，
为ＧＤＢ工具的使用提供支持。
设备驱动程序负责对硬件设备进行控制和管理，并完成设备数据的读写操作。设备驱动

程序模块自身也采用层次结构，上层驱动程序（相当于一个虚设备）可以调用下层驱动程序（物

理设备），并且可以增加下层驱动程序未能提供的一些功能。驱动程序为上层软件提供标准的

ＡＰＩ函数，应用程序可以使用这些ＡＰＩ函数对设备进行访问，完成对设备的初始化配置、获取
配置信息以及数据传输等操作。

内核是ｅＣｏｓ的一个核心组件，也是系统的一个可选组件，一些较为复杂的应用需要使用
内核。内核提供了多个可供选择的调度器，它还具有一个多线程机制，支持多任务处理，同时

还支持对称多处理器（ＳＭＰ）系统。ｅＣｏｓ内核提供了一组丰富的同步原语，完全满足各种嵌入
式应用的需求。内核还负责对中断和例外进行处理，它的中断滞后处理机制保证了系统的实

时性。此外，内核还具有内存分配机制和定时机制，并提供多线程ＧＤＢ调试支持。内核为上
层软件和应用程序提供了丰富的ＡＰＩ接口函数。

图１２ ｅＣｏｓ的配置层次

ｅＣｏｓ包含的网络支持包支持完整的ＴＣＰ／ＩＰ网络协议栈，它提供了基于ＯｐｅｎＢＳＤ和

ＦｒｅｅＢＳＤ的两种实现方式。ｅＣｏｓ目前支持的网络服务包括ＦＴＰ、ＴＦＴＰ、ＳＮＭＰ、ＤＮＳ、ＨＴＴＰＤ
等等。

在ｅＣｏｓ内核和驱动程序之上的软件组件还包括标准库（ＡＮＳＩＣ库和数学库）、兼容层
（ＰＯＳＩＸ兼容和μＩＴＲＯＮ兼容）、文件系统（ＲＡＭ文件系统、ＦＬＡＳＨ文件系统、ＲＯＭ文件系
统）等。作为一种开放软件，ｅＣｏｓ还可以很方便地容纳第三方软件。

ｅＣｏｓ的这种层次结构不仅体现在构成它的各个软件模块上，而且还体现在其配置方法上。

ｅＣｏｓ具有一个图形配置工具用于对系统的各个软件组件以及它们的配置选项进行配置。图１２
是其对ｅＣｏｓ内核进行配置的一个片段。ｅＣｏｓ将软件的各种组成模块封装成一个个独立而完整
的包，而这些包又可以进行分层配置。从图中可以看出这种从包（“ｅＣｏｓｋｅｒｎｅｌ”）到组件（“ｋｅｒｎｅｌ
ｓｃｈｅｄｕｌｅｒｓ”、“Ｅｘｃｅｐｔｉｏｎｈａｎｄｌｉｎｇ”等）、从组件到配置选项（“Ｓｃｈｅｄｕｌｅｒｔｉｍｅｓｉｌｉｃｉｎｇ”）、再从配置选项到
子选项（“Ｎｕｍｂｅｒｏｆｃｌｏｃｋｔｉｃｋｓｂｅｔｗｅｅｎｔｉｍｅｓｌｉｃｅｓ”）的多个配置层次。

０１

１３２ ｅＣｏｓ源码结构

ｅＣｏｓ源码所提供的内容包括构筑ｅＣｏｓ系统的所有软件组件、测试程序源码、配置工具及
源码、应用例子程序和说明文档等。其主要目录内容包括：

（１）ｐａｃｋａｇｅｓ：包含ｅＣｏｓ系统的所有软件包。
（２）ｔｏｏｌｓ：包含ｅＣｏｓ配置工具（图形配置工具和命令行配置工具），包括可执行文件和源码。
（３）ｅｘａｍｐｌｅｓ：包含一些从简单到复杂的应用程序例子。
（４）ｄｏｃ：联机说明文档。

ｅＣｏｓ使用组件仓库（ｃｏｍｐｏｎｅｎｔｒｅｐｏｓｉｔｏｒｙ）的形式对所有软件包和组件进行管理，ｐａｃｋａｇｅｓ
子目录就是包含所有这些软件包及组件的组件仓库。组件框架包含的管理工具可以用来对

ｅＣｏｓ源码进行管理，可以在组件仓库中增加新的软件包、更新当前使用的包以及删除旧的软
件包。ｐａｃｋａｇｅｓ子目录下包含一个数据库文件ｅｃｏｓ．ｄｂ，由管理工具对它进行维护。该数据库
文件包含了组件仓库内所有软件包的信息。

数据库文件ｅｃｏｓ．ｄｂ通常不需要修改，但将ｅＣｏｓ移植到新的平台时需要对它进行编辑，以
便配置工具可以识别并控制新的硬件抽象层ＨＡＬ。由于ｅＣｏｓ还处于不断发展之中，任何时
候都有可能增加新的平台支持以及增加新的组件，ｅＣｏｓ的组件仓库也因此处于不断变化之
中。开发人员可以通过ｅＣｏｓ的ＣＶＳ服务器或其他方式来更新组件仓库内容。
在针对某一项目进行ｅＣｏｓ开发时，配置工具将根据具体配置情况从组件仓库获取所需要

的软件组件，并将具体配置保存为配置文件，形成编译树（ｂｕｉｌｄｔｒｅｅ）目录和安装树（ｉｎｓｔａｌｌ
ｔｒｅｅ）目录。编译树包含用于编译的ｍａｋｅｆｉｌｅ文件和编译时产生的中间文件，编译完成后将在
安装树目录下产生ｅＣｏｓ应用程序所需要的库文件。应用程序在编译时将与已经生成的库文
件进行链接，并形成最终所需的可运行在目标系统上的可执行文件。

表１２为ｅＣｏｓ的组件仓库内容。

表１２ ｅＣｏｓ组件仓库内容

目 录 说 明

ｃｏｍｐａｔ ＰＯＳＩＸ（ＩＥＥＥ１００３．１）和μＩＴＲＯＮ３．０兼容软件包

ｃｙｇｍｏｎ ＣｙｇＭｏｎ程序包

ｄｅｖｓ 设备驱动程序，不同硬件结构所支持的设备有所不同

ｅｒｒｏｒ 错误和状态处理程序，用于所有包的错误和状态报告

ｆｓ 包含ＲＡＭ文件系统、ＲＯＭ文件系统、ＪＦＦＳ２Ｆｌａｓｈ文件系统

ｈａｌ 硬件抽象层

ｉｎｆｒａ ｅＣｏｓ的基础结构包，内容包括有公共类型、宏、声称、启动选项等

ｉｏ
基本Ｉ／Ｏ系统支持软件包，如文件ＩＯ、ＰＣＩ、以太网、Ｆｌａｓｈ、串口、ＵＳＢ等，是系统设备驱动程序

的基础

ｉｓｏｉｎｆｒａ ＩＳＯＣ库和ＰＯＳＩＸ支持包

ｋｅｒｎｅｌ ｅＣｏｓ内核，包括调度器、同步原语、线程支持、中断和例外处理、时钟等

ｌａｎｇｕａｇｅ Ｃ库和数学库

１１

（续）

目 录 说 明

ｎｅｔ 基本网络支持包，包括ＴＣＰ／ＩＰ、ＵＤＰ、ＳＮＭＰ等协议支持，还提供ＤＮＳ、ＦＴＰ、ＨＴＴＰＤ支持

ｐｋｇｃｏｎｆ 包的配置信息和编译规则（ｍａｋｅｆｉｌｅ生成规则）

ｒｅｄｂｏｏｔ ＲｅｄＢｏｏｔ软件包

ｓｅｒｖｉｃｅｓ
包含内存分配、压缩算法、ＣＰＵ负载、电源管理、ＣＲＣ校验算法、Ｍｉｃｒｏｗｉｎｄｏｗｓ图形窗口、实时

性能测试等程序

ｔｅｍｐｌａｔｅｓ ｅＣｏｓ提供的各种模板，开发人员可以根据硬件平台的实际情况选择相应的模板（见表１３）

１４ ｅＣｏｓ的一些基本概念

ｅＣｏｓ一开始就被设计成一个具有可配置性的组件结构。它的核心部分由许多不同组件
组成，如内核、Ｃ库、基础结构包（ｉｎｆｒａｓｔｒｕｃｔｕｒｅｐａｃｋａｇｅ）等。每一个组件又提供了大量的配置
选项，允许开发人员根据开发项目的需要进行不同的配置。为了对繁多而复杂的组件及其众

多的配置选项进行管理，ｅＣｏｓ提供了一个组件框架，这是专门用于支持对多个组件进行配置
的一组工具。组件框架工具具有可扩展性，可以在任何时候增加其他组件。这一节主要介绍

ｅＣｏｓ的一些基本概念，在研究和开发ｅＣｏｓ之前应该对这些基本概念有所了解。

１４１ 组件框架

组件框架（ＣｏｍｐｏｎｅｎｔＦｒａｍｅｗｏｒｋ）是用于对目标系统进行配置以及对组件仓库进行管理
的一组工具。包括ｅｃｏｓｃｏｎｆｉｇ命令行配置工具、图形配置工具、组件包管理工具。命令行配置
工具和图形配置工具都建立在一个用于对组件进行描述的ＣＤＬ库的基础之上。

１４２ 配置选项

配置选项（ＣｏｎｆｉｇｕｒａｔｉｏｎＯｐｔｉｏｎｓ）是进行配置的基本单位。每一个选项都对应于用户的一
个选择。例如，有一个选项用于控制是否进行声称和使能，内核有一个选项用于设置系统调度

优先级数目。选项可以对一些代码很小的函数进行控制，例如选择是否内嵌Ｃ库函数ｓｔｒｔｏｋ。
也可以对一些代码相当大的函数进行控制，例如对ｐｒｉｎｔｆ是否支持浮点转换的选择。
大多数选项都比较简单，用户只需选择使能或禁止。有些选项却较为复杂，例如调度优先

级数目必须在指定范围内进行选择。每个选项都具有一个合理的默认值，在开始开发一个系

统时不必对所有选项都进行设置和选择。开发人员可以在基本系统正常运行之后，再根据实

际应用的特殊性进行相应的调整。

有些选项用户是不可以修改的，如处理器的字节排列方式。一些处理器只能采用单一的

ｂｉｇｅｎｄｉａｎ或ｌｉｔｔｌｅｅｎｄｉａｎ方式，而有些处理器则可以对此进行选择。根据目标系统硬件的不
同，字节排列方式选项有时是可以修改的，有时是不能修改的。

１４３ 组件

组件（Ｃｏｍｐｏｎｅｎｔ）是一个功能单位，如一个特殊的内核调度器、一个指定设备的设备驱动

２１

程序等等。组件也是一个配置选项，用户可以对组件的所有功能的使能和禁止进行选择。例

如，如果目标系统中的某个设备在实际应用中不被使用，就不需要该设备的驱动程序。禁止该

设备的驱动程序可以降低程序代码和数据对内存的需求。

组件可以包含更多的配置选项。例如，一个设备驱动程序可能具有某些选项对它的功能

进行控制。当然如果整个设备驱动程序被禁止，这些选项就没有任何意义了。一般来说，大多

数的选项和组件具有一种层次结构，任何组件都可以包含一些该组件的选项和一些子组件。

可以把ｅＣｏｓ内核看作是一个大的组件，它包含一些如调度器、例外处理、同步元素等等这样一
些子组件，而同步元素组件又包含更多的子组件，如互斥、信号、条件变量、事件标志等等。互

斥组件又包含一些配置选项，如是否支持优先级倒置等。

１４４ 包

包（Ｐａｃｋａｇｅｓ）是一种特殊类型的组件，它是组件的发布单位。对于一个包含了所有源代
码、头文件、说明文档和其他一些相关文件的包，可以形成一个发布文件。使用适当的管理工

具可以对该发布文件进行安装，也可以卸载该包，或更新包的版本。ｅＣｏｓ源码已经提供了许
多包，如内核和基础结构包等。其他第三方软件包可以通过不同途径获得，并且可以与ｅＣｏｓ
安装在一起。

在进行ｅＣｏｓ配置时，包可以被使能或禁止。使能一个包时，它的配置数据将被加载，而禁
止一个包则意味着对该包进行卸载操作。除了可以禁止和使能外，还可以对包的版本进行选

择。

一般来说，包所包含的内容如下：

（１）用于建库的源文件。应用程序将与该库进行链接，形成可执行文件。某些源文件可
能用于其他目的，如提供链接脚本。

（２）用于对包的接口进行定义的头文件。
（３）在线说明。
（４）用于测试的源码程序。
（５）描述该包的一个或多个ＣＤＬ脚本。
并不是所有的包都必须包含上述全部内容。举例来说，设备驱动程序可以不提供新的包

接口。但是，所有的包都必须具有对其进行描述的ＣＤＬ脚本。

１４５ 组件仓库

ｅＣｏｓ具有一个组件仓库（ＣｏｍｐｏｎｅｎｔＲｅｐｏｓｉｔｏｒｙ），它是一个目录结构，所有的包都被安装
在这里。组件框架提供了一个组件管理工具用于对包进行安装和删除等操作。组件仓库包含

一个简单的数据库，该数据库包含了每个包的详细信息，用管理工具进行维护。

除了可以用管理工具对组件仓库进行操作外，用户进行开发时一般不需要对组件仓库进

行修改，ｅＣｏｓ将用户的开发工作与组件仓库分别放在不同的目录下。可以把组件仓库当作只
读资源，多个用户或多个设计项目可以共享组件仓库。

１４６ 配置

配置（Ｃｏｎｆｉｇｕｒａｔｉｏｎ）是用户所做选择的一个集合。组件框架的各种工具负责对整个配置

３１

进行处理，使用这些工具可以产生新的配置并保存配置（默认为ｅｃｏｓ．ｅｃｃ）。还可以对配置进
行操作，在编译ｅＣｏｓ和其他软件包之前使用配置来产生一个编译树。配置包含了哪些包被选
择以及这些包中的哪些选项被用户使能或禁止等详细信息。

１４７ 目标系统

目标系统（Ｔａｒｇｅｔ）是指将要运行ｅＣｏｓ应用程序的硬件平台。它可以是真实的一个硬件
平台，也可以是一个模拟器。在创建一个新的配置的时候，需要指定相应的目标系统。组件框

架将根据指定的目标系统选择一组包来产生相应的配置，如硬件抽象层ＨＡＬ和设备驱动程
序等等。此外，它还有可能根据指定目标系统的具体特点来对某些选项进行设置。

１４８ 模板

模板（Ｔｅｍｐｌａｔｅｓ）是一种局部性配置，其目的是为用户的开发工作提供一个适当的起点。

ｅＣｏｓ源码中提供了一些模板。其中有一个只提供很小功能的模板（ＲｅｄＢｏｏｔ），它只为硬件提
供一个引导程序并直接跳转到应用程序。默认模板（ｄｅｆａｕｌｔ）在此基础上增加了其他一些功
能，如内核和Ｃ库等。Ｕｉｔｒｏｎ模板以μＩＴＲＯＮ兼容层的形式增加了更多的功能。创建一个新
的配置时，通常要指定模板和目标系统，应用程序在这种配置下进行编译和链接，并最终在硬

件平台上运行。使用配置工具可以对配置选项进行适当的设置，使其可以更好地满足应用需

求。表１３为ｅＣｏｓ２．０所提供的模板。

表１３ ｅＣｏｓ模板

模 板 名 称 描 述

ａｌｌ 包含所有的软件包

ｃｙｇｍｏｎ 用于生成ＣｙｇＭｏｎ的配置

ｃｙｇｍｏｎ ｎｏ ｋｅｒｎｅｌ 用于生成ＣｙｇＭｏｎ的配置，不包括内核

ｄｅｆａｕｌｔ ｅＣｏｓ的默认配置，包含基础结构包、内核、Ｃ和数学库，以及其他软件包

ｋｅｒｎｅｌ 包含ＨＡＬ、基础结构包、内核

ｍｉｎｉｍａｌ ｅＣｏｓ的最小配置，只包含ＨＡＬ和基础结构包

ｎｅｔ 提供网络支持，包含ＴＣＰ／ＩＰ协议栈（ＦｒｅｅＢＳＤ）

ｏｌｄ ｎｅｔ 提供网络支持，包含ＴＣＰ／ＩＰ协议栈（ＯｐｅｎＢＳＤ）

ｐｏｓｉｘ 包含ＨＡＬ、基础结构包、内核、ＰＯＳＩＸ包

ｒｅｄｂｏｏｔ 建立ＲｅｄＢｏｏｔ环境时的配置，生成ＲｅｄＢｏｏｔ映像文件

ｓｔｕｂｓ ｅＣｏｓ的ｓｔｕｂｓ配置，用于生成ｅＣｏｓ的ＧＤＢｓｔｕｂｓ程序

ｕｉｔｒｏｎ 与μＩＴＲＯＮ３．０２完全兼容的配置

１４９ 属性

对于每一个配置选项，组件框架都需要了解它的一些相关信息。例如，它需要知道什么样

的选项值是合法的、选项的默认值是什么、当用户需要对其进行选择时相应的联机说明文档位

４１

置在哪里，等等。每一个选项（包括组件和包）都由选项名字和选项的一组属性（Ｐｒｏｐｅｒｔｉｅｓ）组
成。

１４１０ 约束条件

配置选项的选择并不是独立的，一个配置选项可能会受到其他配置选项的限制，并可能影

响到其他的配置选项。例如，只有在内核对每线程数据（ｐｒｅｔｈｒｅａｄｄａｔａ）提供支持的条件下，Ｃ
库才会提供一些像ｒａｎｄ这样具有线程安全性（Ｃ库选项ｔｈｒｅａｄｓａｆｅｔｙ）的函数。这就存在一个
约束条件（Ｃｏｎｓｔｒａｉｎｔｓ）：Ｃ库选项对内核有要求。一个典型的配置包含数量相当可观而且比较
复杂的约束条件。许多约束条件比较直观，如：选项Ａ要求有选项Ｂ，或者选项Ｃ排斥选项Ｄ。
而有些约束条件却较为复杂，例如：选项Ｅ可能要求具有内核调度器，但它并不关心具体选择
的是哪一个调度器。

另外一种类型的约束条件涉及到选项的具体值。例如，一个与调度优先级数目相关的内

核选项就存在这样一个合法值的约束条件：调度优先级数目为０或负值是非法的。

１４１１ 冲突

用户对配置选项进行操作时可能会出现非法配置，可能有一个或多个约束条件得不到满

足。例如，如果内核中的“ｐｒｅｔｈｒｅａｄｄａｔａ”选项被禁止，而Ｃ库中的“ｔｈｒｅａｄｓａｆｅｔｙ”选项仍然是
使能的，这样就存在一个没有被满足的约束条件，这就是冲突（Ｃｏｎｆｌｉｃｔｓ）。配置工具将会报告
这样的冲突。冲突的出现并不妨碍ｅＣｏｓ的编译，但其结果难以预料，有可能在编译时报错，也
有可能在链接时报错，或者应用程序根本就不能运行，或者应用程序虽然能运行但在某些时候

将会出现错误。在进行ｅＣｏｓ配置的时候，如果配置工具报告有冲突发生，在继续进行配置之
前通常要先解决这些冲突。

为使用户操作更容易，配置工具提供了一个推理机。该推理机能够自动检测到当前配置

中所存在的冲突，并能指出解决这些冲突的方法。推理机既可以自动解决这些冲突，也可以在

人工干预下进行解决。

１４１２ 组件定义语言ＣＤＬ

配置工具需要由每个包提供各种选项信息，如结果信息、约束条件、在线说明文档位置等。

这些信息是以ＣＤＬ（组件定义语言ＣｏｍｐｏｎｅｎｔＤｅｆｉｎｉｔｉｏｎＬａｎｇｕａｇｅ）脚本的形式提供的。ＣＤＬ
主要用于对配置选项进行描述。

５１

第２章 ｅＣｏｓ开发环境的建立

ｅＣｏｓ作为一种开放源代码，它的开发工具和源码都是免费提供的。在学习和开发ｅＣｏｓ系
统时，所需的开发条件非常简单，读者利用现有的学习和工作条件可以很方便地建立一个完整

的ｅＣｏｓ开发环境。所有的开发工具和ｅＣｏｓ源代码都可以从Ｉｎｔｅｒｎｅｔ上下载，也可以直接使用
本书所附光盘中提供的开发工具和源码。

本章首先介绍了建立ｅＣｏｓ开发环境所必备的一些工具，并具体讲述了如何利用这些工具
建立一个完整的ｅＣｏｓ开发环境。读者可以通过本章循序渐进地学习如何建立ｅＣｏｓ开发环
境，在此基础上再进行后续章节的学习。

２１ 系统需求

学习和开发ｅＣｏｓ系统时，首先要准备所需的开发环境。ｅＣｏｓ开发环境对系统的要求不
高，最简单的配置只要一台微机就可以满足需要。因此对于ｅＣｏｓ爱好者来说，这是极为简捷
方便的。

２１１ 主机系统需求

一般来说，ｅＣｏｓ开发环境对主机系统有下述要求：

１）标准Ｉｎｔｅｌ结构的ＰＣ机，运行 ＷｉｎｓｏｗｓＸＰ、Ｗｉｎｄｏｗｓ２０００或 ＷｉｎｄｏｗｓＮＴ４．０（ＳＰ３）
操作系统，也可以使用ＲｅｄＨａｔＬｉｎｕｘ６．０以上版本的操作系统，或其他Ｌｉｎｕｘ操作系统。

２）６４ＭＢ以上内存，３００ＭＨｚ以上的奔腾处理器。

３）ＷｉｎｄｏｗｓＮＴ必须安装４．０以上版本的ＩＥ。

４）也可以使用基于ＳＰＡＲＣ处理器的Ｓｕｎ工作站，运行Ｓｏｌａｒｉｓ２．５．１以上版本的操作系
统。

５）足够的硬盘空间。ｅＣｏｓ的所有源码以及它的开发过程所产生的所有文件和目录实际
所需容量不到２００ＭＢ，但交叉编译工具（ＧＣＣ等）的编译还需要一定的硬盘空间。建议为ｅＣｏｓ
保留２ＧＢ以上的空间。

６）一个ＲＳ２３２串口。

７）网卡，可选。

８）如果希望能及时下载最新版本的ｅＣｏｓ源码或其他开发工具，则应该与Ｉｎｔｅｒｎｅｔ相连。

２１２ 目标系统需求

除了对主机系统的这些要求外，对运行ｅＣｏｓ的目标系统也有一些要求。根据开发板的不
同需要，还需要一些相应的配置。一般需要目标系统提供下述支持：

１）串口。用于与主机通信，通过ＧＤＢ调试工具进行ｅＣｏｓ的加载，对目标系统软件进行
调试。如果目标系统没有串口，则必须使用网卡与主机系统进行连接和通信，这时主机系统必

６１

须具有网卡。

２）网卡。不同目标系统对网卡的支持不一样。如果ｅＣｏｓ源码不支持所使用的网卡，则
必须自行开发网卡驱动程序。网卡的支持是可选的，如果所开发的ｅＣｏｓ系统不需要网络支
持，则不需要网卡，但必须提供串口与主机系统进行通信。

３）开发板一般需要带有ＧＤＢｓｔｕｂ小程序（用于与主机系统的ＧＤＢ建立通信连接）的

ＲＯＭ或ＦｌａｓｈＲＯＭ，或者带有ＲｅｄＢｏｏｔ、ＣｙｇＭｏｎ的ＲＯＭ或ＦｌａｓｈＲＯＭ。

ｅＣｏｓ源码支持多种处理器，并对全球范围内许多知名厂家提供的多种典型嵌入式系统开
发板（评估板）提供支持。对于不同的开发板，ｅＣｏｓ对其要求也可能会有所不同，读者可以从

ｅＣｏｓ网站上了解其详细内容。即使ｅＣｏｓ不支持某种新的目标平台，也可以将ｅＣｏｓ移植到新
的平台上。

在ｅＣｏｓ的学习阶段，可以直接使用基于ｘ８６的标准ＰＣ主板作为目标系统开发平台，ｅＣｏｓ
配置工具使用“ｉ３８６ｐｃｔａｒｇｅｔ”来表示这种硬件平台。对于这种目标系统的要求是：

１）带有ｉ３８６或更好处理器的ＰＣ主板。

２）３．５ｉｎ软驱（用于引导ＲｅｄＢｏｏｔ）。

３）显卡与显示器。

４）标准键盘。

５）如果使用串口进行调试，则需要使用简单的三线交叉串口电缆将其与主机系统串口相
连。

６）如果使用网络进行调试，则主机需要一块网卡，通过网线与目标系统相连。目标平台
需要一块基于Ｉｎｔｅｌｉ８２５５９的ＰＣＩ以太网卡。
作为ｅＣｏｓ开发环境的一个例子，笔者所使用的典型配置是：

１）标准ＰＣ主板（具有串口、网卡）。

２）２．４ＧＨｚ奔腾４处理器。

３）２５６ＭＢ内存。

４）６０ＧＢ硬盘。

５）Ｗｉｎｄｏｗｓ２０００操作系统、ＲｅｄＨａｔＬｉｎｕｘ８．０操作系统。

６）目标系统：标准ＰＣ主板、奔腾２处理器、ＲＳ２３２串口、基于Ｉｎｔｅｌｉ８２５５９的ＰＣＩ网卡

ＩｎｔｅｌＥｔｈｅｒＥｘｐｒｅｓｓＰｒｏ１０／１００，软驱。
使用基于ｘ８６标准主板的原因是易于进行ｅＣｏｓ的学习和开发。本书将以此为基础介绍

ｅＣｏｓ系统的详细开发过程。

２２ 开发工具

ｅＣｏｓ具有两种可选择的开发环境：一种是建立在 Ｗｉｎｄｏｗｓ下的开发环境；另一种是基于

Ｌｉｎｕｘ或ＵＮＩＸ下的开发环境。本篇重点讲述 Ｗｉｎｄｏｗｓ环境下所需的开发工具。Ｌｉｎｕｘ与

ＵＮＩＸ的开发环境类似，这里只简单介绍Ｌｉｎｕｘ环境下所需的开发工具。
在Ｗｉｎｄｏｗｓ环境下（包括ＷｉｎｄｏｗｓＸＰ、Ｗｉｎｄｏｗｓ２０００和ＷｉｎｄｏｗｓＮＴ），ｅＣｏｓ开发环境的

建立需要三种工具和环境，分别是Ｃｙｇｗｉｎ、ＧＮＵ交叉编译工具和ｅＣｏｓ配置工具。Ｌｉｎｕｘ环境
下只需要ＧＮＵ交叉编译工具和ｅＣｏｓ配置工具。

７１

２２１ Ｃｙｇｗｉｎ

ｅＣｏｓ是一种开放源代码的软件，它的开发环境所依赖的基础是Ｌｉｎｕｘ。在 Ｗｉｎｄｏｗｓ环境
下，开发ｅＣｏｓ系统需要使用Ｌｉｎｕｘ模拟环境Ｃｙｇｗｉｎ。Ｃｙｇｗｉｎ是运行在Ｗｉｎｄｏｗｓ平台上的一
个ＵＮＩＸ／Ｌｉｎｕｘ模拟环境。它由两部分组成：
（１）动态链接库Ｃｙｇｗｉｎ１．ｄｌｌ。它是Ｗｉｎｄｏｗｓ环境下的ＵＮＩＸ／Ｌｉｎｕｘ模拟层，提供标准的

ＵＮＩＸ／ＬｉｎｕｘＡＰＩ函数。
（２）一组ＵＮＩＸ／Ｌｉｎｕｘ工具集。使得用户可以在Ｗｉｎｄｏｗｓ环境下使用ＵＮＩＸ／Ｌｉｎｕｘ环境
所提供的各种工具。

Ｃｙｇｗｉｎ提供的一组功能强大的工具可以帮助开发人员将应用程序从ＵＮＩＸ／Ｌｉｎｕｘ移植
到Ｗｉｎｄｏｗｓ平台上，它提供了标准自由软件ＧＮＵＧＣＣ编译器和ＧＤＢ调试工具。除此之外，
它还为Ｗｉｎｄｏｗｓ提供一个包括ＡＰＩ和命令ＳＨＥＬＬ在内的标准ＵＮＩＸ／Ｌｉｎｕｘ开发环境。通过
使用Ｃｙｇｗｉｎ，开发人员可以对不同的系统环境进行一致而有效的管理。

Ｃｙｇｗｉｎ可以从其网站ｈｔｔｐ：／／ｗｗｗ．ｃｙｇｗｉｎ．ｃｏｍ上下载并安装最新版本（网络安装），也
可以直接使用本书光盘提供的Ｃｙｇｗｉｎ（本地安装）。

２２２ 交叉编译工具

在进行ｅＣｏｓ开发时，在开发主机上需要使用交叉编译工具对ｅＣｏｓ系统和应用程序进行
编译，生成可在目标系统上运行的执行代码。ｅＣｏｓ所使用的是开放源代码ＧＮＵ编译工具，包
括三个部分：ＧＮＵ编译器ＧＣＣ、ＧＮＵ调试工具ＧＤＢ和包括ＧＮＵ汇编器和链接器在内的

ＧＮＵ二进制工具（ＧＮＵＢｉｎａｒｙＵｔｉｌｉｔｙ）。
这些交叉编译工具源码可以从ＧＮＵ网站上下载：ｈｔｔｐ：／／ｇｃｃ．ｇｎｕ．ｏｒｇ／。
（１）ＧＣＣ。ＧＣＣ核心编译器和Ｃ＋＋编译器，２．９５．２以上版本。
（２）Ｎｅｗｌｉｂ。为Ｃ＋＋运行库的编译提供支持，可以使用最新的Ｎｅｗｌｉｂ版本。
（３）ＧＤＢ。Ｉｎｓｉｇｈｔ或ＧＤＢ，５．０以上版本。Ｉｎｓｉｇｈｔ是ＧＤＢ的扩充，它是一个具有图形界
面的ＧＤＢ。在使用Ｉｎｓｉｇｈｔ的时候，仍然可以使用“ｎｗ”选项以命令行的形式运行ＧＤＢ。
（４）ＧＮＵ二进制工具。ｂｉｎｕｔｉｌｓ２．１０．１以上版本。
本书光盘提供下述版本的ＧＮＵ编译工具：

①ｇｃｃｃｏｒｅ３．２．１．ｔａｒ．ｇｚ。

②ｇｃｃｇ＋＋３．２．１．ｔａｒ．ｇｚ。

③ｎｅｗｌｉｂ１．１１．０．ｔａｒ．ｇｚ。

④ｉｎｓｉｇｈｔ５．３．ｔａｒ．ｇｚ。

⑤ｇｄｂ５．３．ｔａｒ．ｇｚ。

⑥ｂｉｎｕｔｉｌｓ２．１３．２．１．ｔａｒ．ｇｚ。
另外还提供相应的补丁程序：

①ｂｉｎｕｔｉｌｓ２．１３．２２．１３．２．１．ｐａｔｃｈ。

②ｇｃｃ３．２．１ａｒｍｍｕｌｔｉｌｉｂ．ｐａｔｃｈ。

③ｉｎｓｉｇｈｔ５．３ｔｃｌ ｗｉｎ ｅｎｃｏｄｉｎｇ．ｐａｔｃｈ。

８１

２２３ ｅＣｏｓ配置工具

ｅＣｏｓ是一个可配置的嵌入式操作系统，根据实际目标系统的具体情况，可以使用ｅＣｏｓ配
置工具对系统进行裁减，从而在满足系统需求的条件下实现代码量的最小化。

ｅＣｏｓ配置工具包括图形配置工具和命令行配置工具，通常使用图形配置工具。在

Ｗｉｎｄｏｗｓ和Ｌｉｎｕｘ下都可以使用ｅＣｏｓ图形配置工具。命令行配置工具可以在 Ｗｉｎｄｏｗｓ的

Ｃｙｇｗｉｎ环境下运行，也可以在Ｌｉｎｕｘ下直接使用。

ｅＣｏｓ的配置工具可以直接从其网站上下载。也可以使用其源码中提供的配置工具，这些
工具位于ｅｃｏｓ２．０／ｔｏｏｌｓ／ｂｉｎ目录内。目前较为常用的版本是ｅＣｏｓＣｏｎｆｉｇｕｒａｔｉｏｎＴｏｏｌ２．１１。
命令行配置工具目前常用的版本是ｅｃｏｓｃｏｎｆｉｇ１３１４。

ｅＣｏｓ配置工具的下载地址：ｈｔｔｐ：／／ｓｏｕｒｃｅｓ．ｒｅｄｈａｔ．ｃｏｍ／ｅｃｏｓ／。

２３ Ｃｙｇｗｉｎ的安装与设置

在准备好上述工具之后，就可以进行安装了。如果是在 Ｗｉｎｄｏｗｓ环境，首先必须安装

Ｃｙｇｗｉｎ。如果是Ｌｉｎｕｘ环境，则不需要使用Ｃｙｇｗｉｎ。安装工作可以选择网络安装（通过

ｈｔｔｐ：／／ｗｗｗ．ｃｙｇｗｉｎ．ｃｏｍ）和本地安装（使用本书光盘）。下面介绍具体的安装过程：

１）运行Ｃｙｇｗｉｎ安装程序ｓｅｔｕｐ．ｅｘｅ（光盘目录Ｃｙｇｗｉｎ内）。如果是网络安装，选择
“ＩｎｓｔａｌｌｆｒｏｍＩｎｔｅｒｎｅｔ”，如果是从光盘安装，则选择“ＩｎｓａｔｌｌｆｒｏｍＬｏｃａｌＤｉｒｅｃｔｏｒｙ”，选择“下一
步”，如图２１所示。

图２１ Ｃｙｇｗｉｎ安装

２）选择Ｃｙｇｗｉｎ的安装根目录，并选择ＤＯＳ文本文件类型。选择“下一步”，如图２２所
示。

３）选择软件包、下载存放目录。在使用网络安装时，首先要从Ｃｙｇｗｉｎ服务器下载即将安
装的软件包，这些软件包将存放在指定的位置。如果指定目录不存在，则自动创建指定目录。

如果是本地安装，则将其指定为本地Ｃｙｇｗｉｎ存放目录（如：光盘目录／ｃｙｇｗｉｎ／ｃｙｇｗｉｎ）。选择

９１

“下一步”，如图２３所示。

图２２ 选择安装目录

图２３ 下载软件包存放目录

４）进行Ｉｎｔｅｒｎｅｔ设置。如果使用网络安装，则必须对Ｉｎｔｅｒｎｅｔ的连接方式进行指定；如果
通过代理服务器与Ｉｎｔｅｒｎｅｔ相连，则选择“ＵｓｅＨＴＴＰ／ＦＴＰＰｒｏｘｙ”，并指定代理服务器名字和
端口；如果是直接与Ｉｎｔｅｒｎｅｔ相连，则选择“ＤｉｒｅｃｔＣｏｎｎｅｃｔｉｏｎ”；也可以使用ＩＥ的Ｉｎｔｅｒｎｅｔ设
置。选择“下一步”，如图２４所示。如果是本地安装，则可跳过这一步。

５）选择安装软件包。根据需要在图２５所示的对话框中选择所要安装的软件包。如果
硬盘容量足够大，可以选择安装所有的软件包以及相应的源代码。对于ｅＣｏｓ来说，不需要选
择所有的软件包，也不需要这些软件包的源代码。但仅仅使用安装程序的默认选择是不够的，

需要仔细为ｅＣｏｓ开发环境选择软件包。在选择完成后，点击“下一步”将开始软件包的下载和
安装工作。除了安装默认的软件包外，还必须安装ｇｃｃ，ｍａｋｅ，ｓｈａｒｕｔｉｌｓ，ｔｃｌｔｋ，ｗｇｅｔ等软件
包。

一般来说，应该选择下述软件包：

０２

图２４ Ｉｎｔｅｒｎｅｔ连接设置

图２５ Ｃｙｇｗｉｎ软件包的选择

①Ａｒｃｈｉｖｅ：全选。

②Ｂａｓｅ：全选。

③Ｄｅｖｅｌ：全选。

④Ｄｏｃ：默认选择。

⑤Ｅｄｉｔｏｒｓ：全选。

⑥Ｇｒａｐｈｉｃｓ：默认选择。

⑦Ｉｎｔｅｒｐｒｅｔｅｒｓ：全选。

⑧Ｌｉｂｓ：全选。

⑨ Ｍａｉｌ：不选。

⑩ Ｍａｔｈ：不选。

瑏瑡Ｎｅｔ：不选。

瑏瑢Ｐｕｂｌｉｓｈｉｎｇ：选择。

瑏瑣Ｓｈｅｌｌｓ：全选。

１２

瑏瑤Ｓｙｓｔｅｍ：默认选择。

瑏瑥 选择ｅｘｐａｔ、ｌｉｂｋｐａｔｈｓｅａ３、ｌｉｂｘｍｌ２、ｌｉｂｘｓｌｔ、ｔｅｘｉｎｆｏ。

瑏瑦ｕｔｉｌｓ：全选。

瑏瑧ｗｅｂ：不选。

瑏瑨 ＰｏｓｔＩｎｓｔａｌｌＬａｓｔ：选择。
软件包安装完成后，根据提示进行其余的操作，有些系统需要重新启动。此后就可以运行

Ｃｙｇｗｉｎ了。

６）为ｅＣｏｓ设置Ｃｙｇｗｉｎ安装点。ｅＣｏｓ使用“／ｃ”、“／ｄ”等表示硬盘“ｃ：”和“ｄ：”，因此必须
进行下面的操作：

① 启动Ｃｙｇｗｉｎ，进入Ｃｙｇｗｉｎ的Ｓｈｅｌｌ界面，执行下述命令：

＄ｍｏｕｎｔｆｃ：／／ｃ
＄ｍｏｕｎｔｆｄ：／／ｄ
＄ｍｏｕｎｔｆｅ：／／ｅ

② 有多少个硬盘分区就进行多少次这样的操作，所有的盘符都应该进行这种ｍｏｕｎｔ操
作。此时，可以使用下述命令进入相应的硬盘：

＄ｃｄ／ｃ（进入Ｃ：＼盘）

＄ｃｄ／ｄ（进入Ｄ：＼盘）

③ 为保证能正确运行图形配置工具，应该在系统环境变量中使路径名包括ｃｙｇｗｉｎ／ｂｉｎ目
录。

２４ ＧＮＵ交叉编译工具的编译与配置

在开发ｅＣｏｓ系统时，要根据不同体系结构的ＣＰＵ选择不同的编译工具。ｅＣｏｓ网站上提
供了一些已编译好的交叉编译工具，可以直接使用。如果没有所需要的工具，则需要自行编

译。ＧＮＵ提供了交叉编译工具的源代码，必须对它们进行编译来生成所需要的编译工具。从

ＧＮＵ网站上下载源代码（或者直接使用本书光盘提供的源代码）后，可以将它们解压缩到一个

ｓｒｃ源目录。必须注意的是应该有足够的硬盘空间（大约６倍于源码压缩文件的大小）用于存
放源码文件和中间文件。为方便读者，本书光盘中提供了一些已编译好的Ｃｙｇｗｉｎ环境下交
叉编译工具（提供ＧＤＢ图形界面）。
下面以Ｉｎｔｅｌｘ８６为例介绍交叉编译工具的编译过程。Ｗｉｎｄｏｗｓ环境和Ｌｉｎｕｘ环境下的

编译过程基本相似。

在Ｗｉｎｄｏｗｓ环境下，首先要运行Ｃｙｇｗｉｎ，在Ｃｙｇｗｉｎ环境下进行工具的编译。Ｌｉｎｕｘ环境
下可以在命令行窗口下进行编译。其步骤如下：

１）创建目录／ｓｒｃ：

＄ｍｋｄｉｒｐ／ｓｒｃ
＄ｃｄ／ｓｒｃ

将下述源码文件复制到该目录下：

２２

●ｇｃｃｃｏｒｅ３．２．１．ｔａｒ．ｂｚ２
●ｇｃｃｇ＋＋３．２．１．ｔａｒ．ｂｚ２
●ｎｅｗｌｉｂ１．１１．０．ｔａｒ．ｇｚ
●ｉｎｓｉｇｈｔ５．３．ｔａｒ．ｂｚ２
●ｇｄｂ５．３．ｔａｒ．ｂｚ２
●ｂｉｎｕｔｉｌｓ２．１３．２．１．ｔａｒ．ｂｚ２
●ｂｉｎｕｔｉｌｓ２．１３．２２．１３．２．１．ｐａｔｃｈ
●ｇｃｃ３．２．１ａｒｍｍｕｌｔｉｌｉｂ．ｐａｔｃｈ
●ｉｎｓｉｇｈｔ５．３ｔｃｌ ｗｉｎ ｅｎｃｏｄｉｎｇ．ｐａｔｃｈ

其中ｇｄｂ和ｉｎｓｉｇｈｔ可以根据是否使用图形界面ＧＤＢ选择其中的一个，下面的步骤使用
的是ｉｎｓｉｇｈｔ。

２）对压缩文件解压缩。
如果是ｂｚｉｐ２压缩文件，使用下述命令解压缩：

＄ｂｕｎｚｉｐ２＜ｂｉｎｕｔｉｌｓ２．１３．２．１．ｔａｒ．ｂｚ２｜ｔａｒｘｖｆ
＄ｂｕｎｚｉｐ２＜ｇｃｃｃｏｒｅ３．２．１．ｔａｒ．ｂｚ２｜ｔａｒｘｖｆ

＄ｂｕｎｚｉｐ２＜ｇｃｃｇ＋＋３．２．１．ｔａｒ．ｂｚ２｜ｔａｒｘｖｆ

＄ｂｕｎｚｉｐ２＜ｉｎｓｉｇｈｔ５．３．ｔａｒ．ｂｚ２｜ｔａｒｘｖｆ

＄ｂｕｎｚｉｐ２＜ｎｅｗｌｉｂ１．１１．０．ｔａｒ．ｂｚ２｜ｔａｒｘｖｆ

如果是ｇｚｉｐ压缩文件，则使用下述命令解压：

＄ｇｕｎｚｉｐ＜ｂｉｎｕｔｉｌｓ２．１３．２．１．ｔａｒ．ｇｚ｜ｔａｒｘｖｆ
＄ｇｕｎｚｉｐ＜ｇｃｃｃｏｒｅ３．２．１．ｔａｒ．ｇｚ｜ｔａｒｘｖｆ

＄ｇｕｎｚｉｐ＜ｇｃｃｇ＋＋３．２．１．ｔａｒ．ｇｚ｜ｔａｒｘｖｆ

＄ｇｕｎｚｉｐ＜ｉｎｓｉｇｈｔ５．３．ｔａｒ．ｇｚ｜ｔａｒｘｖｆ
＄ｇｕｎｚｉｐ＜ｎｅｗｌｉｂ１．１１．０．ｔａｒ．ｇｚ｜ｔａｒｘｖｆ

将补丁程序加入到源码文件中：

＄ｐａｔｃｈｐ０＜ｂｉｎｕｔｉｌｓ２．１３．２２．１３．２．１．ｐａｔｃｈ
＄ｐａｔｃｈｐ０＜ｇｃｃ３．２．１ａｒｍｍｕｌｔｉｌｉｂ．ｐａｔｃｈ

＄ｐａｔｃｈｐ０＜ｉｎｓｉｇｈｔ５．３ｔｃｌ ｗｉｎ ｅｎｃｏｄｉｎｇ．ｐａｔｃｈ

如果源码中已经包含了这些补丁，将出现下面的信息：

Ｒｅｖｅｒｓｅｄ（ｏｒｐｒｅｖｉｏｕｓｌｙａｐｐｌｉｅｄ）ｐａｔｃｈｄｅｔｅｃｔｅｄ！ＡｓｓｕｍｅＲ？［ｎ］

此时直接按＜ｎ＞和回车键即可。
至此，产生了下述源码目录：

／ｓｒｃ／ｂｉｎｕｔｉｌｓ２．１３．２．１
／ｓｒｃ／ｇｃｃ３．２．１
／ｓｒｃ／ｉｎｓｉｇｈｔ５．３
／ｓｒｃ／ｎｅｗｌｉｂ１．１１．０

３２

如果使用ＧＤＢ（ｇｄｂ５．３．ｔａｒ．ｇｚ或ｇｄｂ５．３．ｔａｒ．ｂｚ２），而不是使用Ｉｎｓｉｇｈｔ，则产生目录／

ｓｒｃ／ｇｄｂ５．３。
然后再将ｎｅｗｌｉｂ１．１１．０的内容移至ｇｃｃ３．２．１目录下：

＄ｍｖｎｅｗｌｉｂ１．１１．０／ｎｅｗｌｉｂｇｃｃ３．２．１
＄ｍｖｎｅｗｌｉｂ１．１１．０／ｌｉｂｇｌｏｓｓｇｃｃ３．２．１

３）验证环境变量ＰＡＴＨ是否包含了Ｃｙｇｗｉｎ的编译工具（如ｇｃｃ、ｍａｋｅ等）的路径名。注
意路径名不能以“．”开头。
后面步骤所进行的编译过程将使用临时编译目录／ｔｍｐ／ｂｕｉｌｄ和编译产生的工具最后安装

目录／ｇｎｕｔｏｏｌｓ，也可以指定其他目录。编译时需要较大的磁盘空间，／ｔｍｐ／ｂｕｉｌｄ目录在编译完
成后可以将其删除。

需要注意的是，这里介绍的是以ｉ３８６为目标系统的编译过程，使用ｉ３８６ｅｌｆ来表示。如果
是针对其他体系结构的目标系统，则应该替换下述步骤中的ｉ３８６ｅｌｆ。表２１为不同体系结构
的表示方式。

表２１ 不同体系结构的表示方式

体 系 结 构 表 示 方 式

ＡＲＭ（包括ＳｔｒｏｎｇＡＲＭ和ＸＳｃａｌｅ） ａｒｍｅｌｆ

Ｉｎｔｅｌｘ８６ ｉ３８６ｅｌｆ

ＭａｔｓｕｓｈｉｔａＡＭ３ｘ ｍｎ１０３００ｅｌｆ

Ｍｏｔｏｒｏｌａ６８Ｋ／ＣｏｌｄＦｉｒｅ ｍ６８ｋｅｌｆ

ＭＩＰＳ３２ ｍｉｐｓｉｓａ３２ｅｌｆ

ＮＥＣＶ８５０ ｖ８５０ｅｌｆ

ＰｏｗｅｒＰＣ ｐｏｗｅｒｐｃｅａｂｉ

ＲｅｎｅｓａｓＨ８／３００Ｈ ｈ８３００ｅｌｆ

ＲｅｎｅｓａｓＳｕｐｅｒＨ ｓｈｅｌｆ

ＴｏｓｈｉｂａＴＸ３９ ｍｉｐｓｔｘ３９ｅｌｆ

ＴｏｓｈｉｂａＴＸ４９ ｍｉｐｓｔｘ４９ｅｌｆ

４）编译和安装ＧＮＵＢｉｎａｒｙＵｔｉｌｉｔｉｅｓ。
首先使用下述命令对ＧＮＵＢｉｎａｒｙＵｔｉｌｉｔｉｅｓ的编译进行配置：

＄ｍｋｄｉｒｐ／ｔｍｐ／ｂｕｉｌｄ／ｂｉｎｕｔｉｌｓ
＄ｃｄ／ｔｍｐ／ｂｕｉｌｄ／ｂｉｎｕｔｉｌｓ

＄ ／ｓｒｃ／ｂｉｎｕｔｉｌｓ／ｂｉｎｕｔｉｌｓ２．１３．２．１／ｃｏｎｆｉｇｕｒｅｔａｒｇｅｔ＝ｉ３８６ｅｌｆ＼

ｐｒｅｆｉｘ＝／ｇｎｕｔｏｏｌｓｖ２＞＆１｜ｔｅｅｃｏｎｆｉｇｕｒｅ．ｏｕｔ

如果配置过程出现错误，可以查看ｃｏｎｆｉｇｕｒｅ．ｏｕｔ文件中的详细信息。
配置成功后，使用下面的命令进行ＧＮＵＢｉｎａｒｙＵｔｉｌｉｔｉｅｓ的编译，并将其安装到目录／

ｇｎｕｔｏｏｌｓ下：

４２

＄ｍａｋｅｗａｌｌｉｎｓｔａｌｌ２＞＆１｜ｔｅｅｍａｋｅ．ｏｕｔ

详细编译信息存放在ｍａｋｅ．ｏｕｔ文件内，如果编译出现错误，可以查看该文件。编译产生
的二进制应用程序位于／ｇｎｕｔｏｏｌｓ／ｂｉｎ目录下。

５）编译和安装ＧＣＣ。
在编译ＧＣＣ之前，应该将前面生成的ＧＮＵＢｉｎａｒｙＵｔｉｌｉｔｉｅｓ工具路径名包含在环境变量

ＰＡＴＨ内：

＄ＰＡＴＨ＝／ｇｎｕｔｏｏｌｓ／ｂｉｎ：＄ＰＡＴＨ；ｅｘｐｏｒｔＰＡＴＨ

然后再对ＧＣＣ进行配置，命令如下：

＄ｍｋｄｉｒｐ／ｔｍｐ／ｂｕｉｌｄ／ｇｃｃ
＄ｃｄ／ｔｍｐ／ｂｕｉｌｄ／ｇｃｃ
＄ ／ｓｒｃ／ｇｃｃ／ｇｃｃ３．２．１／ｃｏｎｆｉｇｕｒｅｔａｒｇｅｔ＝ｉ３８６ｅｌｆ＼

ｐｒｅｆｉｘ＝／ｇｎｕｔｏｏｌｓｅｎａｂｌｅｌａｎｇｕａｇｅｓ＝ｃ，ｃ＋＋ ＼
ｗｉｔｈｇｎｕａｓｗｉｔｈｇｎｕｌｄｗｉｔｈｎｅｗｌｉｂ＼
ｗｉｔｈｇｘｘｉｎｃｌｕｄｅｄｉｒ＝／ｇｎｕｔｏｏｌｓ／ｉ３８６ｅｌｆ／ｉｎｃｌｕｄｅ＼
ｖ２＞＆１｜ｔｅｅｃｏｎｆｉｇｕｒｅ．ｏｕｔ

如果配置过程出现错误，可以查看ｃｏｎｆｉｇｕｒｅ．ｏｕｔ文件中详细信息。
配置成功后，使用下面的命令进行ＧＣＣ的编译，并将其安装到目录／ｇｎｕｔｏｏｌｓ下：

＄ｍａｋｅｗａｌｌｉｎｓｔａｌｌ２＞＆１｜ｔｅｅｍａｋｅ．ｏｕｔ

详细编译信息存放在ｍａｋｅ．ｏｕｔ文件内，如果编译出现错误，可以查看该文件。

６）编译Ｉｎｓｉｇｈｔ（或ＧＤＢ）。
首先对Ｉｎｓｉｇｈｔ的编译进行配置：

＄ｍｋｄｉｒｐ／ｔｍｐ／ｂｕｉｌｄ／ｇｄｂ
＄ｃｄ／ｔｍｐ／ｂｕｉｌｄ／ｇｄｂ
＄ ／ｓｒｃ／ｇｄｂ／ｉｎｓｉｇｈｔ５．３／ｃｏｎｆｉｇｕｒｅｔａｒｇｅｔ＝ｉ３８６ｅｌｆ＼

ｐｒｅｆｉｘ＝／ｇｎｕｔｏｏｌｓｖ２＞＆１｜ｔｅｅｃｏｎｆｉｇｕｒｅ．ｏｕｔ

如果有错误，则可以查看ｃｏｎｆｉｇｕｒｅ．ｏｕｔ文件存放的信息。如果配置成功，则使用下面的命
令对其进行编译与安装：

＄ｍａｋｅｗａｌｌｉｎｓｔａｌｌ２＞＆１｜ｔｅｅｍａｋｅ．ｏｕｔ

详细编译信息存放在ｍａｋｅ．ｏｕｔ文件内，如果编译出现错误，可以查看该文件。
至此，基于Ｉｎｔｅｌｘ８６的开发工具全部编译完毕，所有的这些工具存放的目录是／ｇｎｕｔｏｏｌｓ／

ｂｉｎ。可以将该目录添加到环境变量ＰＡＴＨ上。使用ｅＣｏｓ配置工具也可以设置这些工具的路
径名。其他体系结构的交叉编译工具的编译过程与此相似。

２５ ｅＣｏｓ源码与配置工具的安装

ｅＣｏｓ源代码和配置工具都可以从ｅＣｏｓ网站上下载（ｈｔｔｐ：／／ｓｏｕｒｃｅｓ．ｒｅｄｈａｔ．ｃｏｍ／ｅｃｏｓ）。本

５２

书光盘提供了ｅＣｏｓ２．０的所有源代码和配置工具，用户可以直接使用。

２５１ ｅＣｏｓ的安装

有两种方法可以从Ｉｎｔｅｒｎｅｔ安装ｅＣｏｓ：一种方法是直接执行ｅＣｏｓ安装程序；另一种方法
是通过ＦＴＰ或ＨＴＴＰ获取每一个单独的软件包分别进行安装。另外也可以直接使用本书光
盘附带的ｅＣｏｓ源代码，可参照网络安装的方式将其解压缩到相应的目录就可以使用。这里主
要介绍如何通过Ｉｎｔｅｒｎｅｔ安装ｅＣｏｓ。

１通过Ｉｎｔｅｒｎｅｔ安装ｅＣｏｓ
这种安装方法可以一次性地安装所有的ｅＣｏｓ源码和相应的ＧＮＵ交叉编译工具。由于代

码量大，因此要求有较高的网络速度。

１）进入Ｃｙｇｗｉｎ，在Ｃｙｇｗｉｎ环境下运行下面的ｗｇｅｔ命令获取ｅＣｏｓ安装文件ｅｃｏｓｉｎｓｔａｌｌ．
ｔｃｌ：

＄ｗｇｅｔｐａｓｓｉｖｅｆｔｐｆｔｐ：／／ｓｏｕｒｃｅｓ．ｒｅｄｈａｔ．ｃｏｍ／ｐｕｂ／ｅｃｏｓ／ｅｃｏｓｉｎｓｔａｌｌ．ｔｃｌ

该命令执行时将连接到ｅＣｏｓＦＴＰ服务器ｓｏｕｒｃｅｓ．ｒｅｄｈａｔ．ｃｏｍ，下载文件ｅｃｏｓｉｎｓｔａｌｌ．ｔｃｌ，其
过程如图２６所示。

图２６ ｅＣｏｓ的网络安装

２）运行安装文件ｅｃｏｓｉｎｓｔａｌｌ．ｔｃｌ，开始ｅＣｏｓ和编译工具的下载与安装。命令格式如下：

＄ｓｈｅｃｏｓｉｎｓｔａｌｌ．ｔｃｌ

该命令执行时首先下载安装数据文件ｅｃｏｓｉｎｓｔａｌｌ．ｄｂ，然后出现一个可供下载ｅＣｏｓ的镜像
服务器列表，从列表中选择一个速度最快的服务器进行下载和安装。

３）指定安装目录。在选择服务器后，将提示输入ｅＣｏｓ的安装目录。默认目录是／ｏｐｔ／

ｅｃｏｓ。

４）选择交叉编译工具。在指定安装目录后，安装程序将出现一个选择交叉编译工具的列

６２

表，根据实际需要选择相应的工具。这些工具是已经编译好的可以直接使用的可执行文件，如

果不需要这些编译工具，则可以不选择。

５）安装程序自动下载并安装ｅＣｏｓ源码和编译工具。安装完成后，在安装目录下将产生

ｓｈｅｌｌ文件ｅｃｏｓｅｎｖ．ｓｈ，运行该文件对ｅＣｏｓ的环境进行设置。例如：

＄ ．／ｏｐｔ／ｅｃｏｓ／ｅｃｏｓｅｎｖ．ｓｈ

可以在ｓｈｅｌｌ启动文件（如＄ＨＯＭＥ／．ｐｒｏｆｉｌｅ）的末尾增加此行。
至此，在安装目录下将出现两个子目录：一个是ｅＣｏｓ源码目录ｅｃｏｓ２．０；另一个是交叉编

译工具目录ｇｎｕｔｏｏｌｓ。源码目录（ｅｃｏｓ２．０／ｔｏｏｌｓ／ｂｉｎ）中包含了ｅＣｏｓ配置工具，可以在桌面上
设置其快捷方式。

上面介绍的是在Ｗｉｎｄｏｗｓ环境下的安装方法，Ｌｉｎｕｘ环境下的安装与此基本类似。

２使用单个软件包进行安装
可以从ｅＣｏｓ网站上下载单个软件包，或者使用本书光盘提供的软件包，这些软件包为：

①ｅｃｏｓ２．０．ｃｙｇｗｉｎ．ｔａｒ．ｂｚ２（ｅＣｏｓ源码，包含配置工具和联机说明）。

②ｅｃｏｓｃｅｎｔｒｉｃｇｎｕｔｏｏｌｓｉ３８６ｅｌｆ１．４２．ｃｙｇｗｉｎ．ｔａｒ．ｂｚ２（不同的目标系统选用不同的编译工
具，ｉ３８６ｅｌｆ指的是ｉ３８６系统）。
如果是在Ｌｉｎｕｘ下，则相应的软件包为：

①ｅｃｏｓ２．０．ｉ３８６ｌｉｎｕｘ．ｔａｒ．ｂｚ２。

②ｅｃｏｓｃｅｎｔｒｉｃｇｎｕｔｏｏｌｓｉ３８６ｅｌｆ１．４２．ｌｉｎｕｘ．ｔａｒ．ｂｚ２。
交叉编译工具也可以使用自行编译的ＧＮＵ工具。
得到上述软件包后，将它们在指定的安装目录下进行解压缩操作，将分别产生子目录

ｅｃｏｓ２．０和ｇｎｕｔｏｏｌｓ。
接下来的操作是设置环境变量。主要有两个环境变量：一个是组件仓库的位置ＥＣＯＳ

ＲＥＰＯＳＩＴＲＹ，另一个是编译工具的路径。假设安装目录是／ｏｐｔ／ｅｃｏｓ，组件仓库的位置将是
／ｏｐｔ／ｅｃｏｓ／ｅｃｏｓ２．０／ｐａｃｋａｇｅｓ，编译工具路径为／ｏｐｔ／ｅｃｏｓ／ｇｎｕｔｏｏｌｓ／ｂｉｎ。如果是在 Ｗｉｎｄｏｗｓ环
境下，也可以在系统环境变量中设置这两个参数，还可以在图形配置工具中对它们进行设置。

如果使用Ｃｙｇｗｉｎ命令行配置工具，或者是在Ｌｉｎｕｘ环境下，则可以使用下面的命令对它们进
行设置：

对于ｓｈ、ｋｓｈ、ｂａｓｈ用户，使用下述命令进行设置：

＄ＥＣＯＳ ＲＥＰＯＳＩＴＯＲＹ＝／ｏｐｔ／ｅｃｏｓ／ｅｃｏｓ２．０／ｐａｃｋａｇｅｓ；ｅｘｐｏｒｔＥＣＯＳ ＲＥＰＯＳＩＴＯＲＹ
＄ＰＡＴＨ＝＄ＰＡＴＨ：／ｏｐｔ／ｅｃｏｓ／ｇｎｕｔｏｏｌｓ／ｂｉｎ；ｅｘｐｏｒｔＰＡＴＨ

对于ｃｓｈ、ｔｃｓｈ用户，使用下面的命令进行设置：

＄ｓｅｔｅｎｖＥＣＯＳ ＲＥＰＯＳＩＴＯＲＹ／ｏｐｔ／ｅｃｏｓ／ｅｃｏｓ２．０／ｐａｃｋａｇｅｓ
＄ｓｅｔｅｎｖＰＡＴＨ＄ＰＡＴＨ：／ｏｐｔ／ｅｃｏｓ／ｇｎｕｔｏｏｌｓ／ｂｉｎ

３使用ｅＣｏｓ的ＣＶＳ服务器

ｅＣｏｓ的最新源代码可以通过访问ｅＣｏｓ匿名ＣＶＳ服务器获取。在访问ＣＶＳ服务器之前，
必须安装有ＣＶＳ客户端程序，并且必须直接与Ｉｎｔｅｒｎｅｔ相连。对于位于防火墙内的用户，必
须具有相应的访问权限。在安装Ｃｙｇｗｉｎ时，如果选择了ＣＶＳ，则可以在Ｃｙｇｗｉｎ环境下直接

７２

使用ＣＶＳ客户端程序。在Ｌｉｎｕｘ环境下，也可以直接使用Ｌｉｎｕｘ的ＣＶＳ客户端程序。
在第一次访问ＣＶＳ服务器时，需要使用下述命令进行登录：

＄ｃｖｓｄ：ｐｓｅｒｖｅｒ：ａｎｏｎｃｖｓ＠ｓｏｕｒｃｅｓ．ｒｅｄｈａｔ．ｃｏｍ：／ｃｖｓ／ｅｃｏｓｌｏｇｉｎ

这里使用了用户名ａｎｏｎｃｖｓ，可以使用任意口令（Ｐａｓｓｗｏｒｄ）。
在下载ｅＣｏｓ源码之前，如果要将下载的最新ｅＣｏｓ源码存放在一个新的目录，则首先应该

进入到新的目录，然后再执行下面的命令：

＄ｃｖｓｚ３ｄ：ｐｓｅｒｖｅｒ：ａｎｏｎｃｖｓ＠ｓｏｕｒｃｅｓ．ｒｅｄｈａｔ．ｃｏｍ：／ｃｖｓ／ｅｃｏｓｃｏＰｅｃｏｓ

这一命令与ＣＶＳ服务器建立连接，检查和下载ｅＣｏｓ的最新版本，下载的源码存放在ｅｃｏｓ
子目录下。

如果要将现有的ｅＣｏｓ更新为最新版本，则可以在ｅＣｏｓ的根目录下执行下面的命令：

＄ｃｖｓｚ３ｕｐｄａｔｅｄＰ

该命令检查ＣＶＳ服务器上的最新版本的ｅＣｏｓ源码，并与本地ｅＣｏｓ源码版本进行对照，从

ＣＶＳ服务器上下载最新版本的源码，更新本地ｅＣｏｓ源码。
一旦下载了新的ｅＣｏｓ源码，如果使用命令行方式进行配置，则应该设置 ＥＣＯＳ

ＲＥＰＯＳＩＴＲＹ环境变量，使其指向新的ｅｃｏｓ／ｐａｃｋａｇｅｓ目录：
对于ｓｈ、ｋｓｈ、ｂａｓｈ用户，使用下述命令进行设置：

＄ＥＣＯＳ ＲＥＰＯＳＩＴＯＲＹ＝／ｅｃｏｓｃｖｓ／ｅｃｏｓ／ｐａｃｋａｇｅｓ；ｅｘｐｏｒｔＥＣＯＳ ＲＥＰＯＳＩＴＯＲＹ

对于ｃｓｈ、ｔｃｓｈ用户，使用下面的命令进行设置：

＄ｓｅｔｅｎｖＥＣＯＳ ＲＥＰＯＳＩＴＯＲＹ／ｅｃｏｓｃｖｓ／ｅｃｏｓ／ｐａｃｋａｇｅｓ

如果使用ｅＣｏｓ图形配置工具，则可以使用菜单选项“Ｂｕｉｌｄ→Ｒｅｐｏｓｉｔｏｒｙ”进行设置。

２５２ ｅＣｏｓ配置工具

ｅＣｏｓ有两种形式的配置工具：一种是命令行配置工具；另一种是图形配置工具。这些配
置工具分别具有Ｗｉｎｄｏｗｓ和Ｌｉｎｕｘ的不同版本。

Ｗｉｎｄｏｗｓ环境下的命令行配置工具是ｅｃｏｓｃｏｎｆｉｇ．ｅｘｅ，该命令行配置工具必须在Ｃｙｇｗｉｎ
环境下运行。它位于ｅＣｏｓ源码安装目录的ｅｃｏｓ２．０／ｔｏｏｌｓ／ｂｉｎ子目录下，也可以位于其他目录
下，但ＰＡＴＨ环境变量应该包含它的路径名。

Ｗｉｎｄｏｗｓ环境下的图形配置工具是Ｃｏｎｆｉｇｔｏｏｌ．ｅｘｅ，位于ｅＣｏｓ源码安装目录的ｅｃｏｓ２．０／

ｔｏｏｌｓ／ｂｉｎ子目录下。ｅＣｏｓ图形配置工具的界面如图２７所示。

Ｌｉｎｕｘ环境下的命令行配置工具是ｅｃｏｓｃｏｎｆｉｇ，位于ｅＣｏｓ源码安装目录的ｅｃｏｓ２．０／ｔｏｏｌｓ／

ｂｉｎ子目录下。如果单独从ｅＣｏｓ网站上下载，则可以使用下述命令进行安装：

ｇｚｉｐＮｄｅｃｏｓｃｏｎｆｉｇ１３１４ｌｉｎｕｘ．ｇｚ
ｃｈｍｏｄ＋ｘｅｃｏｓｃｏｎｆｉｇ

然后再将ｅｃｏｓｃｏｎｆｉｇ移至ｅＣｏｓ安装目录的ｅｃｏｓ２．０／ｔｏｏｌｓ／ｂｉｎ子目录下。

Ｌｉｎｕｘ环境下也有一个图形配置工具，文件名为ｃｏｎｆｉｇｔｏｏｌ，位于ｅＣｏｓ源码安装目录的

８２

ｅｃｏｓ２．０／ｔｏｏｌｓ／ｂｉｎ子目录下。运行该程序，将出现Ｌｉｎｕｘ下的图形配置工具界面，其界面如图

２８所示。

图２７ Ｗｉｎｄｏｗｓ环境下ｅＣｏｓ图形配置工具

图２８ Ｌｉｎｕｘ环境下ｅＣｏｓ图形配置工具

ｅＣｏｓ图形配置工具安装完成后，必须对ｅＣｏｓ组件仓库路径名和编译工具（包括交叉编译
工具）路径名进行设置。ｅＣｏｓ组件仓库路径名可以使用菜单选项“Ｂｕｉｌｄ→Ｒｅｐｏｓｉｔｏｒｙ”进行设
置，它是ｅＣｏｓ源码中包含ｅｃｏｓ．ｄｂ数据库文件的路径名。编译工具包括用户工具（包含ｃａｔ、ｌｓ
等命令的目录）和交叉编译工具（包含ｘｘｘｅｌｆｇｃｃ如ｉ３８６ｅｌｆｇｃｃ等命令的目录），分别使用菜
单选项“Ｔｏｏｌｓ→Ｐａｔｈｓ→ＵｓｅｒｓＴｏｏｌｓ”和“Ｔｏｏｌｓ→Ｐａｔｈｓ→ＢｕｉｌｄＴｏｏｌｓ”来指定相应的工具路径名。
用户工具路径可以指定为Ｃｙｇｗｉｎ的ｂｉｎ目录，交叉编译工具路径可以使用按前面介绍方法建

９２

立的交叉编译工具目录ｏｐｔ＼ｅｃｏｓ＼ｇｎｕｔｏｏｌｓ＼ｂｉｎ（以ｉ３８６为例）。

２６ 建立ｅＣｏｓ开发环境

在完成所有开发工具的编译和安装后，可以开始建立ｅＣｏｓ开发环境。根据目标系统的不
同，ｅＣｏｓ开发环境的建立也有一定的不同之处，但它们的过程基本类似。这一节将以ｉ３８６ＰＣ
为例，讲述如何建立ｅＣｏｓ开发环境。

２６１ 基于ｘ８６的ｅＣｏｓ开发平台

图２９所示为基于ｘ８６的ｅＣｏｓ开发环境。它包括两台ＰＣ机，一台用作ｅＣｏｓ的开发主机

Ｈｏｓｔ，另外一台为运行ｅＣｏｓ的目标系统Ｔａｒｇｅｔ。Ｈｏｓｔ和Ｔａｒｇｅｔ使用串口连接，串口电缆的连
接在图中已有说明，串口电缆两端分别连接到Ｈｏｓｔ和Ｔａｒｇｅｔ的ＤＢ９串口插座。

图２９ 基于ｘ８６的ｅＣｏｓ开发平台

Ｈｏｓｔ主机运行Ｗｉｎｄｏｗｓ２０００操作系统，也可以是ＷｉｎｄｏｗｓＸＰ，它作为ｅＣｏｓ开发环境的
主开发平台，负责ｅＣｏｓ系统的配置、编译和链接、ｅＣｏｓ应用程序的编译和链接、目标系统ｅＣｏｓ
应用的加载、调试等任务。它安装有ｅＣｏｓ开发环境所需的全部软件和工具，主要有：

①Ｃｙｇｗｉｎ。

②ＧＣＣ。

③ＧＤＢ（Ｉｎｓｉｇｈｔ）。

④Ｂｉｎｕｔｉｌｓ。

⑤ｅＣｏｓ图形配置工具。

⑥ｅＣｏｓ系统源码。

⑦ｅＣｏｓ应用程序源码。

Ｔａｒｇｅｔ目标系统是运行ｅＣｏｓ系统的目标平台。在Ｈｏｓｔ主机上开发的ｅＣｏｓ系统将通过

ＲＳ２３２串口被加载到目标平台上，并在目标平台上运行。目标平台上运行的ｅＣｏｓ系统可以使
用本地控制台（显示器、键盘），也可以使用 Ｈｏｓｔ主机上的串口超级终端作为其控制台。

Ｔａｒｇｅｔ系统首先要运行ＲｅｄＢｏｏｔ才能与Ｈｏｓｔ主机建立通信连接，建立连接时必须注意Ｈｏｓｔ
和Ｔａｒｇｅｔ两端串口属性参数的设置。Ｔａｒｇｅｔ上运行下述软件：

①ＲｅｄＢｏｏｔ。

②ｅＣｏｓ应用。
上述方法采用了ＲＳ２３２串口作为Ｈｏｓｔ和Ｔａｒｇｅｔ的通信接口。除了采用串口外，还可以

使用以太网作为它们之间的通信接口。使用以太网时要求Ｈｏｓｔ和Ｔａｒｇｅｔ都有以太网卡，

０３

Ｔａｒｇｅｔ上的网卡必须是ｉ８２５５９兼容网卡，如ＩｎｔｅｌＥｔｈｅｒＰｒｅｓｓＰｒｏ１０／１００以太网卡。如果使用
其他网卡，必须提供其ｅＣｏｓ驱动程序。

２６２ 建立ＲｅｄＢｏｏｔ引导环境

Ｔａｒｇｅｔ在与Ｈｏｓｔ建立连接时以及在运行ｅＣｏｓ应用的时候，必须具备ＲｅｄＢｏｏｔ引导环境。

Ｔａｒｇｅｔ在ＲｅｄＢｏｏｔ阶段负责与Ｈｏｓｔ建立通信连接，并协助完成ｅＣｏｓ应用程序的加载和运行。
一旦ｅＣｏｓ应用程序开始运行，ＲｅｄＢｏｏｔ将把系统控制权全部交给ｅＣｏｓ系统。目标系统可以采
用软盘引导的方式来运行ＲｅｄＢｏｏｔ。
在制作ＲｅｄＢｏｏｔ引导盘之前，首先要生成ＲｅｄＢｏｏｔ。ＲｅｄＢｏｏｔ实际上是ｅＣｏｓ的一个特殊

的应用程序。如果ｅＣｏｓ源码中包含了预编译好的ＲｅｄＢｏｏｔ，可以直接使用，但应该注意其目标
系统类型是否是ｉ３８６ＰＣ，以及是否是软盘引导方式。如果没有，则必须使用ｅＣｏｓ配置工具对
其进行配置，并生成所需的软盘引导ＲｅｄＢｏｏｔ。下面介绍软盘引导ＲｅｄＢｏｏｔ的生成方法。

１）软盘引导ＲｅｄＢｏｏｔ的配置。首先运行ｅＣｏｓ图形配置工具，选择“ＲｅｄＢｏｏｔ”模板（“Ｂｕｉｌｄ
→Ｔｅｍｐｌａｔｅｓ”），出现图２１０所示对话框。在对话框中选择硬件平台“ｉ３８６ＰＣｔａｒｇｅｔ”并选择
“ｒｅｄｂｏｏｔ”软件包。

图２１０ ＲｅｄＢｏｏｔ模板选择

选择“ＲｅｄＢｏｏｔ”模板（如果出现冲突对话框，点按继续“Ｃｏｎｔｉｎｕｅ”）后，在ｅＣｏｓ配置窗口的
“ｅＣｏｓＨＡＬ”选项内找到“ｉ３８６ＰＣＴａｒｇｅｔ”配置选项，将其启动类型“Ｓｔａｒｔｕｐｔｙｐｅ”设置为
“ＦＬＯＰＰＹ”，如图２１１所示。与此同时，还应该对目标系统的串口进行设置，包括串口波特率
（默认值为３８４００ｂｉｔ／ｓ）、串口数目、指定ＧＤＢ串口、诊断串口以及控制台串口（如果使用同一
个串口，则其波特率应该相同）。另外还可以选择是否在目标系统显示器上显示输出信息。串

口属性如下：

① 波特率：３８４００（注意Ｈｏｓｔ上的串口也必须使用相同的波特率）。

② 数据位：８。

③ 奇偶位：０。

④ 停止位：１。

１３

图２１１ 目标系统软盘引导ＲｅｄＢｏｏｔ的配置

⑤ 流控制：无。
如果使用以太网与Ｈｏｓｔ主机进行通信，则必须在ＲｅｄＢｏｏｔ的配置中包含网络支持。

２）ＲｅｄＢｏｏｔ的编译。在对软盘引导ＲｅｄＢｏｏｔ进行配置后，便可以开始编译ＲｅｄＢｏｏｔ。首
先要保存所进行的配置，用菜单选项“Ｆｉｌｅ→ＳａｖｅＡｓ”，将其保存为ｍｙ ｒｅｄｂｏｏｔ．ｅｃｃ，然后选择
“Ｂｕｉｌｄ→Ｌｉｂｒａｒｙ”，ｅＣｏｓ配置工具将开始编译新的ＲｅｄＢｏｏｔ。编译时要求已经设置好了编译工
具和用户工具的路径名。编译完成后，在ＲｅｄＢｏｏｔ的安装目录ｍｙ ｒｅｄｂｏｏｔ ｉｎｓｔａｌｌ＼ｂｉｎ下将
生成ｒｅｄｂｏｏｔ．ｂｉｎ文件，该文件就是软盘引导ＲｅｄＢｏｏｔ所需要的二进制文件。

３）ＲｅｄＢｏｏｔ引导盘的制作。在Ｈｏｓｔ主机完成ＲｅｄＢｏｏｔ的编译并产生新的ＲｅｄＢｏｏｔ．ｂｉｎ文
件后，在Ｃｙｇｗｉｎ环境下通过下面的步骤可以生成Ｔａｒｇｅｔ的ＲｅｄＢｏｏｔ引导软盘：
首先用ｍｏｕｎｔ命令检查是否已经安装了软驱，如果出现了下面的信息，则可以跳过软驱

安装，直接生成引导盘：

＼＼．＼ａ：／ｄｅｖ／ｆｄ０ｕｓｅｒｂｉｎｍｏｄｅ

如果没有出现说明这样的信息，则说明还没有安装软驱。使用下面的命令安装软驱：

＄ｍｏｕｎｔｆｂ／／．／ａ：／ｄｅｖ／ｆｄ０

在确认软驱已经被安装后，将软盘插入软驱中，使用下面的命令生成ＲｅｄＢｏｏｔ引导盘：

＄ｄｄｃｏｎｖ＝ｓｙｎｃｉｆ＝ｍｙ ｒｅｄｂｏｏｔｉｎｓｔａｌｌ／ｂｉｎ／ｒｅｄｂｏｏｔ．ｂｉｎｏｆ＝／ｄｅｖ／ｆｄ０

如果是在Ｌｉｎｕｘ环境下，则使用下面命令生成引导盘：

＄ｄｄｃｏｎｖ＝ｓｙｎｃｉｆ＝ｍｙ ｒｅｄｂｏｏｔｉｎｓｔａｌｌ／ｂｉｎ／ｒｅｄｂｏｏｔ．ｂｉｎｏｆ＝／ｄｅｖ／ｆｄ０Ｈ１４４０

在实际使用过程中，要注意ｒｅｄｂｏｏｔ．ｂｉｎ的路径名。

４）运行ＲｅｄＢｏｏｔ并与Ｈｏｓｔ连接。生成ＲｅｄＢｏｏｔ引导盘后，将引导盘插入目标系统的软驱
内，重启系统。目标平台将从软盘引导，运行ＲｅｄＢｏｏｔ。如果此时Ｈｏｓｔ主机的串口超级终端
或者其他串口终端连接到目标平台的串口上，则这些终端将显示ＲｅｄＢｏｏｔ的引导界面。

ＲｅｄＢｏｏｔ引导完成后，Ｈｏｓｔ主机可以通过ＧＤＢ与其建立通信连接，并且可以向Ｔａｒｇｅｔ加

２３

载和运行ｅＣｏｓ程序。在使用ＧＤＢ进行连接时，应该注意超级终端是否已经与Ｔａｒｇｅｔ脱连（当
使用同一个串口时）。

在Ｃｙｇｗｉｎ环境下，使用下述命令运行ＧＤＢ，与Ｔａｒｇｅｔ的ＲｅｄＢｏｏｔ进行连接：

＄ｇｄｂ

此时将运行Ｉｎｓｉｇｈｔ（图形界面ＧＤＢ），并出现Ｉｎｓｉｇｈｔ的操作界面。在其界面上选择菜单
“Ｆｉｌｅ→ＴａｒｇｅｔＳｅｔｔｉｎｇｓ”对串口进行如下设置：

Ｔａｒｇｅｔ：Ｒｅｍｏｔｅ／Ｓｅｒｉａｌ
ＢａｕｄＲａｔｅ：３８４００
Ｐｏｒｔ：ｃｏｍ１（如果是Ｌｉｎｕｘ环境，则用／ｄｅｖ／ｔｔｙＳ０）

然后再回到ＧＤＢ主界面选择菜单“Ｒｕｎ→Ｃｏｎｎｅｃｔｔｏｔａｒｇｅｔ”与目标系统建立连接。
如果不使用Ｉｎｓｉｇｈｔ图形界面，可以使用下面的命令进入ＧＤＢ的命令行操作界面：

＄ｇｄｂｎｗ

此时再使用下述命令与目标系统进行连接：

（ｇｄｂ）ｓｅｔｒｅｍｏｔｅｂａｕｄ３８４００
（ｇｄｂ）ｔａｒｇｅｔｒｅｍｏｔｅｃｏｍ１（如果是Ｌｉｎｕｘ环境，则用／ｄｅｖ／ｔｔｙＳ０）

至此，一个完整的基于ｘ８６的ｅＣｏｓ开发环境已经建立完成。下一章将介绍如何使用ｅＣｏｓ
配置工具开发ｅＣｏｓ应用程序，并用简单的例子来说明整个过程。

３３

第３章 ｅＣｏｓ配置工具与编程实例

ｅＣｏｓ的一个最显著的特性是其配置功能，实现其配置功能的主要途径是使用ｅＣｏｓ配置工
具。ｅＣｏｓ配置工具在源码级对系统进行配置和裁剪。这种配置操作在系统编译之前进行，它
提供一个配置文件以及其他一些文件用于生成用户应用程序。ｅＣｏｓ具有一个组件仓库，组件
仓库内包含了用于生成ｅＣｏｓ系统所需的源码及其他相关文件，ｅＣｏｓ配置工具在启动时将加载
这一组件仓库。组件仓库内包含了一些用于描述其各组件的文件，称为ＣＤＬ（组件定义语言，
将在第１２章介绍）文件，ｅＣｏｓ配置工具将依靠这些ＣＤＬ文件对组件进行管理和配置。
在开发ｅＣｏｓ系统时，首先必须熟悉其配置工具的使用。本章重点介绍ｅＣｏｓ的图形配置

工具的使用方法，同时简要说明如何使用ｅＣｏｓ的命令行配置工具。另外还举例说明了如何使
用配置工具生成ｅＣｏｓ系统，包括应用程序的编译、加载、运行和调试。通过本章的学习，读者
完全可以自己动手配置和建造简单的ｅＣｏｓ系统，并可以开发简单的ｅＣｏｓ应用程序。

３１ ｅＣｏｓ图形配置工具

ｅＣｏｓ具有两种类型的配置工具：一种是图形配置工具；另一种是命令行配置工具。

Ｗｉｎｄｏｗｓ和Ｌｉｎｕｘ都支持这两种配置工具，它们在这两种环境下的使用方法基本相同。因此
这里主要介绍Ｗｉｎｄｏｗｓ环境下ｅＣｏｓ配置工具的使用。

ｅＣｏｓ图形配置工具具有操作简单、使用方便、配置灵活的特点，而且具有很强的配置能
力，它集配置、编译、调试、测试、运行等功能于一体。ｅＣｏｓ这种灵活而强大的配置能力已经被
其他一些嵌入式操作系统所借鉴。

ｅＣｏｓ图形配置工具界面如图３１所示。它包括几个窗口：配置窗口、属性窗口、描述窗口、
输出窗口、冲突窗口和内存布局窗口。其中冲突窗口和内存布局窗口必须使用菜单选项

“Ｖｉｅｗ”才能显示。在某些版本的图形配置工具中，没有内存布局窗口。
配置窗口是对ｅＣｏｓ进行配置的主要窗口，大部分的配置工作都在此窗口下进行。它采用

树型结构显示当前配置中所包含的所有配置选项。这些配置选项可以选择使用宏名或者其简

要描述名来显示该选项。在配置窗口中对可配置的选项进行设置，可以使能或禁止该选项，或

者对选项的值进行修改。选中某一配置选项并点击鼠标右键可以查看该选项的简要说明、对

应头文件、选项的属性以及浏览联机帮助文件，还可以选择对包进行卸载操作。

配置窗口中的某个配置选项被选中时（鼠标点击该选项），属性窗口将显示该配置选项的

属性。属性中包含有该选项的宏名、头文件以及相应的参考文档。用鼠标双击头文件和参考

文档可以查看这些文件。关于选项的属性将在第１２章介绍。
描述窗口显示在配置窗口中被选中的配置选项的简要描述信息。用户在使用时可以从这

里得到简单的帮助信息。

输出窗口用于显示配置、编译和链接时所产生的各种提示、警告和错误信息。在该窗口点

击鼠标右键可以选择保存或清除所显示的输出信息。

４３

冲突窗口显示当前配置所存在的冲突。ｅＣｏｓ的许多配置选项之间存在相互依存关系，当
对它们所进行的配置出现冲突时，ｅＣｏｓ配置工具将自动检测这些配置冲突，并在冲突窗口显
示这些冲突。

内存布局窗口显示的是当前配置所使用的内存分布方案。包括向量地址、程序代码地址

与大小、数据段地址与大小等等。点击鼠标右键可以对它们进行修改。有些版本的图形配置

工具没有内存布局窗口，如果需要，则必须在相应的安装树目录中的内存布局文件ｉｎｓｔａｌｌ／

ｉｎｃｌｕｄｅ／ｐｋｇｃｏｎｆ／ｍｌｔ ．（例如：ｐｋｇｃｏｎｆ／ｍｌｔｉ３８６ ｐｃ ｆｌｏｐｐｙ．ｌｄｉ文件）中进行修改。

图３１ ｅＣｏｓ图形配置工具窗口

ｅＣｏｓ图形配置工具中的菜单工具提供了各种操作功能。它可以创建新的配置、打开一个
现有配置，可以对配置进行导入导出操作，也可以在当前配置中寻找某个配置选项。它可以对

配置工具进行设置，如显示字体、配置冲突检查点、运行测试程序时与目标系统的连接方式与

属性等等。它还可以进行系统编译操作和选项设置、提供对ｅＣｏｓ软件包的管理和联机帮助。

３２ 图形配置工具的使用

ｅＣｏｓ图形配置工具为ｅＣｏｓ的配置、组件管理、编译以及执行提供了一个方便而灵活的操
作环境。本节将从这些方面简要介绍在 Ｗｉｎｄｏｗｓ环境下如何使用图形配置工具，Ｌｉｎｕｘ环境
下的使用方法基本相同。

３２１ 组件仓库位置

ｅＣｏｓ图形配置工具在被启动时将访问包含只读配置信息的组件仓库。组件仓库包含了

５３

用于产生一个配置所需要的所有源码文件和其他一些文件，它是一个多层次的目录结构。在

第一次使用图形配置工具的时候，必须指定组件仓库的位置。以后每次运行图形配置工具时

将使用上一次运行时所使用的组件仓库。

组件仓库位置的指定可以通过菜单选项来完成。点击“Ｂｕｉｌｄ→Ｒｅｐｏｓｉｔｏｒｙ”将出现图３２
所示的对话框，在对话框内输入组件仓库所在目录位置。

图３２ 组件仓库位置的指定

当改变ｅＣｏｓ源码目录时，需要使用这种操作来指定新的组件仓库位置。如果指定的位置
不正确，图形配置工具将提示重新输入有效的位置。

点击菜单选项“Ｈｅｌｐ→ＲｅｐｏｓｉｔｏｒｙＩｎｆｏｒｍａｔｉｏｎ．．．”，可以检查当前所使用的组件仓库位置，
同时还可以显示当前ｅＣｏｓ配置保存文件位置、当前硬件平台和默认包等信息。

３２２ 配置文件的管理

使用ｅＣｏｓ配置工具对配置选项所进行的设置以及其他一些信息可以用文件的形式保存
下来。在进行一项新的配置时，首先必须产生一个新的配置文件（．ｅｃｃ）。配置文件类似于
其他软件开发环境中的项目（Ｐｒｏｊｅｃｔ）。
点击菜单选项“Ｆｉｌｅ→Ｎｅｗ”将创建一个新的配置文件。一旦创建完成，就可以使用“Ｆｉｌｅ→

Ｓａｖｅａｓ”或“Ｆｉｌｅ→Ｓａｖｅ”将其保存。下次再使用该配置文件时，可以使用“Ｆｉｌｅ→Ｏｐｅｎ”打开对应
的配置文件。

创建并保存一个新的配置文件后，ｅＣｏｓ配置工具将自动产生三个与该配置相关的目录：

① 编译树（ＢｕｉｌｄＴｒｅｅ）：对ｅＣｏｓ进行编译时所生成的文件都存放于此，包括ｍａｋｅｆｉｌｅ文
件、目标文件和其他一些文件。

② 安装树（ＩｎｓｔａｌｌＴｒｅｅ）：存放用于编译ｅＣｏｓ应用程序的所有文件，包括库文件ｌｉｂｔｒｇｅｔ．ａ
和头文件。ｅＣｏｓ编译后的输出结果文件都存放在安装树目录内。

③ 内存布局目录（ｍｌｔ目录）：存放内存布局文件。
例如，如果新的配置文件被保存为ｍｙ３８６．ｅｃｃ，那么将产生下述文件和目录：

① 配置文件：ｍｙ３８６．ｅｃｃ。

② 编译树目录：ｍｙ３８６ ｂｕｉｌｄ。

③ 安装树目录：ｍｙ３８６ ｉｎｓｔａｌｌ。

④ 内存布局目录：ｍｙ３８６ ｍｌｔ。

３２３ 模板选择

在创建新的配置时，需要指定目标平台的类型以及所需的软件包。ｅＣｏｓ源码中提供了许

６３

多可以选择的各种模板。这些模板分别对应不同处理器的各种开发板，对于新的平台可以选

择与其最相近的模板。

模板的选择可以通过点击菜单“Ｂｕｉｌｄ→Ｔｅｍｐｌａｔｅｓ”进行。此时将出现图３３所示的对话
框。

图３３ 选择平台模板

假设以ｉ３８６微机作为目标开发平台，可以选择硬件为“ｉ３８６ＰＣｔａｒｇｅｔ”，同时选择默认软
件包（“ｄｅｆａｕｌｔ”）。点击“Ｄｅｔａｉｌｓ”按钮可以查看具体包括了哪些软件包。

ｅＣｏｓ图形配置工具提供了源码级的裁剪能力，用户可以根据目标系统的实际需要来增加
或删除某些软件包。在主菜单中选择“Ｂｕｉｌｄ→Ｐａｃｋａｇｅｓ”将出现图３４所示的对话框，在该对
话框中可以实现包的增加和删除。

图３４的左上方窗口显示的是可以被增加的软件包，右上方窗口显示的是当前配置中已
经存在的软件包。中间窗口显示的是被选软件包的简要描述，“Ｖｅｒｓｉｏｎ”栏内显示该软件包的
版本号。如果存在多个版本，则可以在此选择指定版本的软件包。在“Ｋｅｙｗｏｒｄｓ”栏内输入软
件包的关键词（包的名字、宏名、描述）可以迅速地在包的窗口内显示相应的软件包。如果选择

了“Ｍａｔｃｈｅｘａｃｔｌｙ”，则只显示与关键词完全匹配的软件包。如果选择了“Ｏｍｉｔｈａｒｄｗａｒｅ
ｐａｃｋａｇｅｓ”，则只显示与硬件无关的软件包。

３２４ 选项配置

ｅＣｏｓ提供了许多配置选项，用户可以根据实际需要对这些选项进行配置。选项的配置操
作主要在配置窗口内进行。配置窗口以树型结构表示当前所使用软件包中的各种配置选项。

图３５为配置窗口。
对于那些选项值可以被修改的配置选项，可以使用复选框、单选按钮、单元格的方式进行

配置。单元格位于配置窗口右边，用鼠标点击单元格便可以选择或修改其值。单元格的值有

三种数据类型：整型（十进制或十六进制）、浮点、字符串。

某些配置选项处于禁止状态，处于禁止状态的配置选项的标号以及与其相关的控制和单

７３

图３４ 软件包的增加与删除

图３５ ｅＣｏｓ配置窗口

元格呈灰色状态，这些配置选项的值不能被修改。

值得注意的是对启动类型（Ｓｔａｒｔｕｐｔｙｐｅ）的选择配置。对于一个可执行的映像文件，有多
种方法将其加载到目标平台上。根据加载方式的不同，必须使用不同的启动方式来生成可执

行文件。ｅＣｏｓ的硬件抽象层ＨＡＬ提供了一个配置选项“Ｓｔａｒｔｕｐｔｙｐｅ”用于支持不同的加载方
法。该配置选项的典型值可以设置为ＲＯＭ启动、ＲＡＭ启动、软盘启动、Ｇｒｕｂ引导等。表３１
列举了不同加载方式应该配置的启动方式。

８３

表３１ 启动方式的配置

加 载 方 式 ＨＡＬ配 置

程序位于ＲＯＭ内 ＲＯＭ启动

加载到ＲＯＭ模拟器 ＲＯＭ启动

使用ＲｅｄＢｏｏｔ加载到ＲＡＭ ＲＡＭ启动

从软盘加载 软盘启动

通过Ｇｒｕｂ加载程序引导 Ｇｒｕｂ启动

３２５ 冲突的解决

ｅＣｏｓ具有各种配置选项，不同选项之间可能存在某些依赖关系。在对ｅＣｏｓ进行配置的过
程中，对某些配置选项的配置可能引起不同配置选项之间的相互冲突。图形配置工具的冲突

窗口以及配置工具下边的状态栏将显示当前配置中的所有冲突和冲突数目。这些冲突的解决

需要相当长的时间。为此，ｅＣｏｓ配置工具提供了一个冲突自动解决机制。
在主菜单中选择“Ｖｉｅｗ→Ｓｅｔｔｉｎｇｓ．．．”，在出现的设置对话框内选择“ＣｏｎｆｌｉｃｔＲｅｓｏｌｕｔｉｏｎ”

项，将出现如图３６所示的冲突检查点设置框。

图３６ 冲突检查点设置框

根据需要，可以选择在每次改变一个配置选项的时候进行冲突检查，也可以在保存配置文

件的时候再进行冲突检查。另外还可以选择不检查冲突。值得注意的是，如果选择每一次改

变配置选项时进行冲突检查，则只显示新出现的冲突；如果选择在保存配置文件的时候进行检

查，那么将显示所有的冲突。

如果选择了“Ａｕｔｏｍａｔｉｃａｌｌｙｓｕｇｇｅｓｔｆｉｘｅｓ”，那么一旦出现新的冲突，就将出现一个图３７所
示的冲突解决对话框。使用菜单项“Ｔｏｏｌｓ→ＲｅｓｏｌｖｅＣｏｎｆｌｉｃｔｓ”也将出现同样的对话框。
冲突解决对话框具有两个窗口。上边的窗口包含了所出现的冲突，其显示格式与配置工

具中的冲突窗口一致。下边的窗口包含了解决这些冲突的建议方法。如果点击“Ｃｏｎｔｉｎｕｅ”按
钮，将采用该窗口中被选择的冲突解决方案。

９３

图３７ 冲突解决对话框

３２６ 配置选项的查找

ｅＣｏｓ图形配置工具的配置窗口包含了许多配置选项，这些配置选项可以使用宏名来显
示，也可以使用简要描述来显示。当配置选项较多时，要查找某个选项是较为困难的。为此，

ｅＣｏｓ图形配置工具提供了一个配置选项的查找机制。
选择菜单项“Ｅｄｉｔ→Ｆｉｎｄ”，将出现图３８所示的选项查找对话框。

图３８ 选项查找对话框

使用这一对话框可以以下面几种形式（在“Ｓｅａｒｃｈｉｎ”下拉菜单中选择）在配置窗口中查找
字符串：

① 宏名（Ｍａｃｒｏｎａｍｅｓ）：根据输入的配置选项宏名进行查找。

② 选项名（Ｉｔｅｍｎａｍｅｓ）：根据输入的配置选项的描述名进行查找。

③ 简要描述（Ｓｈｏｒｔｄｅｓｃｒｉｐｔｉｏｎｓ）：根据输入的配置选项的简要描述进行查找。

④ 当前值（Ｃｕｒｒｅｎｔｖａｌｕｅｓ）：根据配置选项的当前值进行查找。

⑤ 默认值（Ｄｅｆａｕｌｔｖａｌｕｅｓ）：根据配置选项的默认值进行查找。
如果查找成功，还可以使用“ＦｉｎｄＮｅｘｔ”按钮查找下一个相匹配的配置选项。

３２７ 编译

利用ｅＣｏｓ配置工具可以对已经配置好的ｅＣｏｓ进行编译。对ｅＣｏｓ进行编译时要用到针对
目标平台的交叉编译工具，如编译器、链接器等，另外还需要使用一些用户工具（ｃａｔ、ｌｓ等）。
编译工具的选择通常只需进行一次，可以通过菜单“Ｔｏｏｌｓ→Ｐａｔｈｓ→ＢｕｉｌｄＴｏｏｌｓ”来设置编译工

０４

具所在的目录路径，用户工具所在目录路径可以使用菜单“Ｔｏｏｌｓ→Ｐａｔｈｓ→ＵｓｅｒＴｏｏｌｓ”进行设
置。如果目标系统采用不同的ＣＰＵ，则需要重新指定相应的编译工具目录路径名。
图３９是指定ｉ３８６ＰＣ的编译工具的对话框。其交叉编译工具路径名指的是包含ｉ３８６

图３１０ 编译选项对话框

ｅｌｆｇｃｃ等ｉ３８６ｅｌｆ编译工具的目录，用户工具指的是主机系统包含ｃａｔ和ｌｓ文件的目录。

ａ）

ｂ）

图３９ 编译工具和用户工具的选择
ａ）编译工具路径设置 ｂ）用户工具路径设置

ｅＣｏｓ图形配置工具提供了一个查看编译选项的功能。使用菜单项“Ｂｕｉｌｄ→Ｏｐｔｉｏｎｓ”将出
现一个有关编译选项的对话框（图３１０），该对话框包含一个下拉菜单和两个窗口。下拉菜单

１４

“Ｃａｔｅｇｏｒｙ”用于选择显示全局编译标志（“ＣＦＬＡＧＳ”）或链接标志（“ＬＤＦＬＡＧＳ”）。左边窗口显
示当前配置中的软件包，右边窗口显示的是当前所选择软件包的编译或链接选项。编译选项

对话框只提供选项的只读功能。

对ｅＣｏｓ进行编译时，可以使用图形配置工具的菜单项“Ｂｕｉｌｄ”进行。Ｂｕｉｌｄ菜单有四个与
编译相关的选项，它们分别是：

①Ｌｉｂｒａｒｙ：对ｅＣｏｓ进行编译和链接。编译结果是产生一个库文件，用户应用程序将与该
库进行链接。

②Ｔｅｓｔｓ：对ｅＣｏｓ测试程序进行编译，并与ｅＣｏｓ库进行链接。

③Ｃｌｅａｎ：删除所有中间文件，使得所有文件可以被重新编译。

④Ｓｔｏｐ：中止当前正在进行的编译过程。

３２８ 执行

对测试程序进行编译后生成的可执行测试程序，可以通过ｅＣｏｓ图形配置工具将其加载到
目标平台上执行。测试程序的执行通过ＧＤＢ进行控制。使用菜单项“Ｔｏｏｌｓ→ＲｕｎＴｅｓｔｓ”可以
实现测试程序的执行。程序的执行通常使用单独的ＧＤＢ命令进行控制。
在配置工具上选择运行测试程序时，配置工具查找与当前配置的硬件目标相对应的平台

名。如果没有相应的平台，则出现一个对话框用于对该平台进行定义，如图３１１所示。增加
新的平台可以使用菜单“Ｔｏｏｌｓ→Ｐｌａｔｆｏｒｍｓ”实现。对话框中的“ＣｏｍｍａｎｄＰｒｅｆｉｘ”栏填入命令前
缀（如ｉ３８６ｅｌｆｇｄｂ．ｅｘｅ的前缀ｉ３８６ｅｌｆ），ＧＤＢ参数栏填入传送给ＧＤＢ的命令与参数。

图３１１ 新平台的定义

当找到相应的平台时，或者对新平台进行设置后，将出现一个运行测试程序的对话框，如

图３１２所示，它包含三个表单窗口：

①“Ｅｘｅｃｕｔａｂｌｅｓ”：列举被选择的测试程序，可以选择执行一个或多个程序。

②“Ｏｕｔｐｕｔ”：程序执行时的输出信息。

③“Ｓｕｍｍａｒｙ”：程序执行的概要情况。
测试程序运行对话框的下部有三个按钮，其中“Ｒｕｎ／Ｓｔｏｐ”按钮用于运行测试程序或停止

测试程序。“Ｐｒｏｐｅｒｔｉｅｓ”按钮用于对目标平台的连接属性进行设置，如图３１３所示。在连接属
２４

性设置对话框中可以对程序加载的超时时间、程序运行的超时时间、串口连接参数、ＴＣＰ／ＩＰ
连接参数等等进行设置。

图３１２ 执行测试程序

测试程序的执行情况显示在“Ｓｕｍｍａｒｙ”窗口内。其显示内容包括执行日期与时间、测试
程序名、测试结果状态、程序加载时间、程序执行时间等。

图３１３ 与目标平台的连接属性设置

３４

３３ 命令行配置工具

在某些环境不能使用图形配置工具的情况下（如 ＵＮＩＸ），需要使用命令行配置工具

ｅｃｏｓｃｏｎｆｉｇ对ｅＣｏｓ进行手工配置。
在使用ｅｃｏｓｃｏｎｆｉｇ配置工具之前，必须对环境变量ＰＡＴＨ和ＥＣＯＳ ＲＥＰＯＳＩＴＯＲＹ进行

设置。ＰＡＴＨ环境变量应该包含编译ｅＣｏｓ所需的交叉编译工具路径和用户工具路径，ＥＣＯＳ
ＲＥＰＯＳＩＴＯＲＹ环境变量为ｅＣｏｓ组件仓库路径。例如：

＄ＰＡＴＨ＝／ｂｉｎ：／ｏｐｔ／ｅｃｏｓ／ｇｎｕｔｏｏｌｓ／ｂｉｎ：＄ＰＡＴＨ
＄ｅｘｐｏｒｔＰＡＴＨ
＄ＥＣＯＳ ＲＥＰＯＳＩＴＯＲＹ＝／ｏｐｔ／ｅｃｏｓ／ｐａｃｋａｇｅｓ
＄ｅｘｐｏｒｔＥＣＯＳ ＲＥＰＯＳＩＴＯＲＹ

上面例子中用户工具目录为／ｂｉｎ，交叉编译工具为／ｏｐｔ／ｅｃｏｓ／ｇｎｕｔｏｏｌｓ／ｂｉｎ，ｅＣｏｓ组件仓库
路径为／ｏｐｔ／ｅｃｏｓ／ｐａｃｋａｇｅｓ。

３３１ ｅｃｏｓｃｏｎｆｉｇ配置工具

使用ｅｃｏｓｃｏｎｆｉｇ命令时，可以用ｅｃｏｓｃｏｎｆｉｇｈｅｌｐ来查看该命令的使用方法。图３１４为该
命令的使用方法。

图３１４ ｅｃｏｓｃｏｎｆｉｇ命令使用方法

图３１４已列举了ｅｃｏｓｃｏｎｆｉｇ命令的使用方法：

ｅｃｏｓｃｏｎｆｉｇ［ｑｕａｌｉｆｉｅｒ．．．］［ｃｏｍｍａｎｄ］

其中命令（ｃｏｍｍａｎｄ）为：

①ｌｉｓｔ：列举组件仓库内容，包括软件包、目标平台和模板、别名、版本信息。

４４

②ｎｅｗＴＡＲＧＥＴ［ＴＥＭＰＬＡＴＥ［ＶＥＲＳＩＯＮ］］：产生一个新的ｅＣｏｓ配置，可以指定目
标系统硬件和模板，默认模板为“ｄｅｆａｕｌｔ”。如果未指定版本号，则使用最新版本。

③ｔａｒｇｅｔＴＡＲＧＥＴ：改变ｅＣｏｓ的目标平台硬件。

④ｔｅｍｐｌａｔｅＴＥＭＰＬＡＴＥ［ＶＥＲＳＩＯＮ］：改变ｅＣｏｓ模板的选择。如果未指定版本号，则
使用最新版本。

⑤ａｄｄＰＡＣＫＡＧＥ［ＰＡＣＫＡＧＥ．．．］：在当前配置中增加指定的软件包。

⑥ｒｅｍｏｖｅＰＡＣＫＡＧＥ［ＰＡＣＫＡＧＥ．．．］：在当前配置中删除指定的软件包。

⑦ｖｅｒｓｉｏｎＶＥＲＳＩＯＮＰＡＣＫＡＧＥ［ＰＡＣＫＡＧＥ．．．］：选择指定版本的软件包。

⑧ｅｘｐｏｒｔＦＩＬＥ：导出并保存ｅＣｏｓ的最小配置信息到指定文件。

⑨ｉｍｐｏｒｔＦＩＬＥ：将指定文件所保存的最小配置信息导入到当前配置。

⑩ｃｈｅｃｋ：检查并显示当前配置的相关信息，包括硬件平台的选择、模板的选择、增加的软
件包、删除的软件包、非最新版本软件包的版本号、当前配置中的冲突等。

瑏瑡ｒｅｓｏｌｖｅ：解决当前配置中所出现的冲突。

瑏瑢ｔｒｅｅ：生成当前配置的编译树（Ｂｕｉｌｄｔｒｅｅ）。
限定符（ｑｕａｌｉｆｉｅｒｓ）包括：

①ｃｏｎｆｉｇ＝ＦＩＬＥ：指定配置工具所使用的ｅＣｏｓ配置保存文件，默认为当前目录下的

ｅｃｏｓ．ｅｃｃ文件。

②ｐｒｅｆｉｘ＝ＤＩＲＥＣＴＯＲＹ：指定安装树（Ｉｎｓｔａｌｌｔｒｅｅ）目录，默认为当前目录下的ｉｎｓｔａｌｌ目
录。

③ｓｒｃｄｉｒ＝ＤＩＲＥＣＴＯＲＹ：指定组件仓库位置，默认为ＥＣＯＳ ＲＥＰＯＳＩＴＯＲＹ环境变量
指定的位置。

④ｎｏｒｅｓｏｌｖｅ：禁止冲突解决，可以对ｅＣｏｓ配置保存文件进行编辑对冲突进行手工解决。

⑤ｖｅｒｓｉｏｎ：显示配置工具的版本和版权信息。

⑥ｑ，ｑｕｉｅｔ：显示少量信息。

⑦ｖ，ｖｅｒｂｏｓｅ：显示较多的信息。

⑧ｉ，ｉｇｎｏｒｅｅｒｒｏｒｓ：忽略未解决的冲突，默认情况下ｅｃｏｓｃｏｎｆｉｇ一旦遇到冲突将自动退
出。

⑨ｈｅｌｐ：显示帮助信息，提供基本的配置工具使用指导。

３３２ 使用ｅｃｏｓｃｏｎｆｉｇ配置ｅＣｏｓ

在使用ｅｃｏｓｃｏｎｆｉｇ对ｅＣｏｓ进行配置之前必须选择一个工作目录。假设工作目录为／ｅｃｏｓ
ｗｏｒｋ，如果该目录不存在则可以创建这个目录：

＄ｍｋｄｉｒ／ｅｃｏｓｗｏｒｋ
＄ｃｄ／ｅｃｏｓｗｏｒｋ

此时可以使用下述命令创建一个新的基于ｉ３８６ＰＣ的配置：

＄ｅｃｏｓｃｏｎｆｉｇｎｅｗｐｃ

该命令将在当前目录（／ｅｃｏｓｗｏｒｋ）下产生一个配置文件ｅｃｏｓ．ｅｃｃ。如果要对其进行具体
配置，可以手工编辑ｅｃｏｓ．ｅｃｃ文件，对配置选项进行修改。

５４

使用下面的命令产生编译树ＢｕｉｌｄＴｒｅｅ：

＄ｅｃｏｓｃｏｎｆｉｇｔｒｅｅ

该命令将生成ｂｕｉｌｄ目录结构，同时还生成一个安装树目录ｉｎｓｔａｌｌ。在当前目录下还生成
了一个用于编译的ｍａｋｅｆｉｌｅ文件。此时可以使用下述命令对ｅＣｏｓ进行编译：

＄ｍａｋｅ

编译产生的库文件位于安装树目录ｉｎｓｔａｌｌ／ｌｉｂ内。如果要支持多处理器，可以使用下面命
令进行编译，其中ｎ表示处理器的个数：

＄ｍａｋｅｊｎ

如果要对测试程序进行编译，可以使用下面的命令：

＄ｍａｋｅｔｅｓｔｓ

该命令将所有的测试程序进行编译，并与ｅＣｏｓ编译产生的库文件进行链接，生成可在目
标系统上运行的可执行程序。这些可执行测试程序位于安装树目录的ｔｅｓｔ子目录下。

３４ ｅＣｏｓ应用程序

在完成对ｅＣｏｓ的配置工作后，再对其进行编译和链接，最后生成库文件。ｅＣｏｓ应用程序
将与库文件进行链接，生成最终所需的可在目标系统上运行的可执行文件。ｅＣｏｓ的编译采用

ＧＮＵＣ和Ｃ＋＋交叉编译工具。这一节首先介绍ｅＣｏｓ应用程序的编译方法，然后举例说明如
何编写ｅＣｏｓ应用程序以及如何编译、加载和运行。

３４１ 使用编译工具

ｅＣｏｓ应用程序可以使用Ｃ或Ｃ＋＋进行编程，对它们的编译所使用的工具也是ＧＮＵＣ和

Ｃ＋＋交叉编译工具。在使用ＧＣＣ编译工具时，需要使用某些选项。下面的例子是对用Ｃ语
言编写的ｅＣｏｓ程序进行编译和链接时所使用的一组最小选项示例：

＄ＧＣＣｃＩＩＮＳＴＡＬＬ ＤＩＲ／ｉｎｃｌｕｄｅｆｉｌｅ．ｃ
＄ＧＣＣｏｐｒｏｇｒａｍｆｉｌｅ．ｏＬＩＮＳＴＡＬＬ ＤＩＲ／ｌｉｂＴｔａｒｇｅｔ．ｌｄｎｏｓｔｄｌｉｂ

注意上面例子中的ＧＣＣ表示的是目标平台相应的交叉编译工具。如：ｉ３８６ｅｌｆｇｃｃ，

ｍｎ１０３００ｅｌｆｇｃｃ， ｍｉｐｓｔｘ３９ｅｌｆｇｃｃ， ｐｏｗｅｒｐｃｅａｂｉｇｃｃ， ｓｐａｒｃｌｉｔｅｅｌｆｇｃｃ， ａｒｍｅｌｆｇｃｃ，

ｍｉｐｓ６４ｖｒ４３００ｅｌｆｇｃｃ，ｓｈｅｌｆｇｃｃ等等。ＩＮＳＴＡＬＬ ＤＩＲ指的是ｅＣｏｓ编译后所产生的安装树目
录，该目录包含了编译ｅＣｏｓ应用程序所需要的包含文件和库文件。
除了上面例子中的选项外，还可以使用其他一些编译选项，如：

＄ＧＣＣｃＩＩＮＳＴＡＬＬ ＤＩＲ／ｉｎｃｌｕｄｅＩ．ｆｆｕｎｃｔｉｏｎｓｅｃｔｉｏｎｓｆｄａｔａｓｅｃｔｉｏｎｓ
ｇＯ２ｆｉｌｅ．ｃ

＄ＧＣＣｏｐｒｏｇｒａｍｆｉｌｅ．ｏｆｆｕｎｃｔｉｏｎｓｅｃｔｉｏｎｓｆｄａｔａｓｅｃｔｉｏｎｓ

Ｗｌ，ｇｃｓｅｃｔｉｏｎｓｇＯ２ＬＩＮＳＴＡＬＬ ＤＩＲ／ｌｉｂＴｔａｒｇｅｔ．ｌｄｎｏｓｔｄｌｉｂ

６４

对于使用Ｃ＋＋编写的ｅＣｏｓ应用程序，可以使用Ｇ＋＋交叉编译工具。下面的例子是对

Ｃ＋＋的ｅＣｏｓ程序进行编译和链接所使用的一组最小选项示例：

＄Ｇ＋＋ｃＩＩＮＳＴＡＬＬ ＤＩＲ／ｉｎｃｌｕｄｅｆｎｏｒｔｔｉｆｎｏｅｘｃｅｐｔｉｏｎｓｆｉｌｅ．ｃｘｘ
＄Ｇ＋＋ｏｐｒｏｇｒａｍｆｉｌｅ．ｏＬＩＮＳＴＡＬＬ ＤＩＲ／ｌｉｂＴｔａｒｇｅｔ．ｌｄｎｏｓｔｄｌｉｂ

注意上面例子中的Ｇ＋＋表示的是目标平台相应的交叉编译工具。如：ｉ３８６ｅｌｆｇ＋＋，

ｍｎ１０３００ｅｌｆｇ＋＋，ｍｉｐｓｔｘ３９ｅｌｆｇ＋＋，ｐｏｗｅｒｐｃｅａｂｉｇ＋＋，ｓｐａｒｃｌｉｔｅｅｌｆｇ＋＋，ａｒｍｅｌｆｇ＋＋，

ｍｉｐｓ６４ｖｒ４３００ｅｌｆｇ＋＋，ｓｈｅｌｆｇ＋＋等等。ＩＮＳＴＡＬＬ ＤＩＲ指的是ｅＣｏｓ编译后所产生的安装
树目录。在编译Ｃ＋＋程序时，还可以使用其他编译和链接选项，如：

＄Ｇ＋＋ｃＩＩＮＳＴＡＬＬ ＤＩＲ／ｉｎｃｌｕｄｅＩ．ｆｆｕｎｃｔｉｏｎｓｅｃｔｉｏｎｓｆｄａｔａｓｅｃｔｉｏｎｓ
ｆｎｏｒｔｔｉｆｎｏｅｘｃｅｐｔｉｏｎｓｆｖｔａｂｌｅｇｃｆｉｎｉｔｐｒｉｏｒｉｔｙｇＯ２ｆｉｌｅ．ｃｘｘ

＄Ｇ＋＋ｏｐｒｏｇｒａｍｆｉｌｅ．ｏＷ１，ｇｃｓｅｃｔｉｏｎｓｇＯ２ＬＩＮＳＴＡＬＬ ＤＩＲ／ｌｉｂ
Ｔｔａｒｇｅｔ．ｌｄｎｏｓｔｄｌｉｂ

３４２ 简单的ｈｅｌｌｏ程序

ｅＣｏｓ源码中包含了一些例子程序，位于ｅｘａｍｐｌｅｓ目录内。这些例子程序包含了从简单到
复杂的程序实例，参考这些例子程序有助于了解如何编写ｅＣｏｓ应用程序。
最简单的一个例子程序是ｈｅｌｌｏ．ｃ应用程序：

／ｔｈｉｓｉｓａｓｉｍｐｌｅｈｅｌｌｏｗｏｒｌｄｐｒｏｇｒａｍ／

＃ｉｎｃｌｕｄｅ＜ｓｔｄｉｏ．ｈ＞
ｉｎｔｍａｉｎ（ｖｏｉｄ）
｛

ｐｒｉｎｔｆ（″Ｈｅｌｌｏ，ｅＣｏｓｗｏｒｌｄ！＼ｎ″）；

ｒｅｔｕｒｎ０；
｝

以普通ＰＣ作为目标平台为例，假设已经对ｅＣｏｓ进行配置并完成了编译（前面产生的配置
文件ｍｙ３８６．ｅｃｃ），编译后产生了安装树目录ｍｙ３８６ ｉｎｓｔａｌｌ（ｄ：＼ｅｃｏｓｗｏｒｋ＼ｍｙ３８６ ｉｎｓｔａｌｌ），
该目录包含了ｉｎｃｌｕｄｅ和ｌｉｂ两个子目录。ｉｎｃｌｕｄｅ目录包含了ｅＣｏｓ应用程序引用的头文件，ｌｉｂ
目录包含了ｅＣｏｓ库文件和链接文件。
在Ｃｙｇｗｉｎ环境下，可以使用下述命令对ｈｅｌｌｏ．ｃ进行编译和链接：

＄ｉ３８６ｅｌｆｇｃｃｇＩ／ｄ／ｅｃｏｓｗｏｒｋ／ｍｙ３８６ ｉｎｓｔａｌｌ／ｉｎｃｌｕｄｅｈｅｌｌｏ．ｃ
Ｌ／ｄ／ｅｃｏｓｗｏｒｋ／ｍｙ３８６ ｉｎｓｔａｌｌ／ｌｉｂＴｔａｒｇｅｔ．ｌｄｎｏｓｔｄｌｉｂ

其中ｇ选项使能ｄｅｂｕｇ，Ｉ指定头文件路径／ｄ／ｅｃｏｓｗｏｒｋ／ｍｙ３８６ ｉｎｓｔａｌｌ／ｉｎｃｌｕｄｅ，Ｌ为链
接器指定链接脚本文件ｔａｒｇｅｔ．ｌｄ的位置。编译后产生的可执行文件为ａ．ｏｕｔ。
此时，可以使用ＧＤＢ将执行文件ａ．ｏｕｔ加载到目标平台上，并启动其在目标系统上的执

行。在加载程序之前，目标系统首先要运行ＲｅｄＢｏｏｔ。如果以普通ＰＣ作为目标平台，可以使
用软盘引导进入ＲｅｄＢｏｏｔ。ＲｅｄＢｏｏｔ实际上也是ｅＣｏｓ应用的一个特例，也可以使用ｅＣｏｓ对其
进行配置和编译。ＲｅｄＢｏｏｔ的配置和编译以及引导软盘的制作方法将在第４章中介绍。

７４

目标系统进入ＲｅｄＢｏｏｔ状态后，如果使用ＧＤＢ命令行方式，在Ｈｏｓｔ主机上执行下面的命令：

＄ｉ３８６ｅｌｆｇｄｂｎｗａ．ｏｕｔ

该命令将进入ＧＤＢ（出现提示符‘（ｇｄｂ）’）。然后按下述步骤可以连接到目标平台（串口

ＣＯＭ１，波特率３８４００）并加载程序：

（ｇｄｂ）ｓｅｔｒｅｍｏｔｅｂａｕｄ３８４００
（ｇｄｂ）ｔａｒｇｅｔｒｅｍｏｔｅＣＯＭ１
（ｇｄｂ）ｌｏａｄ

如果是Ｌｉｎｕｘ系统，将ＣＯＭ１换为／ｄｅｖ／ｔｔｙＳ０。
程序ａ．ｏｕｔ加载到目标平台上后，可以使用下述命令启动程序的运行：

（ｇｄｂ）ｃｏｎｔｉｎｕｅ

或者

（ｇｄｂ）ｒｕｎ

此时，程序开始运行，并输出程序执行结果：

Ｈｅｌｌｏ，ｅＣｏｓＷｏｒｌｄ！

上面的操作均基于命令行方式。如果想使用ＧＤＢ图形界面（Ｉｎｓｉｇｈｔ），则可以使用不带
ｎｗ选项的ｇｄｂ命令：

＄ｉ３８６ｅｌｆｇｄｂａ．ｏｕｔ

该命令将调用Ｉｎｓｉｇｈｔ，出现ＧＤＢ图形界面，如图３１５所示。

图３１５ ＧＤＢ图形界面

在ＧＤＢ界面的窗口菜单选择“Ｆｉｌｅ→ＴａｒｇｅｔＳｅｔｔｉｎｇｓ”，如图３１６所示，填入串口连接参
数：

Ｔａｒｇｅｔ：Ｒｅｍｏｔｅ／Ｓｅｒｉａｌ
ＢａｕｄＲａｔｅ：３８４００

Ｐｏｒｔ：ｃｏｍ１

８４

然后再选择主窗口菜单选项“Ｒｕｎ→Ｃｏｎｎｅｃｔｔｏｔａｒｇｅｔ”与目标平台连接，选择“Ｒｕｎ→
Ｄｏｗｎｌｏａｄ”可以将执行文件ａ．ｏｕｔ加载到目标系统上，选择“Ｒｕｎ→Ｒｕｎ”启动目标平台执行ａ．
ｏｕｔ，并在ＧＤＢ的控制台窗口显示执行结果“Ｈｅｌｌｏ，ｅＣｏｓＷｏｒｌｄ！”。

图３１６ 设置连接参数

如果要对程序进行调试，可以利用ＧＤＢ图形界面进行设置，并执行单步、断点等操作，同
时还可以查看目标平台的现场信息（寄存器、内存、变量等）。

３４３ 多线程编程例子

上一节介绍的ｈｅｌｌｏ．ｃ是一个非常简单的ｅＣｏｓ应用程序例子，它仅仅是作为一个演示程
序来说明ｅＣｏｓ应用程序的编译、加载、运行以及调试过程。然而，实际应用要比它复杂得多。

ｅＣｏｓ是一个支持多线程的系统，本节将介绍一个具有两个线程的ｅＣｏｓ应用程序。这个例子程
序将使用正常的ｅＣｏｓ程序入口函数ｃｙｇ ｕｓｅｒ ｓｔａｒｔ（），而不是使用ｈｅｌｌｏ．ｃ中的ｍａｉｎ（）。虽
然可以使用ｍａｉｎ（）函数作为应用程序的入口点，但如果ｅＣｏｓ在配置时没有选择ＩＳＯＣ软件
包，ｍａｉｎ（）函数将不存在。
该例子程序位于ｅＣｏｓ源码中的ｅｘａｍｐｌｅｓ目录，程序名为ｔｗｏｔｈｒｅａｄｓ．ｃ：

＃ｉｎｃｌｕｄｅ＜ｃｙｇ／ｋｅｒｎｅｌ／ｋａｐｉ．ｈ＞
＃ｉｎｃｌｕｄｅ＜ｓｔｄｉｏ．ｈ＞
＃ｉｎｃｌｕｄｅ＜ｍａｔｈ．ｈ＞
＃ｉｎｃｌｕｄｅ＜ｓｔｄｌｉｂ．ｈ＞
／ｎｏｗｄｅｃｌａｒｅ（ａｎｄａｌｌｏｃａｔｅｓｐａｃｅｆｏｒ）ｓｏｍｅｋｅｒｎｅｌｏｂｊｅｃｔｓ，ｌｉｋｅｔｈｅｔｗｏｔｈｒｅａｄｓｗｅｗｉｌｌｕｓｅ／

ｃｙｇ ｔｈｒｅａｄｔｈｒｅａｄ ｓ［２］；／ｓｐａｃｅｆｏｒｔｗｏｔｈｒｅａｄｏｂｊｅｃｔｓ／

ｃｈａｒｓｔａｃｋ［２］［４０９６］； ／ｓｐａｃｅｆｏｒｔｗｏ４Ｋｓｔａｃｋｓ／
／ｎｏｗｔｈｅｈａｎｄｌｅｓｆｏｒｔｈｅｔｈｒｅａｄｓ／

ｃｙｇ ｈａｎｄｌｅ ｔｓｉｍｐｌｅ ｔｈｒｅａｄＡ，ｓｉｍｐｌｅ ｔｈｒｅａｄＢ；
／ａｎｄｎｏｗｖａｒｉａｂｌｅｓｆｏｒｔｈｅｐｒｏｃｅｄｕｒｅｗｈｉｃｈｉｓｔｈｅｔｈｒｅａｄ／

ｃｙｇ ｔｈｒｅａｄ ｅｎｔｒｙ ｔｓｉｍｐｌｅ ｐｒｏｇｒａｍ；
／ａｎｄｎｏｗａｍｕｔｅｘｔｏｐｒｏｔｅｃｔｃａｌｌｓｔｏｔｈｅＣｌｉｂｒａｒｙ／

ｃｙｇ ｍｕｔｅｘ ｔｃｌｉｂｌｏｃｋ；
／ｗｅｉｎｓｔａｌｌｏｕｒｏｗｎｓｔａｒｔｕｐｒｏｕｔｉｎｅｗｈｉｃｈｓｅｔｓｕｐｔｈｒｅａｄｓ／

ｖｏｉｄｃｙｇ ｕｓｅｒ ｓｔａｒｔ（ｖｏｉｄ）
｛

９４

ｐｒｉｎｔｆ（″Ｅｎｔｅｒｉｎｇｔｗｏｔｈｒｅａｄｓ’ｃｙｇ ｕｓｅｒ ｓｔａｒｔ（）ｆｕｎｃｔｉｏｎ＼ｎ″）；

ｃｙｇ ｍｕｔｅｘ ｉｎｉｔ（＆ｃｌｉｂｌｏｃｋ）；

ｃｙｇ ｔｈｒｅａｄ ｃｒｅａｔｅ（４，ｓｉｍｐｌｅ ｐｒｏｇｒａｍ，（ｃｙｇ ａｄｄｒｗｏｒｄ ｔ）０，

″ＴｈｒｅａｄＡ″，（ｖｏｉｄ）ｓｔａｃｋ［０］，４０９６，

＆ｓｉｍｐｌｅ ｔｈｒｅａｄＡ，＆ｔｈｒｅａｄ ｓ［０］）；

ｃｙｇ ｔｈｒｅａｄ ｃｒｅａｔｅ（４，ｓｉｍｐｌｅ ｐｒｏｇｒａｍ，（ｃｙｇ ａｄｄｒｗｏｒｄ ｔ）１，

″ＴｈｒｅａｄＢ″，（ｖｏｉｄ）ｓｔａｃｋ［１］，４０９６，

＆ｓｉｍｐｌｅ ｔｈｒｅａｄＢ，＆ｔｈｒｅａｄ ｓ［１］）；

ｃｙｇ ｔｈｒｅａｄ ｒｅｓｕｍｅ（ｓｉｍｐｌｅ ｔｈｒｅａｄＡ）；

ｃｙｇ ｔｈｒｅａｄ ｒｅｓｕｍｅ（ｓｉｍｐｌｅ ｔｈｒｅａｄＢ）；
｝

／ｔｈｉｓｉｓａｓｉｍｐｌｅｐｒｏｇｒａｍｗｈｉｃｈｒｕｎｓｉｎａｔｈｒｅａｄ／

ｖｏｉｄｓｉｍｐｌｅ ｐｒｏｇｒａｍ（ｃｙｇ ａｄｄｒｗｏｒｄ ｔｄａｔａ）
｛

ｉｎｔｍｅｓｓａｇｅ＝（ｉｎｔ）ｄａｔａ；

ｉｎｔｄｅｌａｙ；

ｐｒｉｎｔｆ（″Ｂｅｇｉｎｎｉｎｇｅｘｅｃｕｔｉｏｎ；ｔｈｒｅａｄｄａｔａｉｓ％ｄ＼ｎ″，ｍｅｓｓａｇｅ）；

ｃｙｇ ｔｈｒｅａｄ ｄｅｌａｙ（２００）；

ｆｏｒ（；；）
｛

ｄｅｌａｙ＝２００＋（ｒａｎｄ（）％５０）；
／ｎｏｔｅ：ｐｒｉｎｔｆ（）ｍｕｓｔｂｅｐｒｏｔｅｃｔｅｄｂｙａ
ｃａｌｌｔｏｃｙｇ ｍｕｔｅｘ ｌｏｃｋ（）／

ｃｙｇ ｍｕｔｅｘ ｌｏｃｋ（＆ｃｌｉｂｌｏｃｋ）；｛

ｐｒｉｎｔｆ（″Ｔｈｒｅａｄ％ｄ：ａｎｄｎｏｗａｄｅｌａｙｏｆ％ｄｃｌｏｃｋｔｉｃｋｓ＼ｎ″，

ｍｅｓｓａｇｅ，ｄｅｌａｙ）；
｝

ｃｙｇ ｍｕｔｅｘ ｕｎｌｏｃｋ（＆ｃｌｉｂｌｏｃｋ）；

ｃｙｇ ｔｈｒｅａｄ ｄｅｌａｙ（ｄｅｌａｙ）；
｝

｝

该程序产生两个线程Ａ和Ｂ，两个线程都进入循环状态。在循环体内，线程使用ｃｙｇ
ｔｈｒｅａｄ ｄｅｌａｙ（）函数处于睡眠状态，睡眠时间为随机数，其流程图如图３１７所示。
按照上一节ｈｅｌｌｏ例子程序的方法对ｔｗｏｔｈｒｅａｄ．ｃ进行编译，使用ＧＤＢ将执行文件加载到

目标平台并启动该程序的执行，其输出结果如下：

Ｅｎｔｅｒｉｎｇｔｗｏｔｈｒｅａｄｓ’ｃｙｇ ｕｓｅｒ ｓｔａｒｔ（）

ｆｕｎｃｔｉｏｎ
Ｂｅｇｉｎｎｉｎｇｅｘｅｃｕｔｉｏｎ；ｔｈｒｅａｄｄａｔａｉｓ０
Ｂｅｇｉｎｎｉｎｇｅｘｅｃｕｔｉｏｎ；ｔｈｒｅａｄｄａｔａｉｓ１
Ｔｈｒｅａｄ０：ａｎｄｎｏｗａｄｅｌａｙｏｆ２４０ｃｌｏｃｋｔｉｃｋｓ
Ｔｈｒｅａｄ１：ａｎｄｎｏｗａｄｅｌａｙｏｆ２２５ｃｌｏｃｋｔｉｃｋｓ
Ｔｈｒｅａｄ１：ａｎｄｎｏｗａｄｅｌａｙｏｆ２３４ｃｌｏｃｋｔｉｃｋｓ

０５

图３１７ 两线程例子程序流程图

Ｔｈｒｅａｄ０：ａｎｄｎｏｗａｄｅｌａｙｏｆ２３１ｃｌｏｃｋｔｉｃｋｓ
Ｔｈｒｅａｄ１：ａｎｄｎｏｗａｄｅｌａｙｏｆ２２４ｃｌｏｃｋｔｉｃｋｓ
Ｔｈｒｅａｄ０：ａｎｄｎｏｗａｄｅｌａｙｏｆ２４９ｃｌｏｃｋｔｉｃｋｓ
Ｔｈｒｅａｄ１：ａｎｄｎｏｗａｄｅｌａｙｏｆ２０２ｃｌｏｃｋｔｉｃｋｓ
Ｔｈｒｅａｄ０：ａｎｄｎｏｗａｄｅｌａｙｏｆ２３５ｃｌｏｃｋｔｉｃｋｓ
．．．．．．

程序中使用系统调用ｃｙｇ ｔｈｒｅａｄ ｃｒｅａｔｅ（）函数产生了两个线程。此外，它还产生了一个
互斥体ｍｕｔｅｘ用于两个线程对ｐｒｉｎｔｆ函数调用的同步。这是因为在默认配置下，Ｃ库标准Ｉ／Ｏ
函数不具备线程安全性（ｔｈｒｅａｄｓａｆｅ），这意味着当多个线程使用标准Ｉ／Ｏ函数时可能会出现冲
突。使用互斥体可以解决这一问题，线程在ｃｙｇ ｍｕｔｅｘ ｌｏｃｋ（）函数返回（另一个线程调用

ｃｙｇ ｍｕｔｅｘ ｕｎｌｏｃｋ（）函数释放该互斥体后）之前不会调用ｐｒｉｎｔｆ（）函数。
如果想在这种情况下避免使用互斥体，在配置ｅＣｏｓ时必须将Ｃ库配置为具有线程安全性

（ｔｈｒｅａｄｓａｆｅ），其配置选项为ＣＹＧＳＥＭ ＬＩＢＣ ＳＴＤＩＯ ＴＨＲＥＡＤ ＳＡＦＥ ＳＴＲＥＡＭＳ。值
得注意的是，如果Ｃ库具有线程安全性，那么在ｃｙｇ ｕｓｅｒ ｓｔａｒｔ（）内不能使用ｐｒｉｎｔｆ（）函数。

３４４ 时钟和告警处理程序

如果应用程序要在给定的时间点或者周期性地执行某个任务，它可以使用循环的方式不

停地检查实时时钟看是否已到达指定的时间。这种方式效率极低，它占用系统大量的资源。

操作系统通常会提供一些系统调用，允许在指定的时间发生中断。ｅＣｏｓ提供了一组丰富的计
时方式，包括计数器、时钟、告警以及定时器等。

这一节将以告警（Ａｌａｒｍ）作为例子来说明如何使用这些计时机制。告警是在给定的时间
点发生的事件，既可以是一次性的，也可以是周期性的。线程可以给告警指定一个告警处理函

数，每当告警发生时都将调用该函数。

１５

ｅＣｏｓ源码ｅｘａｍｐｌｅｓ目录下的ｓｉｍｐｌｅａｌａｒｍ．ｃ是一个简单的告警例子程序，该程序创建了
一个产生告警的线程。ｔｅｓｔ ａｌａｒｍ ｆｕｎｃ（）函数对告警进行处理，该告警处理函数对一个变量
进行设置。主线程观察该变量值的变化，并输出消息。

／ｔｈｉｓｉｓａｖｅｒｙｓｉｍｐｌｅｐｒｏｇｒａｍｍｅａｎｔｔｏｄｅｍｏｎｓｔｒａｔｅａｂａｓｉｃｕｓｅｏｆｔｉｍｅ，ａｌａｒｍｓａｎｄａｌａｒｍｈａｎｄｌｉｎｇ
ｆｕｎｃｔｉｏｎｓｉｎｅＣｏｓ
／

＃ｉｎｃｌｕｄｅ＜ｃｙｇ／ｋｅｒｎｅｌ／ｋａｐｉ．ｈ＞
＃ｉｎｃｌｕｄｅ＜ｓｔｄｉｏ．ｈ＞
＃ｄｅｆｉｎｅＮＴＨＲＥＡＤＳ１
＃ｄｅｆｉｎｅＳＴＡＣＫＳＩＺＥ４０９６

ｓｔａｔｉｃｃｙｇ ｈａｎｄｌｅ ｔｔｈｒｅａｄ［ＮＴＨＲＥＡＤＳ］；

ｓｔａｔｉｃｃｙｇ ｔｈｒｅａｄｔｈｒｅａｄ ｏｂｊ［ＮＴＨＲＥＡＤＳ］；

ｓｔａｔｉｃｃｈａｒｓｔａｃｋ［ＮＴＨＲＥＡＤＳ］［ＳＴＡＣＫＳＩＺＥ］；

ｓｔａｔｉｃｖｏｉｄａｌａｒｍ ｐｒｏｇ（ｃｙｇ ａｄｄｒｗｏｒｄ ｔｄａｔａ）；

／ｗｅｉｎｓｔａｌｌｏｕｒｏｗｎｓｔａｒｔｕｐｒｏｕｔｉｎｅｗｈｉｃｈｓｅｔｓｕｐｔｈｒｅａｄｓａｎｄｓｔａｒｔｓｔｈｅｓｃｈｅｄｕｌｅｒ／

ｖｏｉｄｃｙｇ ｕｓｅｒ ｓｔａｒｔ（ｖｏｉｄ）
｛

ｃｙｇ ｔｈｒｅａｄ ｃｒｅａｔｅ（４，ａｌａｒｍ ｐｒｏｇ，（ｃｙｇ ａｄｄｒｗｏｒｄ ｔ）０，

″ａｌａｒｍ ｔｈｒｅａｄ″，（ｖｏｉｄ）ｓｔａｃｋ［０］，

ＳＴＡＣＫＳＩＺＥ，＆ｔｈｒｅａｄ［０］，＆ｔｈｒｅａｄ ｏｂｊ［０］）；

ｃｙｇ ｔｈｒｅａｄ ｒｅｓｕｍｅ（ｔｈｒｅａｄ［０］）；
｝

／ｗｅｎｅｅｄｔｏｄｅｃｌａｒｅｔｈｅａｌａｒｍｈａｎｄｌｉｎｇｆｕｎｃｔｉｏｎ（ｗｈｉｃｈｉｓｄｅｆｉｎｅｄｂｅｌｏｗ），ｓｏｔｈａｔｗｅｃａｎｐａｓｓｉｔｔｏ
ｃｙｇ ａｌａｒｍ ｉｎｉｔｉａｌｉｚｅ（）

／

ｃｙｇ ａｌａｒｍ ｔｔｅｓｔ ａｌａｒｍ ｆｕｎｃ；

／ａｌａｒｍ ｐｒｏｇ（）ｉｓａｔｈｒｅａｄｗｈｉｃｈｓｅｔｓｕｐａｎａｌａｒｍｗｈｉｃｈｉｓｔｈｅｎｈａｎｄｌｅｄｂｙｔｅｓｔ ａｌａｒｍ ｆｕｎｃ（）

／

ｓｔａｔｉｃｖｏｉｄａｌａｒｍ ｐｒｏｇ（ｃｙｇ ａｄｄｒｗｏｒｄ ｔｄａｔａ）
｛

ｃｙｇ ｈａｎｄｌｅ ｔｔｅｓｔ ｃｏｕｎｔｅｒＨ，ｓｙｓｔｅｍ ｃｌｏｃｋＨ，ｔｅｓｔ ａｌａｒｍＨ；

ｃｙｇ ｔｉｃｋ ｃｏｕｎｔ ｔｔｉｃｋｓ；

ｃｙｇ ａｌａｒｍｔｅｓｔ ａｌａｒｍ；

ｕｎｓｉｇｎｅｄｈｏｗ ｍａｎｙ ａｌａｒｍｓ＝０，ｐｒｅｖ ａｌａｒｍｓ＝０，ｔｍｐ ｈｏｗ ｍａｎｙ；

ｓｙｓｔｅｍ ｃｌｏｃｋＨ＝ｃｙｇ ｒｅａｌｔｉｍｅ ｃｌｏｃｋ（）；

ｃｙｇ ｃｌｏｃｋ ｔｏ ｃｏｕｎｔｅｒ（ｓｙｓｔｅｍ ｃｌｏｃｋＨ，＆ｔｅｓｔ ｃｏｕｎｔｅｒＨ）；

ｃｙｇ ａｌａｒｍ ｃｒｅａｔｅ（ｔｅｓｔ ｃｏｕｎｔｅｒＨ，ｔｅｓｔ ａｌａｒｍ ｆｕｎｃ，

２５

（ｃｙｇ ａｄｄｒｗｏｒｄ ｔ）＆ｈｏｗ ｍａｎｙ ａｌａｒｍｓ，

＆ｔｅｓｔ ａｌａｒｍＨ，＆ｔｅｓｔ ａｌａｒｍ）；

ｃｙｇ ａｌａｒｍ ｉｎｉｔｉａｌｉｚｅ（ｔｅｓｔ ａｌａｒｍＨ，ｃｙｇ ｃｕｒｒｅｎｔ ｔｉｍｅ（）＋２００，２００）；

／ｇｅｔｉｎａｌｏｏｐｉｎｗｈｉｃｈｗｅｒｅａｄｔｈｅｃｕｒｒｅｎｔｔｉｍｅａｎｄｐｒｉｎｔｉｔｏｕｔ，ｊｕｓｔｔｏｈａｖｅｓｏｍｅｔｈｉｎｇｓｃｒｏｌｌｉｎｇｂｙ
／

ｆｏｒ（；；）｛

ｔｉｃｋｓ＝ｃｙｇ ｃｕｒｒｅｎｔ ｔｉｍｅ（）；

ｐｒｉｎｔｆ（″Ｔｉｍｅｉｓ％ｌｌｕ＼ｎ″，ｔｉｃｋｓ）；
／ｎｏｔｅｔｈａｔｗｅｍｕｓｔｌｏｃｋａｃｃｅｓｓｔｏｈｏｗ ｍａｎｙ ａｌａｒｍｓ，ｓｉｎｃｅｔｈｅａｌａｒｍｈａｎｄｌｅｒｍｉｇｈｔｃｈａｎｇｅ
ｉｔ．ｔｈｉｓｉｎｖｏｌｖｅｓｕｓｉｎｇｔｈｅａｎｎｏｙｉｎｇｔｅｍｐｏｒａｒｙｖａｒｉａｂｌｅｔｍｐ ｈｏｗ ｍａｎｙｓｏｔｈａｔＩｃａｎｋｅｅｐｔｈｅ
ｃｒｉｔｉｃａｌｒｅｇｉｏｎｓｈｏｒｔ

／

ｃｙｇ ｓｃｈｅｄｕｌｅｒｌｏｃｋ（）；

ｔｍｐ ｈｏｗ ｍａｎｙ＝ｈｏｗ ｍａｎｙ ａｌａｒｍｓ；

ｃｙｇ ｓｃｈｅｄｕｌｅｒ ｕｎｌｏｃｋ（）；

ｉｆ（ｐｒｅｖ ａｌａｒｍｓ！＝ｔｍｐ ｈｏｗ ｍａｎｙ）｛

ｐｒｉｎｔｆ（″ａｌａｒｍｃａｌｌｓｓｏｆａｒ：％ｕ＼ｎ″，ｔｍｐ ｈｏｗ ｍａｎｙ）；

ｐｒｅｖ ａｌａｒｍｓ＝ｔｍｐ ｈｏｗ ｍａｎｙ；
｝

ｃｙｇ ｔｈｒｅａｄ ｄｅｌａｙ（３０）；
｝

｝

／ｔｅｓｔ ａｌａｒｍ ｆｕｎｃ（）ｉｓｉｎｖｏｋｅｄａｓａｎａｌａｒｍｈａｎｄｌｅｒ，ｓｏｉｔｓｈｏｕｌｄｂｅｑｕｉｃｋａｎｄｓｉｍｐｌｅ．ｉｎｔｈｉｓｃａｓｅｉｔ
ｉｎｃｒｅｍｅｎｔｓｔｈｅｄａｔａｔｈａｔｉｓｐａｓｓｅｄｔｏｉｔ．

／

ｖｏｉｄｔｅｓｔ ａｌａｒｍ ｆｕｎｃ（ｃｙｇ ｈａｎｄｌｅ ｔａｌａｒｍＨ，ｃｙｇ ａｄｄｒｗｏｒｄ ｔｄａｔａ）
｛

＋＋（（ｕｎｓｉｇｎｅｄ）ｄａｔａ）；
｝

使用前面介绍的方法对其进行编译，通过ＧＤＢ将可执行文件加载到目标平台并启动。执
行结果如下：

Ｔｉｍｅｉｓ０
Ｔｉｍｅｉｓ３０
Ｔｉｍｅｉｓ６０
Ｔｉｍｅｉｓ９０
Ｔｉｍｅｉｓ１２０
Ｔｉｍｅｉｓ１５０
Ｔｉｍｅｉｓ１８０
Ｔｉｍｅｉｓ２１０

３５

ａｌａｒｍｃａｌｌｓｓｏｆａｒ：１
Ｔｉｍｅｉｓ２４０
Ｔｉｍｅｉｓ２７０
Ｔｉｍｅｉｓ３００
Ｔｉｍｅｉｓ３３０
Ｔｉｍｅｉｓ３６０
Ｔｉｍｅｉｓ３９０
Ｔｉｍｅｉｓ４２０

ａｌａｒｍｃａｌｌｓｓｏｆａｒ：２
Ｔｉｍｅｉｓ４５０
Ｔｉｍｅｉｓ４８０

该例子程序中有几个值得注意的地方：

① 程序使用了ｃｙｇ ｒｅａｌｔｉｍｅ ｃｌｏｃｋ（）函数，它返回默认的系统实时时钟句柄。

② 告警以计数器为基础，因此ｃｙｇ ａｌａｒｍ ｃｒｅａｔｅ（）函数使用了一个计数器的句柄。程序
中使用了ｃｙｇ ｃｌｏｃｋ ｔｏ ｃｏｕｎｔｅｒ（）函数将时钟转换为计数器。

③ 一旦告警产生，ｃｙｇ ａｌａｒｍ ｉｎｉｔｉａｌｉｚｅ（）函数将其进行初始化，它对告警发生的时间以
及周期进行设置。

④ 告警处理ｔｅｓｔ ａｌａｒｍ ｆｕｎｃ（）函数遵守告警处理程序和其他滞后服务程序的规则：不
调用任何可能锁定调度器的函数。

⑤ 该程序有一个临界区：主线程对变量ｈｏｗ ｍａｎｙ ａｌａｒｍｓ进行访问，而告警处理程序
要对该变量进行修改，因此有可能发生对该变量的竞争。为解决这种竞争问题，主线程通过调

用ｃｙｇ ｓｃｈｅｄｕｌｅｒ ｌｏｃｋ（）函数和ｃｙｇ ｓｃｈｅｄｕｌｅｒ ｕｎｌｏｃｋ（）函数进行保护，当调度器被锁定的
时候，将不会运行告警线程。

４５

第４章 ＲｅｄＢｏｏｔ
ＲｅｄＢｏｏｔ是ＲｅｄＨａｔＥｍｂｅｄｄｅｄＤｅｂｕｇａｎｄＢｏｏｔｓｔｒａｐ的英文缩写，它是ＲｅｄＨａｔ的一个标
准嵌入式系统引导和Ｄｅｂｕｇ环境。ＲｅｄＢｏｏｔ替代了它的前期ＤｅｂｕｇＦｉｒｍｗａｒｅ产品ＣｙｇＭｏｎ和

ＧＤＢ，它为一定范围内的嵌入式操作系统（如嵌入式Ｌｉｎｕｘ、ｅＣｏｓ等）提供了一个完整的引导环
境。它还包含了一些其他功能，如网络加载和网络Ｄｅｂｕｇ等。另外，ＲｅｄＢｏｏｔ还为引导映像提
供了一个简单的ｆｌａｓｈ文件系统。

４１ 功能与应用

ＲｅｄＢｏｏｔ为嵌入式目标系统程序的加载和执行控制提供了许多工具，还提供了对目标系
统环境进行管理的一些工具。它可用于产品开发（具有Ｄｅｂｕｇ支持），也可用于最终产品配置
（ｆｌａｓｈ引导和网络引导）。

ＲｅｄＢｏｏｔ的一些主要功能有：

① 支持引导脚本。

② 提供对ＲｅｄＢｏｏｔ进行配置和管理的简单命令行界面，可通过串口和以太网进行访问。

③ 内建ＧＤＢ，用于与ｈｏｓｔｄｅｂｕｇｅｒ通过串口或网络（只限局域网内）进行连接与通信。

④ 属性配置。用户可以控制系统的一些属性，如系统日期、时间、默认的引导Ｆｌａｓｈ映像、
默认的ｆａｉｌｓａｆｅ映像、静态ＩＰ地址等等。

⑤ 具有可配置性和可扩展性，对具体的目标系统环境具有很好的适应能力。

⑥ 支持网络引导，可以通过ＢＯＯＴＰ、ＤＨＣＰ和ＴＦＴＰ等协议对系统进行设置并加载程
序。

⑦Ｘ／ＹＭｏｄｅｍ支持，可以通过串口加载映像文件。

⑧ 加电自测试。

ＲｅｄＢｏｏｔ尽管起源于ＲｅｄＨａｔｅＣｏｓ，但它可以作为一种通用的系统ｄｅｂｕｇ和引导控制软
件，适用于任何嵌入式系统和操作系统。举例来说，适当增加ＲｅｄＢｏｏｔ的一些功能就可以替代

ＰＣ机上普遍使用的ＢＩＯＳ。当前ＲｅｄＨａｔ正在将ＲｅｄＢｏｏｔ作为一种标准引导程序安装在所有
嵌入式平台上，ＲｅｄＨａｔ嵌入式Ｌｉｎｕｘ和ｅＣｏｓ都将ＲｅｄＢｏｏｔ作为它的一个组成部分。

４１１ ＲｅｄＢｏｏｔ的安装

当目标系统初始加电时，ＲｅｄＢｏｏｔ通常从目标平台的ｆｌａｓｈ引导区或引导ＲＯＭ中开始运
行。ＲｅｄＢｏｏｔ也支持其他的运行方式，如Ｘ８６ＰＣ可以从软盘运行ＲｅｄＢｏｏｔ。不同的目标系统
可能有不同的方法将ＲｅｄＢｏｏｔ映像文件写入ＦｌａｓｈＲＯＭ或ＲＯＭ。一些目标系统平台在出厂
时可能已经安装了ＲｅｄＢｏｏｔ。如果没有安装ＲｅｄＢｏｏｔ，就必须自己将ＲｅｄＢｏｏｔ写入到目标平台
的ＦｌａｓｈＲＯＭ或ＲＯＭ内。ＲｅｄＢｏｏｔ的安装方法可以参考具体目标系统平台的相应说明。一
旦ＲｅｄＢｏｏｔ安装完毕，可以使用ｆｃｏｎｆｉｇ命令进行具体的一些配置。

５５

４１２ ＲｅｄＢｏｏｔ用户界面

ＲｅｄＢｏｏｔ提供了一个命令行方式的用户界面（ＣＬＩ）。在最小配置下，用户接口通常由串口
提供。如果有多个串口，Ｒｅｄｂｏｏｔ一般选择任意一个串口作为用户接口，并独占该端口。如果
平台具有网络通信能力，Ｒｅｄｂｏｏｔ也可以通过网络端口使用ｔｅｌｎｅｔ协议提供用户接口ＣＬＩ。默
认情况下，Ｒｅｄｂｏｏｔ的ｔｅｌｎｅｔ使用端口ＴＣＰ／９０００，用户可以对其进行配置和设置。

Ｒｅｄｂｏｏｔ包含一组支持ＧＤＢ远程协议的ＧＤＢ程序。用户界面命令行的第一个字符“＄″
出现的时候将自动调用ＧＤＢ服务。不管采用串口连接还是网络连接的连接方式，在ＧＤＢ明
确指定进行脱连操作之前ＧＤＢ都是可用的。在以网络方式连接时，用户程序必须注意对网络
连接的保护。

４１３ ＲｅｄＢｏｏｔ环境配置

一般情况下，ＲｅｄＢｏｏｔ都可以正常运行。但在某些情况下必须进行相应的配置，这种配置
主要根据系统是否支持Ｆｌａｓｈ以及是否具有网络支持能力来进行。

１目标系统的网络配置
网络系统中的每一个节点都需要一个惟一的地址。由于ＲｅｄＢｏｏｔ支持ＴＣＰ／ＩＰ协议，因

此需要使用ＩＰ地址。ＲｅｄＢｏｏｔ使用两种ＩＰ地址设置方式。一种是静态ＩＰ地址，它由用户指
定并存放在目标系统上。另一种方式是动态ＩＰ地址，ＲｅｄＢｏｏｔ使用ＢＯＯＴＰ协议（ＤＨＣＰ的一
个子集）从网络服务器上获取动态ＩＰ地址。

ＩＰ地址方式的选择由ＲｅｄＢｏｏｔ命令ｆｃｏｎｆｉｇ来进行。对ＲｅｄＢｏｏｔ的配置完成以后，配置信
息将保存在Ｆｌａｓｈ内存内。ＲｅｄＢｏｏｔ只在系统复位时获取这些配置信息，如果改变了配置信
息，这些被改变的配置只有在系统重启后才有效。

利用ｆｃｏｎｆｉｇ进行配置的例子如下：

ＲｅｄＢｏｏｔ＞ｆｃｏｎｆｉｇｌ
Ｒｕｎｓｃｒｉｐｔａｔｂｏｏｔ：ｆａｌｓｅ

ＵｓｅＢＯＯＴＰｆｏｒｎｅｔｗｏｒｋｃｏｎｆｉｇｕｒａｔｉｏｎ：ｆａｌｓｅ

ＬｏｃａｌＩＰａｄｄｒｅｓｓ：１９２．１６８．１．２９

ＤｅｆａｕｌｔｓｅｒｖｅｒＩＰａｄｄｒｅｓｓ：１９２．１６８．１．１０１

ＧＤＢｃｏｎｎｅｃｔｉｏｎｐｏｒｔ：９０００

Ｎｅｔｗｏｒｋｄｅｂｕｇａｔｂｏｏｔｔｉｍｅ：ｆａｌｓｅ

在上面的例子中，ＩＰ地址采用静态分配的方式，被指定为１９２．１６８．１．２９。“Ｄｅｆａｕｌｔｓｅｒｖｅｒ
ＩＰａｄｄｒｅｓｓ″指定提供ＴＦＴＰ服务的服务器地址，即１９２．１６８．１．１０１。ＴＦＴＰ服务器地址在

ＴＦＴＰ命令中可以单独指定。
“ＵｓｅＢＯＯＴＰｆｏｒｎｅｔｗｏｒｋｃｏｎｆｉｇｕｒａｔｉｏｎ”选项用于指定是否使用ＢＯＯＴＰ协议。如果该项
设置为ｔｒｕｅ，则采用动态ＩＰ地址方式，ＩＰ地址在系统启动时通过ＢＯＯＴＰ协议获取。不管采
用哪种ＩＰ地址方式，都需要对“ＧＤＢｃｏｎｎｅｃｔｉｏｎｐｏｒｔ”进行设置，这是ＲｅｄＢｏｏｔ用于接收命令的

ＴＣＰ连接端口。这种连接可用于ＧＤＢ，也可用于一般的ＲｅｄＢｏｏｔ命令。下面是在Ｌｉｎｕｘ下使
用ｔｅｌｎｅｔ协议与ＲｅｄＢｏｏｔ进行通信的例子：

６５

％ｔｅｌｎｅｔｒｅｄｂｏｏｔ ｂｏａｒｄ９０００
Ｃｏｎｎｅｃｔｅｄｔｏｒｅｄｂｏｏｔ ｂｏａｒｄ
Ｅｓｃａｐｅｃｈａｒａｃｔｅｒｉｓ’^］’．
ＲｅｄＢｏｏｔ＞

２Ｈｏｓｔ主机系统的网络设置

ＲｅｄＢｏｏｔ要求Ｈｏｓｔ主机系统提供两种不同的网络服务，即：

① 使用ＢＯＯＴＰ协议的动态ＩＰ地址分配。

② 用于文件加载的ＴＦＴＰ访问。
在某些系统中，上述服务需要使用手工配置。下面以ＲｅｄＨａｔＬｉｎｕｘ为例介绍其设置方

法。

在ＲｅｄＨａｔＬｉｎｕｘ６．２设置ＴＦＴＰ：

１）确认已经安装ＴＦＴＰ服务ＲＰＭ包。

２）编辑控制文件 ／ｅｔｃ／ｉｎｔｅｄ．ｃｏｎｆ，找到下面这样的行并将其前面的注释符去掉：

ｔｆｔｐｄｇｒａｍｕｄｐｗａｉｔｒｏｏｔ／ｕｓｒ／ｓｂｉｎ／ｔｃｐｄ／ｕｓｒ／ｓｂｉｎ／ｉｎ．ｔｆｔｐｄ

３）重新启动ｉｎｅｔｄｓｅｒｖｅｒ：

ｓｅｒｖｉｃｅｉｎｅｔｒｅｌｏａｄ

在ＲｅｄＨａｔＬｉｎｕｘ７．ｘ设置ＴＦＴＰ：

１）确认ｘｉｎｅｔｄＲＰＭ已经安装。

２）确认ＴＦＴＰＲＰＭ已经安装。

３）使能ＴＦＴＰ：

／ｓｂｉｎ／ｃｈｋｃｏｎｆｉｇｔｆｔｐｏｎ

４）重新加载ｉｎｅｔｄ配置：

／ｓｂｉｎ／ｓｅｒｖｉｃｅｘｉｎｅｔｄｒｅｌｏａｄ

５）创建目录／ｔｆｔｐｂｏｏｔ：

ｍｋｄｉｒ／ｔｆｔｐｂｏｏｔ

在ＲｅｄＨａｔＬｉｎｕｘ系统中启动ＢＯＯＴＰ／ＤＨＣＰ服务：

１）确认已经安装ＤＨＣＰ包（不是ＤＨＣＰＤ）。

２）配置ＤＨＣＰ服务器。根据目标系统以太网ＭＡＣ地址对ＤＨＣＰ配置文件／ｅｔｃ／ｄｈｃｐｄ．
ｃｏｎｆ进行设置。下面是配置文件的一个例子，目标系统以太网ＭＡＣ地址为０８：００：３Ｅ：２８：７９：

Ｂ８。详细设置过程参考ＤＨＣＰ说明。

／ｅｔｃ／ｄｈｃｐｄ．ｃｏｎｆ
ｄｅｆａｕｌｔｌｅａｓｅｔｉｍｅ６００；

ｍａｘｌｅａｓｅｔｉｍｅ７２００；

ｏｐｔｉｏｎｓｕｂｎｅｔｍａｓｋ２５５．２５５．２５５．０；

ｏｐｔｉｏｎｂｒｏａｄｃａｓｔａｄｄｒｅｓｓ１９２．１６８．１．２５５；

ｏｐｔｉｏｎｄｏｍａｉｎｎａｍｅｓｅｒｖｅｒｓ１９８．４１．０．４，１２８．９．０．１０７；

７５

ｏｐｔｉｏｎｄｏｍａｉｎｎａｍｅ″ｂｏｇｕｓ．ｃｏｍ″；

ａｌｌｏｗｂｏｏｔｐ；

ｓｈａｒｅｄｎｅｔｗｏｒｋＢＯＧＵＳ｛

ｓｕｂｎｅｔ１９２．１６８．１．０ｎｅｔｍａｓｋ２５５．２５５．２５５．０｛

ｏｐｔｉｏｎｒｏｕｔｅｒｓ１９２．１６８．１．１０１；

ｒａｎｇｅ１９２．１６８．１．１１９２．１６８．１．２５４；
｝

｝

ｈｏｓｔｍｂｘ｛

ｈａｒｄｗａｒｅｅｔｈｅｒｎｅｔ０８：００：３Ｅ：２８：７９：Ｂ８；

ｆｉｘｅｄａｄｄｒｅｓｓ１９２．１６８．１．２０；

ｆｉｌｅｎａｍｅ″／ｔｆｔｐｂｏｏｔ／１９２．１６８．１．２１／ｚＩｍａｇｅ″；

ｄｅｆａｕｌｔｌｅａｓｅｔｉｍｅ１；

ｓｅｒｖｅｒｎａｍｅ″ｓｒｖｒ．ｂｕｇｕｓ．ｃｏｍ″；

ｓｅｒｖｅｒｉｄｅｎｔｉｆｉｅｒ１９２．１６８．１．１０１；

ｏｐｔｉｏｎｈｏｓｔｎａｍｅ″ｍｂｘ″；
｝

３）启动ＤＨＣＰ服务：

ｓｅｒｖｉｃｅｄｈｃｐｄｓｔａｒｔ

一旦网络设置完成，在重启系统后，就可以在Ｈｏｓｔ系统上用ｐｉｎｇ命令来测试与目标系统
的网络通信状态。如果网络通信正常，可以尝试在目标系统上使用ＲｅｄＢｏｏｔ的文件加载命令
从Ｈｏｓｔ下载文件。

４２ ＲｅｄＢｏｏｔ命令

ＲｅｄＢｏｏｔ提供三类基本命令：

① 加载程序和执行命令。

②ｆｌａｓｈ映像和配置管理命令。

③ 其他命令。

４２１ 基本命令格式

ＲｅｄＢｏｏｔ命令的基本格式是：

ＲｅｄＢｏｏｔ＞ＣＯＭＭＡＮＤ［Ｓ］［ｓｖａｌ］ｏｐｅｒａｎｄ

其中：

［Ｓ］：可选开关。该选项用于指定某一特定行为的发生。如：

ＲｅｄＢｏｏｔ＞ｆｉｓｉｎｉｔｆ

这里的ｆ开关指出要进行全部的文件系统初始化操作。
［ｓｖａｌ］：带参数的可选开关。如：

８５

ＲｅｄＢｏｏｔ＞ｌｏａｄｂ０ｘ００１０００００ｄａｔａ ｆｉｌｅ

指明加载一个文件（通过ＴＦＴＰ）到内存区，起始地址为０ｘ００１０００００．
ｏｐｅｒａｎｄ操作数。ＲｅｄＢｏｏｔ的某些命令中必须有一个操作数。如：

ＲｅｄＢｏｏｔ＞ｇｏ０ｘ１００４４

该例子用于执行起始地址为０ｘ１００４４的程序。
在ＲｅｄＢｏｏｔ操作界面下，通过ｈｅｌｐ命令可以获得该系统所支持的详细命令列表，包括其

语法。

例如：

ＲｅｄＢｏｏｔ＞ｈｅｌｐ
ＭａｎａｇｅａｌｉａｓｅｓｋｅｐｔｉｎＦＬＡＳＨｍｅｍｏｒｙ
ａｌｉａｓｎａｍｅ［ｖａｌｕｅ］

Ｓｅｔ／Ｑｕｅｒｙｔｈｅｓｙｓｔｅｍｃｏｎｓｏｌｅｂａｕｄｒａｔｅ
ｂａｕｄｒａｔｅ［ｂ＜ｒａｔｅ＞］

Ｍａｎａｇｅｍａｃｈｉｎｅｃａｃｈｅｓ
ｃａｃｈｅ［ＯＮ｜ＯＦＦ］

Ｄｉｓｐｌａｙ／ｓｗｉｔｃｈｃｏｎｓｏｌｅｃｈａｎｎｅｌ
ｃｈａｎｎｅｌ［１｜＜ｃｈａｎｎｅｌｎｕｍｂｅｒ＞］

Ｄｉｓｐｌａｙｄｉｓｋｐａｒｔｉｔｉｏｎｓ
ｄｉｓｋｓ
Ｄｉｓｐｌａｙ（ｈｅｘｄｕｍｐ）ａｒａｎｇｅｏｆｍｅｍｏｒｙ
ｄｕｍｐｂ＜ｌｏｃａｔｉｏｎ＞［ｌ＜ｌｅｎｇｔｈ＞］

Ｍａｎａｇｅｆｌａｓｈｉｍａｇｅｓ
ｆｉｓ｛ｃｍｄｓ｝

ＭａｎａｇｅｃｏｎｆｉｇｕｒａｔｉｏｎｋｅｐｔｉｎＦＬＡＳＨｍｅｍｏｒｙ
ｆｃｏｎｆｉｇ［ｉ］［ｌ］［ｎ］［ｆ］｜ｎｉｃｋｎａｍｅ［ｖａｌｕｅ］

Ｅｘｅｃｕｔｅｃｏｄｅａｔａｌｏｃａｔｉｏｎ
ｇｏ［ｗ＜ｔｉｍｅｏｕｔ＞］［ｅｎｔｒｙ］

Ｈｅｌｐａｂｏｕｔｈｅｌｐ？

ｈｅｌｐ［＜ｔｏｐｉｃ＞］

Ｌｏａｄａｆｉｌｅ
ｌｏａｄ［ｒ］［ｖ］［ｄ］［ｈ＜ｈｏｓｔ＞］［ｍ｛ＴＦＴＰ｜ｘｙｚＭＯＤＥＭ｜ｄｉｓｋ｝］［ｂ＜ｂａｓｅ ａｄｄｒｅｓｓ＞］＜ｆｉｌｅ
ｎａｍｅ＞
Ｎｅｔｗｏｒｋｃｏｎｎｅｃｔｉｖｉｔｙｔｅｓｔ
ｐｉｎｇ［ｖ］［ｎ＜ｃｏｕｎｔ＞］［ｔ＜ｔｉｍｅｏｕｔ＞］［ｉ＜ＩＰ ａｄｄｒ］ｈ＜ＩＰ ａｄｄｒ＞
Ｒｅｓｅｔｔｈｅｓｙｓｔｅｍ
ｒｅｓｅｔ
ＤｉｓｐｌａｙＲｅｄＢｏｏｔｖｅｒｓｉｏｎｉｎｆｏｒｍａｔｉｏｎ
ｖｅｒｓｉｏｎ

命令可以使用缩写形式。上面例子中，ｄ、ｄｕ、ｄｕｍ和ｄｕｍｐ都是有效的ｄｕｍｐ命令。

ｆｃｏｎｆｉｇ命令可以用ｆｃ的缩写，但不能用ｆ，因为这样会与命令ｆｉｓ混淆。

９５

另外有一个特殊的命令。当ＲｅｄＢｏｏｔ检测到命令中的第一个字符为＄时，它将转到ＧＤＢ
方式。此时将进入ｅＣｏｓＧＤＢ程序，允许与ＧＤＢ主机进行通信。如果要从ＧＤＢ方式返回到

ＲｅｄＢｏｏｔ，必须重启目标系统。
对于具体的目标系统，可以根据需要对其命令进行扩展。

４２２ ＲｅｄＢｏｏｔ普通命令

命令格式：

ｃｏｍｍａｎｄ＜ｏｐｔｉｏｎｓ，ｐａｒａｍｅｎｔｓ＞

命令元素之间必须用空格键进行分离。数字（如内存地址）可以用十进制和十六进制（需

用０ｘ的前缀），命令可以用单一的缩写形式。

ｐｉｎｇ检查网络连接命令

ｐｉｎｇ［ｖ］［ｎ＜ｃｏｕｎｔ＞］［ｌ＜ｌｅｎｇｔｈ＞］［ｔ＜ｔｉｍｅｏｕｔｓ＞］［ｒ＜ｒａｔｅ＞］［ｉ＜ＩＰ ａｄｄｒ＞］ｈ＜ＩＰ

ａｄｄｒ＞

该命令对网络连接进行检查。通过本地网络发送特定的包到主机，主机自动返回这些包。

参数如下：

ｖ 详细显示包的信息。

ｎ＜ｃｏｕｎｔ＞ 包的数目，默认为１０。

ｔ＜ｔｉｍｅｏｕｔ＞ 超时时间（ｍｓ），默认为１０００ｍｓ。

ｒ＜ｒａｔｅ＞ 包的发送速度，即包连续发送的时间间隔，默认为１０００ｍｓ。“ｒ０”指明尽可能快地
进行包的发送。

ｌ＜ｌｅｎｇｔｈ＞ 包的数据长度，默认为６４Ｂ，最大为１４００Ｂ。

ｈ＜ｈｏｓｔＩＰ＞ 网络连接另一端的ＩＰ地址。

Ａｌｉａｓｎａｍｅ［ｖａｌｕｅ］别名命令
别名命令用于将长的表达式用短的名字替代。别名被保存在ＲｅｄＢｏｏｔ的非易失性配置区

内（ＦｌａｓｈＲｏｍ）。在命令行或命令脚本中用％｛ｎａｍｅ｝的形式引用该别名。
例如，为“ｂ０ｘ１００００００″设置一个别名“ＳＢＵＦ”：

ＲｅｄＢｏｏｔ＞ａｌｉａｓＳＢＵＦ″ｂ０ｘ１０００００″
ＵｐｄａｔｅＲｅｄＢｏｏｔｎｏｎｖｏｌａｔｉｌｅｃｏｎｆｉｇｕｒａｔｉｏｎａｒｅｙｏｕｓｕｒｅ（ｙ／ｎ）？ｙ
．．．Ｕｎｌｏｃｋｆｒｏｍ０ｘ５０ｆ８０００００ｘ５０ｆｃ００００：．
．．．Ｅｒａｓｅｆｒｏｍ０ｘ５０ｆ８０００００ｘ５０ｆｃ００００：．
．．．Ｐｒｏｇｒａｍｆｒｏｍ０ｘ００００ｂ９ｅ８０ｘ００００ｃ９ｅ８ａｔ０ｘ５０ｆ８００００：．
．．．Ｌｏｃｋｆｒｏｍ０ｘ５０ｆ８０００００ｘ５０ｆｃ００００：．

可以使用下面的方法查看和引用该别名：

ＲｅｄＢｏｏｔ＞ａｌｉａｓＳＢＵＦ
’ＳＢＵＦ’＝’ｂ０ｘ１０００００’

ＲｅｄＢｏｏｔ＞ｄ％｛ＳＢＵＦ｝

０６

０ｘ００１０００００：ＦＥ０３００ＥＡ００００００００００００００００００００００００｜．．．．．．．．．．．．．．．．｜
０ｘ００１０００１０：００００００００００００００００００００００００００００００００｜．．．．．．．．．．．．．．．．｜

ｂａｕｄｒａｔｅ［ｂｖａｌｕｅ］设置串口波特率命令
设置串口通信波特率。如果目标平台支持非易失性配置数据，则保存此次设定的值，下次

系统复位后还将使用此次设定的波特率。

ｃａｃｈｅ［ＯＮ｜ＯＦＦ］Ｃａｃｈｅ操作命令
该命令对处理器的Ｃａｃｈｅ进行操作。未使用选项ＯＮ或ＯＦＦ时，该命令对系统Ｃａｃｈｅ状

态进行描述。当使用选项时，将执行关闭Ｃａｃｈｅ（ＯＦＦ）或使能Ｃａｃｈｅ（ＯＮ）的操作。

ｃｈａｎｎｅｌ［ｌ｜＜ｃｈａｎｎｅｌｎｕｍｂｅｒ＞］控制台通道命令
没有参数时，该命令显示当前控制台通道号。

当带一个大于０（包括０）的参数时，该命令将控制台通道转换到指定的通道号。
当参数为ｌ时，该命令使ＲｅｄＢｏｏｔ响应最先收到输入信息的通道。

ｃｋｓｕｍｂ＜ｌｏｃａｔｉｏｎ＞ｌ＜ｌｅｎｇｔｈ＞ 计算校验和命令
计算指定内存范围（ＲＡＭ或ＦＬＡＳＨ）的ＰＯＳＩＸ校验和。

ｄｉｓｋ显示磁盘分区命令
使用该命令可以列举出ＲｅｄＢｏｏｔ可以识别的磁盘分区。

ｄｕｍｐｂ＜ｌｏｃａｔｉｏｎ＞［ｌ＜ｌｅｎｇｔｈ＞］内存ｄｕｍｐ命令
显示指定区域的内存数据（１６进制）。如

ＲｅｄＢｏｏｔ＞ｄｕｂ０ｘ１００ｌ０ｘ８０
０ｘ０００００１００：３Ｃ６００００４６０６３２０００７Ｃ６８０３Ａ６４Ｅ８０００２０｜＜’．．’ｃ．｜ｈ．．Ｎ．．｜
０ｘ０００００１１０：００００００００００００００００００００００００００００００００｜．．．．．．．．．．．．．．．．｜
０ｘ０００００１２０：００００００００００００００００００００００００００００００００｜．．．．．．．．．．．．．．．．｜
０ｘ０００００１３０：００００００００００００００００００００００００００００００００｜．．．．．．．．．．．．．．．．｜
０ｘ０００００１４０：００００００００００００００００００００００００００００００００｜．．．．．．．．．．．．．．．．｜
０ｘ０００００１５０：００００００００００００００００００００００００００００００００｜．．．．．．．．．．．．．．．．｜
０ｘ０００００１６０：００００００００００００００００００００００００００００００００｜．．．．．．．．．．．．．．．．｜
０ｘ０００００１７０：００００００００００００００００００００００００００００００００｜．．．．．．．．．．．．．．．．｜

ＲｅｄＢｏｏｔ＞ｄｂ０ｘｆｅ００ｂ０００ｌ０ｘ８０
０ｘＦＥ００Ｂ０００：２０２５７００Ａ００００００００４１７４７４６５６Ｄ７０７４２０｜％ｐ．．．．．Ａｔｔｅｍｐｔ｜
０ｘＦＥ００Ｂ０１０：７４６Ｆ２０６Ｃ６Ｆ６１６４２０５３２Ｄ７２６５６３６Ｆ７２６４｜ｔｏｌｏａｄＳｒｅｃｏｒｄ｜
０ｘＦＥ００Ｂ０２０：２０６４６１７４６１２０７４６Ｆ２０６１６４６４７２６５７３７３｜ｄａｔａｔｏａｄｄｒｅｓｓ｜
０ｘＦＥ００Ｂ０３０：３Ａ２０２５７０２０５Ｂ６Ｅ６Ｆ７４２０６９６Ｅ２０５２４１４Ｄ｜：％ｐ［ｎｏｔｉｎＲＡＭ｜
０ｘＦＥ００Ｂ０４０：５Ｄ０Ａ００００２Ａ２Ａ２Ａ２０５７６１７２６Ｅ６９６Ｅ６７２１｜］．．． Ｗａｒｎｉｎｇ！｜
０ｘＦＥ００Ｂ０５０：２０４３６８６５６３６Ｂ７３７５６Ｄ２０６６６１６９６Ｃ７５７２｜Ｃｈｅｃｋｓｕｍｆａｉｌｕｒ｜
０ｘＦＥ００Ｂ０６０：６５２０２Ｄ２０４１６４６４７２３Ａ２０２５６Ｃ７８２Ｃ２０２５｜ｅＡｄｄｒ：％ｌｘ，％｜

１６

０ｘＦＥ００Ｂ０７０：３０３２６Ｃ５８２０３Ｃ３Ｅ２０２５３０３２６Ｃ５８０Ａ００００｜０２ｌＸ＜＞ ％０２ｌＸ．．．｜
０ｘＦＥ００Ｂ０８０：４５６Ｅ７４７２７９２０７０６Ｆ６９６Ｅ７４３Ａ２０２５７０２Ｃ｜Ｅｎｔｒｙｐｏｉｎｔ：％ｐ，｜

ｒｅｓｅｔ复位命令
系统复位。对于大多数的目标系统，该命令相当于加电复位。但在某些系统中，该命令只

是跳转到复位程序，对系统重新进行初始化操作。

ｖｅｒｓｉｏｎ显示版本信息
显示ＲｅｄＢｏｏｔ的版本信息。如：

ＲｅｄＢｏｏｔ＞ｖｅｒｓｉｏｎ
ＲｅｄＢｏｏｔ（ｔｍ）ｄｅｂｕｇｅｎｖｉｒｏｎｍｅｎｔｂｕｉｌｔ０９：１２：０３，Ｆｅｂ１２２００１
Ｐｌａｔｆｏｒｍ：ＸＹＺ（ＰｏｗｅｒＰＣ８６０）

Ｃｏｐｙｒｉｇｈｔ（Ｃ）２０００，２００１，ＲｅｄＨａｔ，Ｉｎｃ．
ＲＡＭ：０ｘ０００００００００ｘ００４０００００
ＲｅｄＢｏｏｔ＞

ｌｏａｄ加载命令
该命令将数据加载到目标系统。可以通过网络连接使用ＴＦＴＰ协议或通过串口连接使

用Ｘ／Ｙｍｏｄｅｍ协议进行数据加载操作。文件可以直接从本地磁盘加载，文件格式可以是可
执行的映像文件（ＳＲＥＣ格式），也可以是纯数据格式。
命令格式：

ｌｏａｄ｛ｆｉｌｅ｝［ｖ］［ｄ］［ｂｌｏｃａｔｉｏｎ］［ｒ］［ｍ｛［ｘｍｏｄｅｍ］｜［ｙｍｏｄｅｍ］｜
［ｔｆｔｐ］｜［ｄｉｓｋ］｝］［ｈｈｏｓｔ ＩＰ ａｄｄｒｅｓｓ］

参数：

ｆｉｌｅ 位于ＴＦＴＰ服务器或本地磁盘上的文件名。ＴＦＴＰ的文件名格式请参考具体的ＴＦＴＰ服务器
说明。本地磁盘文件名格式为ｄｉｓｋ：ｆｉｌｅｎａｍｅ。磁盘分区必须与ｄｉｓｋ命令所列出的磁盘分区
相符。

ｖ 显示加载过程。串行加载时该参数无意义。

ｄ 在加载过程中对被压缩的映像进行解压缩操作。

ｂ 指定文件加载的起始位置。

ｒ 加载纯数据。如果出现该选项，必须使用ｂ选项。

ｍ 选择加载方式。其选项有：

●ｘｍｏｄｅｍ。
●ｙｍｏｄｅｍ。
上面两个参数通过控制台串口使用标准协议进行串行加载。使用该选项时，不

需要ｆｉｌｅ参数。
●ｔｆｔｐ 使用ＴＦＴＰ协议进行网络加载。
●ｄｉｓｋ 从本地磁盘加载。

ｈ 指明用于加载的主机名。只用于ＴＦＴＰ方式。

２６

例如：

ＲｅｄＢｏｏｔ＞ｌｏｒｅｄｂｏｏｔ．ＲＯＭｂ０ｘ８ｃ４０００００
Ａｄｄｒｅｓｓｏｆｆｓｅｔ＝０ｘ０ｃ４０００００
Ｅｎｔｒｙｐｏｉｎｔ：０ｘ８０００００００，ａｄｄｒｅｓｓｒａｎｇｅ：０ｘ８００００００００ｘ８０００ｆｅ８０

４２３ Ｆｌａｓｈ映像系统（ＦＩＳ）

如果平台具有Ｆｌａｓｈ内存，ＲｅｄＢｏｏｔ可以用其保存映像文件。可以使用简单的文件保存命
令将执行映像以及数据保存在Ｆｌａｓｈ内存里。ｆｉｓ命令用于ｆｌａｓｈ映像的操作和管理。
下面介绍ｆｉｓ的相关命令。

ｆｉｓｉｎｉｔ［ｆ］
该命令用于初始化ｆｌａｓｈ映像系统ＦＩＳ。该命令仅在硬件首次安装ＲｅｄＢｏｏｔ时执行一次。

如果再次执行该命令，将会造成Ｆｌａｓｈ数据的丢失。如果使用ｆ选项，所有的Ｆｌａｓｈ数据都将
被擦除。

例如：

ＲｅｄＢｏｏｔ＞ｆｉｓｉｎｉｔｆ
Ａｂｏｕｔｔｏｉｎｉｔｉａｌｉｚｅ［ｆｏｒｍａｔ］ｆｌａｓｈｉｍａｇｅｓｙｓｔｅｍａｒｅｙｏｕｓｕｒｅ（ｙ／ｎ）？ｎ

ｆｉｓ［ｃ］［ｄ］ｌｉｓｔ
该命令列出ＦＩＳ中当前所有可用的映像。某些ＲｅｄＢｏｏｔ使用的映像具有固定的名字，其

他映像由用户指定。其使用方法见下例。如果使用ｃ选项，在ＭｅｍＡｄｄｒ域上将显示该映像
的校验和。如果使用ｄ选项，将在ｌｅｎｇｔｈ（Ｆｌａｓｈ使用长度）显示数据长度ｄａｔａｌｅｎｇｔｈ。

ｄａｔａｌｅｎｇｔｈ是指定的Ｆｌａｓｈ映像实际使用的数据长度。
例如：

ＲｅｄＢｏｏｔ＞ｆｉｓｌｉｓｔ
Ｎａｍｅ ｆｌａｓｈａｄｄｒ Ｍｅｍａｄｄｒ Ｌｅｎｇｔｈ Ｅｎｔｒｙｐｏｉｎｔ
ＲｅｄＢｏｏｔ ０ｘＡ０００００００ ０ｘＡ０００００００ ０ｘ０２００００ ０ｘ８０００００００
ＲｅｄＢｏｏｔ［ｂａｃｋｕｐ］ ０ｘＡ００２００００ ０ｘ８Ｃ０１００００ ０ｘ０１００００ ０ｘ８Ｃ０１００００
ＲｅｄＢｏｏｔｃｏｎｆｉｇ０ｘＡ０ＦＣ００００ ０ｘＡ０ＦＣ００００ ０ｘ０２００００ ０ｘ００００００００
ＦＩＳｄｉｒｅｃｔｏｒｙ０ｘＡ０ＦＥ００００ ０ｘＡ０ＦＥ００００ ０ｘ０２００００ ０ｘ００００００００
ＲｅｄＢｏｏｔ＞ｆｉｓｌｉｓｔｃ
Ｎａｍｅ ｆｌａｓｈａｄｄｒ Ｃｈｅｃｋｓｕｍ Ｌｅｎｇｔｈ Ｅｎｔｒｙｐｏｉｎｔ
ＲｅｄＢｏｏｔ ０ｘＡ０００００００ ０ｘ３４Ｃ９４Ａ５７ ０ｘ０２００００ ０ｘ８０００００００
ＲｅｄＢｏｏｔ［ｂａｃｋｕｐ］ ０ｘＡ００２００００ ０ｘ００００００００ ０ｘ０１００００ ０ｘ８Ｃ０１００００
ＲｅｄＢｏｏｔｃｏｎｆｉｇ ０ｘＡ０ＦＣ００００ ０ｘ００００００００ ０ｘ０２００００ ０ｘ００００００００
ＲｅｄＢｏｏｔｃｏｎｆｉｇ ０ｘＡ０ＦＥ００００ ０ｘ００００００００ ０ｘ０２００００ ０ｘ００００００００

ｆｉｓｆｒｅｅ
该命令显示当前未使用的Ｆｌａｓｈ内存区域。

３６

例如：

ＲｅｄＢｏｏｔ＞ｆｉｓｆｒｅｅ
０ｘＡ００４００００．．０ｘＡ０７Ｃ００００
０ｘＡ０８４００００．．０ｘＡ０ＦＣ００００

ｆｉｓｃｒｅａｔｅ
命令格式：

ｆｉｓｃｒｅａｔｅｂ＜ｍｅｍ ｂａｓｅ＞ｌ＜ｌｅｎｇｔｈ＞［ｆ＜ｆｌａｓｈ ａｄｄｒ＞］［ｅ＜ｅｎｔｒｙ ｐｏｉｎｔ＞］
［ｒ＜ｒａｍ ａｄｄｒ＞］［ｓ＜ｄａｔａ ｌｅｎｇｔｈ＞］［ｎ］＜ｎａｍｅ＞

该命令在ＦＩＳ目录中产生一个映像。映像数据必须在ＲＡＭ中已经存在。通常可以首先
用ｌｏａｄ命令将映像加载到ＲＡＭ，然后再使用ｆｉｓｃｒｅａｔｅ命令将其写入Ｆｌａｓｈ。
参数：

ｎａｍｅ 将在ＦＩＳ目录中出现的文件名。

ｂ 映像在ＲＡＭ中的位置，该选项是必需的。

ｌ 映像长度。如果映像已经存在，则其长度由以前产生的映像得出。如果指定了长度并且映

像已经存在，则其长度必须与原来的长度相符。

ｆ 映像在Ｆｌａｓｈ中的位置。如果没有指定，将根据已有映像进行确定。

ｅ 执行点入口地址。用于映像的起始地址未知或者需要被覆盖的情况下。

ｒ 当通过ｆｉｓｌｏａｄ加载映像时的ＲＡＭ地址。该选项只用于使用ｆｉｓｌｏａｄ命令加载的映像。固
定映像如ＲｅｄＢｏｏｔ等不需要该参数。

ｓ 写入Ｆｌａｓｈ的实际数据长度。如果没有指定，则采用映像长度（ｌ参数）。如果ｓ指定的值
小于ｌ指定的值，Ｆｌａｓｈ内映像的其余部分将保持在擦除状态。该选项的使用可以产生一个
全空的Ｆｌａｓｈ映像。例如，可以用其为应用程序（非ＲｅｄＢｏｏｔ）保留一定的空间。

ｎ 如果使用ｎ参数，则只更新ＦＩＳ目录，不会有任何数据从ＲＡＭ复制到Ｆｌａｓｈ。该参数可以
用于ＦＩＳ被破坏时的恢复操作。

命令举例：

ＲｅｄＢｏｏｔ＞ｆｉｓｃｒｅａｔｅＲｅｄＢｏｏｔｆ０ｘａ０００００００ｂ０ｘ８ｃ４０００００ｌ０ｘ２００００
Ａｎｉｍａｇｅｎａｍｅｄ’ＲｅｄＢｏｏｔ’ｅｘｉｓｔｓａｒｅｙｏｕｓｕｒｅ（ｙ／ｎ）？ｎ
ＲｅｄＢｏｏｔ＞ｆｉｓｃｒｅａｔｅｊｕｎｋｂ０ｘ８ｃ４０００００ｌ０ｘ２００００
．．．Ｅｒａｓｅｆｒｏｍ０ｘａ００４０００００ｘａ００６００００：．
．．．Ｐｒｏｇｒａｍｆｒｏｍ０ｘ８ｃ４００００００ｘ８ｃ４２００００ａｔ０ｘａ００４００００：．
．．．Ｅｒａｓｅｆｒｏｍ０ｘａ０ｆｅ０００００ｘａ１００００００：．
．．．Ｐｒｏｇｒａｍｆｒｏｍ０ｘ８ｃ７ｄ０００００ｘ８ｃ７ｆ００００ａｔ０ｘａ０ｆｅ００００：．

ｆｉｓｌｏａｄ
命令格式：

ｆｉｓｌｏａｄ［ｂ＜ｍｅｍｏｒｙｌｏａｄａｄｄｒｅｓｓ＞］［ｃ］［ｄ］ｎａｍｅ

该命令将映像从Ｆｌａｓｈ传送到ＲＡＭ。当命令执行完成后，可以使用ｇｏ命令执行该映像。

４６

如果使用ｂ参数，则将指定的映像从Ｆｌａｓｈ加载到指定地址的ＲＡＭ。如果没有使用ｂ参数，
则映像被加载到该映像产生时所给定的加载地址。

参数：

ｎａｍｅ ＦＩＳ中的文件名。

ｂ 指定文件加载到内存的起始地址。

ｃ 在映像被加载到内存后，计算并输出映像数据的校验和。

ｄ 在映像从Ｆｌａｓｈ加载到ＲＡＭ时执行解压操作

命令举例：

ＲｅｄＢｏｏｔ＞ｆｉｓｌｏａｄＲｅｄＢｏｏｔ［ｂａｃｋｕｐ］

ＲｅｄＢｏｏｔ＞ｇｏ

ｆｉｓｄｅｌｅｔｅｎａｍｅ
该命令从ＦＩＳ中删除一个映像。该命令在执行时将擦除Ｆｌａｓｈ，并从ＦＩＳ目录中删除该映

像名字。

命令举例：

ＲｅｄＢｏｏｔ＞ｆｉｓｌｉｓｔ
Ｎａｍｅ ｆｌａｓｈａｄｄｒ Ｍｅｍａｄｄｒ Ｌｅｎｇｔｈ Ｅｎｔｒｙｐｏｉｎｔ
ＲｅｄＢｏｏｔ ０ｘＡ０００００００ ０ｘＡ０００００００ ０ｘ０２００００ ０ｘ８０００００００
ＲｅｄＢｏｏｔ［ｂａｃｋｕｐ］ ０ｘＡ００２００００ ０ｘ８Ｃ０１００００ ０ｘ０２００００ ０ｘ８Ｃ０１００００
ＲｅｄＢｏｏｔｃｏｎｆｉｇ ０ｘＡ０ＦＣ００００ ０ｘＡ０ＦＣ００００ ０ｘ０２００００ ０ｘ００００００００
ＦＩＳｄｉｒｅｃｔｏｒｙ ０ｘＡ０ＦＥ００００ ０ｘＡ０ＦＥ００００ ０ｘ０２００００ ０ｘ００００００００
ｊｕｎｋ ０ｘＡ００４００００ ０ｘ８Ｃ４０００００ ０ｘ０２００００ ０ｘ８０００００００
ＲｅｄＢｏｏｔ＞ｆｉｓｄｅｌｅｔｅｊｕｎｋ
Ｄｅｌｅｔｅｉｍａｇｅ’ｊｕｎｋ’ａｒｅｙｏｕｓｕｒｅ（ｙ／ｎ）？ｙ
．．．Ｅｒａｓｅｆｒｏｍ０ｘａ００４０００００ｘａ００６００００：．
．．．Ｅｒａｓｅｆｒｏｍ０ｘａ０ｆｅ０００００ｘａ１００００００：．
．．．Ｐｒｏｇｒａｍｆｒｏｍ０ｘ８ｃ７ｄ０００００ｘ８ｃ７ｆ００００ａｔ０ｘａ０ｆｅ００００：．

ｆｉｓｌｏｃｋ
命令格式：

ｆｉｓｌｏｃｋｆ＜ｆｌａｓｈ ａｄｄｒ＞ｌ＜ｌｅｎｇｔｈ＞

该命令对部分Ｆｌａｓｈ进行写保护（ｌｏｃｋ）。如果要修改该部分Ｆｌａｓｈ，必须首先使用ｆｉｓ
ｕｎｌｏｃｋ命令解除写保护。该命令是可选的，只实现在支持Ｆｌａｓｈ写保护的硬件平台中。
命令举例：

ＲｅｄＢｏｏｔ＞ｆｉｓｌｏｃｋｆ０ｘａ００４００００ｌ０ｘ２００００
．．．Ｌｏｃｋｆｒｏｍ０ｘａ００４０００００ｘａ００６００００：．

ｆｉｓｕｎｌｏｃｋ
命令格式：

５６

ｆｉｓｕｎｌｏｃｋｆ＜ｆｌａｓｈ ａｄｄｒ＞ｌ＜ｌｅｎｇｔｈ＞

该命令对被锁定的Ｆｌａｓｈ进行解锁，使该部分Ｆｌａｓｈ可以被更新。
命令举例：

ＲｅｄＢｏｏｔ＞ｆｉｓｕｎｌｏｃｋｆ０ｘａ００４００００ｌ０ｘ２００００
．．．Ｕｎｌｏｃｋｆｒｏｍ０ｘａ００４０００００ｘａ００６００００：．

ｆｉｓｅｒａｓｅ
命令格式：

ｆｉｓｅｒａｓｅｆ＜ｆｌａｓｈ ａｄｄｒ＞ｌ＜ｌｅｎｇｔｈ＞

该命令强制擦除指定的部分Ｆｌａｓｈ。
命令举例：

ＲｅｄＢｏｏｔ＞ｆｉｓｅｒａｓｅｆ０ｘａ００４００００ｌ０ｘ２００００
．．．Ｅｒａｓｅｆｒｏｍ０ｘａ００４０００００ｘａ００６００００：．

ｆｉｓｗｒｉｔｅ
ｆｉｓｗｒｉｔｅｂ＜ｌｏｃａｔｉｏｎ＞ｌ＜ｌｅｎｇｔｈ＞ｆ＜ｆｌａｓｈａｄｄｒ＞

该命令将指定范围的ＲＡＭ数据写入指定的Ｆｌａｓｈ。

４２４ Ｆｌａｓｈ内配置信息的管理

ＲｅｄＢｏｏｔ提供对Ｆｌａｓｈ管理的支持，可以对存储在Ｆｌａｓｈ的多个可执行映像以及一些非易
失性信息（如ＩＰ地址等一些网络信息）进行管理。使用ｆｃｏｎｆｉｇ命令，可以显示或修改保存在

Ｆｌａｓｈ内的这些信息。需要注意的是，只有在支持Ｆｌａｓｈ映像系统的平台中才支持ｆｃｏｎｆｉｇ命
令。

命令格式：

ｆｃｏｎｆｉｇ［ｉ］［ｌ］［ｎ］［ｆ］｜ｎｉｃｋｎａｍｅ［ｖａｌｕｅ］

如果使用ｉ选项，则配置数据将被复位，并使用默认值。
如果使用ｌ选项，则只简单地列举出配置数据。否则，每个配置参数将依次出现，并可对

其进行编辑修改。单独的回车键不会改变参数值，布尔变量值用ｔ（Ｔｕｒｅ）或ｆ（Ｆａｌｓｅ）输入，使
用“^”键可以回到上一个项目的编辑。任何时候都可以使用句点（．）来停止ｆｃｏｎｆｉｇ的编辑过
程。如果改变了配置信息，在提示用户之后将更新后的数据写回Ｆｌａｓｈ。
如果使用ｎ选项（有或无ｌ），则要用到“ｎｉｃｋｎａｍｅｓ″。使用ｎｉｃｋｎａｍｅｓ使名字变得更简练。

如果要使用全名，则应该加上ｆ标志。

ｎｉｃｋｎａｍｅｓ的设置可用如下命令格式：

ＲｅｄＢｏｏｔ＞ｆｃｏｎｆｉｇｎｉｃｋｎａｍｅｖａｌｕｅ

如果没有指定ｖａｌｕｅ，该命令将只列举出该项。如果指定了ｖａｌｕｅ，则该项将被设置为ｖａｌｕｅ
值。例如：

６６

ＲｅｄＢｏｏｔ＞ｆｃｏｎｆｉｇｌｎ
ｂｏｏｔ ｓｃｒｉｐｔ：ｆａｌｓｅ
ｂｏｏｔｐ：ｆａｌｓｅ
ｂｏｏｔｐ ｍｙ ｉｐ：１０．１６．１９．１７６
ｂｏｏｔｐ ｓｅｒｖｅｒｉｐ：１０．１６．１９．６６
ｇｄｂ ｐｏｒｔ：９０００
ｎｅｔ ｄｅｂｕｇ：ｆａｌｓｅ

ＲｅｄＢｏｏｔ＞犳犮狅狀犳犻犵犫狅狅狋狆 犿狔 犻狆１０．１６．１９．１７７
ｂｏｏｔｐ ｍｙ ｉｐ：１０．１６．１９．１７６Ｓｅｔｔｉｎｇｔｏ１０．１６．１９．１７７
ＵｐｄａｔｅＲｅｄＢｏｏｔｎｏｎｖｏｌａｔｉｌｅｃｏｎｆｉｇｕｒａｔｉｏｎａｒｅｙｏｕｓｕｒｅ（ｙ／ｎ）？ｙ
．．．Ｕｎｌｏｃｋｆｒｏｍ０ｘ５０７ｃ０００００ｘ５０７ｅ００００：．
．．．Ｅｒａｓｅｆｒｏｍ０ｘ５０７ｃ０００００ｘ５０７ｅ００００：．
．．．Ｐｒｏｇｒａｍｆｒｏｍ０ｘ００００ａ８ｄ００ｘ００００ａｃｄ０ａｔ０ｘ５０７ｃ００００：．
．．．Ｌｏｃｋｆｒｏｍ０ｘ５０７ｃ０００００ｘ５０７ｅ００００：．
ＲｅｄＢｏｏｔ＞

使用ｆｃｏｎｆｉｇ命令可以设置一段在启动时运行的脚本（Ｓｃｒｉｐｔ）命令。这一段Ｓｃｒｉｐｔ脚本由
一组系统启动时运行的ＲｅｄＢｏｏｔ命令组成，在使用ｆｃｏｎｆｉｇ进行设置时还可以对Ｓｃｒｉｐｔ命令的
运行进行超时设置。例如：

ＲｅｄＢｏｏｔ＞犳犮狅狀犳犻犵
Ｒｕｎｓｃｒｉｐｔａｔｂｏｏｔ：ｆａｌｓｅ狋
Ｂｏｏｔｓｃｒｉｐｔ：

Ｅｎｔｅｒｓｃｒｉｐｔ，ｔｅｒｍｉｎａｔｅｗｉｔｈｅｍｐｔｙｌｉｎｅ
＞＞犳犻犾犻
Ｂｏｏｔｓｃｒｉｐｔｔｉｍｅｏｕｔ：０１０
ＵｓｅＢＯＯＴＰｆｏｒｎｅｔｗｏｒｋｃｏｎｆｉｇｕｒａｔｉｏｎ：ｆａｌｓｅ．
ＵｐｄａｔｅＲｅｄＢｏｏｔｎｏｎｖｏｌａｔｉｌｅｃｏｎｆｉｇｕｒａｔｉｏｎａｒｅｙｏｕｓｕｒｅ（ｙ／ｎ）？狔
．．．Ｅｒａｓｅｆｒｏｍ０ｘａ０ｆｃ０００００ｘａ０ｆｅ００００：．
．．．Ｐｒｏｇｒａｍｆｒｏｍ０ｘ８ｃ０２１ｆ６００ｘ８ｃ０２２３６０ａｔ０ｘａ０ｆｃ００００：．
ＲｅｄＢｏｏｔ＞
ＲｅｄＢｏｏｔ（ｔｍ）ｄｅｂｕｇｅｎｖｉｒｏｎｍｅｎｔｂｕｉｌｔ０８：２２：２４，Ａｕｇ２３２０００
Ｃｏｐｙｒｉｇｈｔ（Ｃ）２０００，ＲｅｄＨａｔ，Ｉｎｃ．
ＲＡＭ：０ｘ８ｃ０００００００ｘ８ｃ８０００００
ｆｌａｓｈ：０ｘａ００００００００ｘａ１００００００，１２８ｂｌｏｃｋｓｏｆ０ｘ０００２００００ｂｙｔｅｓｅａ．
ＳｏｃｋｅｔＣｏｍｍｕｎｉｃａｔｉｏｎｓ，Ｉｎｃ：ＬｏｗＰｏｗｅｒＥｔｈｅｒｎｅｔＣＦＲｅｖｉｓｉｏｎＣ＼
５Ｖ／３．３Ｖ０８／２７／９８ＩＰ：１９２．１６８．１．２９，Ｄｅｆａｕｌｔｓｅｒｖｅｒ：１９２．１６８．１．１０１＼
＝＝Ｅｘｅｃｕｔｉｎｇｂｏｏｔｓｃｒｉｐｔｉｎ１０ｓｅｃｏｎｄｓｅｎｔｅｒ^Ｃｔｏａｂｏｒｔ
ＲｅｄＢｏｏｔ＞ｆｉｌｉ
Ｎａｍｅ ｆｌａｓｈａｄｄｒ Ｍｅｍａｄｄｒ Ｌｅｎｇｔｈ Ｅｎｔｒｙｐｏｉｎｔ
ＲｅｄＢｏｏｔ ０ｘＡ０００００００ ０ｘＡ０００００００ ０ｘ０２００００ ０ｘ８０００００００
ＲｅｄＢｏｏｔ［ｂａｃｋｕｐ］ ０ｘＡ００２００００ ０ｘ８Ｃ０１００００ ０ｘ０２００００ ０ｘ８Ｃ０１００００
ＲｅｄＢｏｏｔｃｏｎｆｉｇ ０ｘＡ０ＦＣ０００００ｘＡ０ＦＣ０００００ｘ０２００００ ０ｘ００００００００

７６

ＦＩＳｄｉｒｅｃｔｏｒｙ ０ｘＡ０ＦＥ０００００ｘＡ０ＦＥ０００００ｘ０２００００ ０ｘ００００００００
ＲｅｄＢｏｏｔ＞

上面例子中，粗体字是从控制台输入的字符。最后执行的ｆｉｌｉ命令不是由控制台输入的，
而是来自Ｓｃｒｉｐｔ命令。

４２５ ＲｅｄＢｏｏｔ程序执行控制

一旦通过ｌｏａｄ命令或者ｆｉｓｌｏａｄ命令将映像加载到内存后，就可以启动该映像的执行。执
行命令如下。

ｇｏ程序执行命令
命令格式：

ＲｅｄＢｏｏｔ＞ｇｏ［ｗｔｉｍｅ］［ｌｏｃａｔｉｏｎ］

参数：

ｗ 指定程序执行前的等待时间。通常用在启动Ｓｃｒｉｐｔ脚本中。

ｌｏｃａｔｉｏｎ 程序执行的起始地址。如果没有指定，则从上一次映像加载的入口地址处开始执行。

ｅｘｅｃ执行Ｌｉｎｕｘ内核映像
该命令不支持所有平台，通常用于执行非ｅＣｏｓ应用程序，如Ｌｉｎｕｘ内核。
命令格式：

ＲｅｄＢｏｏｔ＞ｅｘｅｃ［ｗｔｉｍｅ］［ｂ＜ｌｏａｄａｄｄｒ＞［ｌｅｎｇｔｈ］］［ｒ＜ｒａｍｄｉｓｋａｄｄｒ＞［ｓ
＜ｒａｍｄｉｓｋｌｅｎｇｔｈ＞］］［ｃ″ｋｅｒｎｅｌｃｏｍｍａｎｄｌｉｎｅ″］［＜ｅｎｔｒｙ ｐｏｉｎｔ＞］

参数：

ｗ 程序执行前的等待时间。

ｂ 内核程序在内存的位置。

ｒｓ 给内核传递ｒａｍｄｉｓｋ的位置参数。

ｃ 给内核传递文本方式的命令行信息。

４３ ＲｅｄＢｏｏｔ的配置与编译

ｅＣｏｓ的源码中包含了 ＲｅｄＢｏｏｔ源码。如果对 ＲｅｄＢｏｏｔ的命令进行了扩展，或者对

ＲｅｄＢｏｏｔ的源码作了增加或修改，则必须重新对ＲｅｄＢｏｏｔ进行编译。大多数平台的硬件抽象
层ＨＡＬ都提供了配置导出文件，使用该文件可以简化系统的开发过程。ＲｅｄＢｏｏｔ作为ｅＣｏｓ
的一部分，其配置和编译过程都使用了基于组件定义语言ＣＤＬ的配置技术。

ＲｅｄＢｏｏｔ的配置和编译过程与ｅＣｏｓ应用程序类似，既可以使用ｅＣｏｓ图形配置工具，也可
以使用命令行配置工具ｅｃｏｓｃｏｎｆｉｇ。

４３１ ＲｅｄＢｏｏｔ软件结构

图４１是ＲｅｄＢｏｏｔ的软件结构图，图中列举了它的主要组成模块。ＲｅｄＢｏｏｔ的软件结构具

８６

有可伸缩性，根据具体需要可以增加新的软件模块或新的功能，也可以将一些不需要和不适用

的软件模块或功能进行裁减。ＲｅｄＢｏｏｔ使用的底层程序是ｅＣｏｓ的硬件抽象层ＨＡＬ和设备驱
动程序。

图４１ ＲｅｄＢｏｏｔ软件结构图

所有ＲｅｄＢｏｏｔ源码都在ｐａｃｋａｇｅｓ＼ｒｅｄｂｏｏｔ目录下。表４１为ＲｅｄＢｏｏｔ源码目录。

表４１ ＲｅｄＢｏｏｔ源码目录

目 录 说 明

ｃｄｌ 包含ＣＤＬ脚本，详细描述了ＲｅｄＢｏｏｔ配置和编译信息。配置工具使用ＣＤＬ文件来了解ＲｅｄＢｏｏｔ源码

ｉｎｃｌｕｄｅ ＲｅｄＢｏｏｔ编译所需头文件目录

ｉｎｃｌｕｄｅ＼ｆｓ ＲｅｄＢｏｏｔ文件系统头文件

ｉｎｃｌｕｄｅ＼ｎｅｔ ＲｅｄＢｏｏｔ网络支持头文件

ｍｉｓｃ 包含ｅＣｏｓ最小配置文件（．ｅｃｍ），被导入到配置工具形成最基本配置

ｓｒｃ ＲｅｄＢｏｏｔ主要源程序，包括启动、Ｆｌａｓｈ内存、Ｉ／Ｏ通信、命令行解析等程序

ｓｒｃ＼ｆｓ ＲｅｄＢｏｏｔ文件系统源程序

ｓｒｃ＼ｎｅｔ ＲｅｄＢｏｏｔ网络支持源程序，包括ＢＯＯＴＰ和ＴＦＴＰ源程序

４３２ 使用ｅＣｏｓ图形配置工具

在Ｗｉｎｄｏｗｓ和Ｌｉｎｕｘ环境下都可以使用ｅＣｏｓ图形配置工具对ＲｅｄＢｏｏｔ进行配置和编译。
下面以“ｉ３８６ｐｃｔａｒｇｅｔ”作为硬件平台，描述ＲｅｄＢｏｏｔ的配置与编译过程。

１）运行ｅＣｏｓ图形配置工具。

２）在配置工具的“Ｂｕｉｌｄ”菜单选择模板“Ｔｅｍｐｌａｔｅｓ”，在出现的模板对话框中选择硬件平
台（Ｈａｒｄｗａｒｅ）“ｉ３８６ＰＣｔａｒｇｅｔ”和模板软件包（Ｐａｃｋａｇｅｓ）“ＲｅｄＢｏｏｔ”，如图４２所示。

３）根据需要增加或删减软件模块。在配置工具的“Ｂｕｉｌｄ”菜单选择“Ｐａｃｋａｇｅｓ”，在

Ｐａｃｋａｇｅｓ对话框中增加或删除相应的软件模块（本例中不作任何操作），如图４３所示。

９６

图４２ 使用ｅＣｏｓ配置工具选择ＲｅｄＢｏｏｔ硬件平台和软件模板

图４３ 增加或删除软件模块

４）对ＲｅｄＢｏｏｔ选项进行配置，如图４４所示。由于ＲｅｄＢｏｏｔ还需要其他一些软件模块，如
硬件抽象层ＨＡＬ和设备驱动程序等，因此除了对ＲｅｄＢｏｏｔ相关选项进行配置外，还要根据具
体平台的实际要求对ＨＡＬ和设备驱动程序进行配置。例如，一个具有网络支持能力的平台
需要在“ＣｏｍｍｏｎＥｔｈｅｒｎｅｔＳｕｐｐｏｒｔ”包中使能以太网驱动程序，同时还需要对ＲｅｄＢｏｏｔ的网络
配置选项进行设置，包括对目标平台默认的ＩＰ地址进行配置。
在本例中，需要产生一个软盘引导的ＲｅｄＢｏｏｔ，所以在配置工具的“Ｃｏｎｆｉｇｕｒａｔｉｏｎ→ｅＣｏｓ

ＨＡＬ→ｉ３８６ａｒｃｈｉｔｅｃｔｕｒｅ→ｉ３８６ＰＣｔａｒｇｅｔ→Ｓｔａｒｔｕｐｔｙｐｅ”选项选择“ＦＬＯＰＰＹ”，见图４４。

５）保存配置。在进行编译前，需要对已经完成的配置进行保存。在配置工具的“Ｆｉｌｅ”菜
单选择“Ｓａｖｅａｓ”，将其保存为ＲｅｄＢｏｏｔ Ｆｌｏｐｐｙ．ｅｃｃ。此时将产生ＲｅｄＢｏｏｔ的工作目录，这些目
录与ＲｅｄＢｏｏｔ Ｆｌｏｐｐｙ．ｅｃｃ处于同一目录下。表４２为工作目录结构。

０７

图４４ 对ＲｅｄＢｏｏｔ进行配置

表４２ ＲｅｄＢｏｏｔ工作目录结构

目 录 说 明

Ｒｅｄｂｏｏｔ ｆｌｏｐｐｙ ｂｕｉｌｄ 包含ＲｅｄＢｏｏｔ编译过程中产生的所有文件

Ｒｅｄｂｏｏｔ ｆｌｏｐｐｙ ｉｎｓｔａｌｌ ＲｅｄＢｏｏｔ编译后的输出文件

Ｒｅｄｂｏｏｔ ｆｌｏｐｐｙ ｉｎｓｔａｌｌ＼ｂｉｎ
各种ＲｅｄＢｏｏｔ映像文件。所产生的文件类型根据处理器的不同而有所不同。文件

格式包括二进制格式、ＥＬＦ格式和ＳＲＥＣ格式

Ｒｅｄｂｏｏｔｆｌｏｐｐｙ ｉｎｓｔａｌｌ＼ｉｎｃｌｕｄｅ 包含编译时所需的头文件

Ｒｅｄｂｏｏｔ ｆｌｏｐｐｙ ｉｎｓｔａｌｌ＼ｌｉｂ 产生ＲｅｄＢｏｏｔ映像文件时所需的库文件和链接器脚本文件

Ｒｅｄｂｏｏｔ ｆｌｏｐｐｙ ｍｌｔ 包含配置工具所用的内存布局文件

６）编译ＲｅｄＢｏｏｔ。在“Ｂｕｉｌｄ”菜单中选择“Ｌｉｂｒａｒｙ”，开始对ＲｅｄＢｏｏｔ进行编译。编译完成
后，所产生的ＲｅｄＢｏｏｔ映像文件存放在Ｒｅｄｂｏｏｔ ｆｌｏｐｐｙ ｉｎｓｔａｌｌ＼ｂｉｎ目录下，即Ｒｅｄｂｏｏｔ
ｆｌｏｐｐｙ．ｂｉｎ。使用该文件可以制作一个ＲｅｄＢｏｏｔ引导软盘。
还有另一种方法用于产生一个新的ＲｅｄＢｏｏｔ配置（替代上述２）和３）操作）。这种方法就

是导入一个ｅＣｏｓ最小配置文件（．ｅｃｍ）。每一个ＲｅｄＢｏｏｔ支持的硬件平台都有一个最小配置
文件，最小配置文件位于该平台硬件抽象层ＨＡＬ的ｍｉｓｃ子目录下（ｈａｌ＼ｍｉｓｃ）。
最小配置文件包含了指定硬件平台的一些基本配置信息。开发人员可以将这些配置文件

作为起点，根据目标平台对ＲｅｄＢｏｏｔ映像的具体要求对其配置信息进行修改，以满足实际需
要。最小配置文件使用的是ＣＤＬ描述语言。下面是基于ＰｏｗｅｒＰＣ的ＭｏｔｏｒｏｌａＭＢＸ开发板
的一个最小配置文件（ｒｅｄｂｏｏｔ ｒｏｍ．ｅｃｍ）。在该．ｅｃｍ文件中，可以发现在ｃｄｌ ｃｏｎｆｉｇｕｒａｔｉｏｎ
命令下包含了一组ＲｅｄＢｏｏｔ配置所需要的软件包，而ｃｄｌ ｏｐｔｉｏｎ命令对一些特殊选项的可选
值进行了设置。

ｒｅｄｂｏｏｔ ｒｏｍ．ｅｃｍ
ｃｄｌｓａｖｅｆｉｌｅ ｖｅｒｓｉｏｎ１；

１７

ｃｄｌｓａｖｅｆｉｌｅ ｃｏｍｍａｎｄｃｄｌｓａｖｅｆｉｌｅ ｖｅｒｓｉｏｎ｛｝；

ｃｄｌｓａｖｅｆｉｌｅ ｃｏｍｍａｎｄｃｄｌｓａｖｅｆｉｌｅ ｃｏｍｍａｎｄ｛｝；

ｃｄｌｃｏｎｆｉｇｕｒａｔｉｏｎｅＣｏｓ｛

ｄｅｓｃｒｉｐｔｉｏｎ″″；

ｈａｒｄｗａｒｅｍｂｘ；

ｔｅｍｐｌａｔｅｒｅｄｂｏｏｔ；

ｐａｃｋａｇｅｈａｒｄｗａｒｅＣＹＧＰＫＧ ＨＡＬ ＰＯＷＥＲＰＣｃｕｒｒｅｎｔ；

ｐａｃｋａｇｅｈａｒｄｗａｒｅＣＹＧＰＫＧ ＨＡＬ ＰＯＷＥＲＰＣ ＭＰＣ８ｘｘｃｕｒｒｅｎｔ；

ｐａｃｋａｇｅｈａｒｄｗａｒｅＣＹＧＰＫＧ ＨＡＬ ＰＯＷＥＲＰＣ ＭＢＸｃｕｒｒｅｎｔ；
｝；

ｃｄｌ ｏｐｔｉｏｎＣＹＧＤＢＧ ＨＡＬ ＤＥＢＵＧ ＧＤＢ ＩＮＣＬＵＤＥ ＳＴＵＢＳ｛

ｉｎｆｅｒｒｅｄ ｖａｌｕｅ１
｝；

ｃｄｌ ｏｐｔｉｏｎＣＹＧＳＥＭ ＨＡＬ ＲＯＭ ＭＯＮＩＴＯＲ｛

ｉｎｆｅｒｒｅｄ ｖａｌｕｅ１
｝；

大多数平台都包含了分别基于ＲＯＭ和ＲＡＭ的两个ＲｅｄＢｏｏｔ最小配置文件（Ｒｅｄｂｏｏｔ
ＲＯＭ．ｅｃｍ和Ｒｅｄｂｏｏｔ ＲＡＭ．ｅｃｍ），它们都可以用作配置的起点。ＲＯＭ和ＲＡＭ分别表示

ＲｅｄＢｏｏｔ映像文件将驻留在ＲＯＭ内还是ＲＡＭ内。ＲＡＭ配置一般用于对软硬件进行调试的
阶段，由其产生的ＲｅｄＢｏｏｔ将在ＲＡＭ中运行。ＲＯＭ配置一般用在软硬件调试完成之后将要
写入到ＲＯＭ或ＦｌａｓｈＲＯＭ的场合，其ＲｅｄＢｏｏｔ将在ＲＯＭ中运行。基于ＲＡＭ的ＲｅｄＢｏｏｔ映
像还可以用于对驻留在ＦｌａｓｈＲＯＭ内的ＲｅｄＢｏｏｔ映像进行更新操作。对于ｉ３８６ＰＣ的目标平
台，除了这两个配置文件外还有一个ＦＬＯＰＰＹ配置文件，ＦＬＯＰＰＹ配置文件用于生成从软盘
引导的ＲｅｄＢｏｏｔ映像文件。
使用最小配置文件对 ＲｅｄＢｏｏｔ进行编译的方法是：在配置工具的“Ｆｉｌｅ”菜单选择

“Ｉｍｐｏｒｔ”，将指定的．ｅｃｍ文件导入到ｅＣｏｓ配置工具。其余步骤与前面介绍的４）和５）相同。

４３３ 使用命令行配置工具ｅｃｏｓｃｏｎｆｉｇ

ｅＣｏｓ提供了一个命令行配置工具ｅｃｏｓｃｏｎｆｉｇ，包括其源码。如果要重新编译该工具，可以
根据源码中的ｈｏｓｔ＼ＲＥＡＤＭＥ文件指定的步骤进行。例如，在Ｌｉｎｕｘ环境下对ｅｃｏｓｃｏｎｆｉｇ的
编译过程如下：

ｍｋｄｉｒ＄ＴＥＭＰ／ｒｅｄｂｏｏｔｂｕｉｌｄ
ｃｄ＄ＴＥＭＰ／ｒｅｄｂｏｏｔｂｕｉｌｄ
＄ＥＣＯＳＤＩＲ／ｈｏｓｔ／ｃｏｎｆｉｇｕｒｅｐｒｅｆｉｘ＝＄ＴＥＭＰ／ｒｅｄｂｏｏｔｂｕｉｌｄｗｉｔｈｔｃｌ＝／ｕｓｒ
ｍａｋｅ

在得到可用的ｅｃｏｓｃｏｎｆｉｇ后，可以使用它对ＲｅｄＢｏｏｔ进行配置。首先要设定ＥＣＯＳ
ＲＥＰＯＳＩＴＯＲＹ环境变量，使其指向ｅＣｏｓ／ＲｅｄＢｏｏｔ源目录，然后用下列命令对指定目标系统

２７

（ＴＡＲＧＥＴ）的ＲｅｄＢｏｏｔ进行编译：

ｅｃｏｓｃｏｎｆｉｇｎｅｗＴＡＲＧＥＴｒｅｄｂｏｏｔ
ｅｃｏｓｃｏｎｆｉｇｔｒｅｅ
ｍａｋｅ

这里的ＴＡＲＧＥＴ为目标平台名，如“ａｓｓａｂｅｔ”。上述命令得到的是最简单的ＲｅｄＢｏｏｔ，不
包含目标平台所支持的网络、Ｆｌａｓｈ或ＣｏｍｐａｃｔＦｌａｓｈＥｔｈｅｒｎｅｔ等特性。如果要支持这些特性，
应该使用下列命令进行编译：

ｅｃｏｓｃｏｎｆｉｇｎｅｗＴＡＲＧＥＴｒｅｄｂｏｏｔ
ｅｃｏｓｃｏｎｆｉｇａｄｄｆｌａｓｈ
ｅｃｏｓｃｏｎｆｉｇａｄｄｐｃｍｃｉａｎｅｔ ｄｒｉｖｅｒｓｃｆ ｅｔｈ ｄｒｉｖｅｒｓ
ｅｃｏｓｃｏｎｆｉｇｔｒｅｅ
ｍａｋｅ

其中的第二、三行命令将平台所需的支持模块加入到编译过程。实际上，大多数平台的硬

件抽象层ＨＡＬ都包含了一个配置导出文件（．ｅｃｍ），使用该配置文件可以对ＲｅｄＢｏｏｔ的编译
进行正确的配置，避免增加一些多余的软件包。上述命令最后得到的ＲｅｄＢｏｏｔ可用于测试目
的，但只能在ＲＡＭ中运行。如果要将ＲｅｄＢｏｏｔ安装到ＲＯＭ或ＦｌａｓｈＲＯＭ，则必须产生一个

ＲｅｄＢｏｏｔ的ＲＯＭ映像。通过下列命令可以得到ＲｅｄＢｏｏｔ的ＲＯＭ版：

ｃａｔ＞ＲｅｄＢｏｏｔ ＲＯＭ．ｅｃｍ＜＜ＥＯＦ
ｃｄｌｃｏｍｐｏｎｅｎｔＣＹＧ ＨＡＬ ＳＴＡＲＴＵＰ｛

ｕｓｅｒ ｖａｌｕｅＲＯＭ
｝；

ＥＯＦ
ｅｃｏｓｃｏｎｆｉｇｉｍｐｏｒｔＲｅｄＢｏｏｔ ＲＯＭ．ｅｃｍ
ｅｃｏｓｃｏｎｆｉｇｔｒｅｅ
ｍａｋｅ

上述命令中用到了配置导出文件ＲｅｄＢｏｏｔ ＲＯＭ．ｅｃｍ。一些平台的硬件抽象层ＨＡＬ提
供了用于ＲＡＭ启动和ＲＯＭ启动的不同配置文件（ＲｅｄＢｏｏｔ ＲＡＭ．ｅｃｍ和ＲｅｄＢｏｏｔ ＲＯＭ．
ｅｃｍ），使用这些配置文件有助于ＲｅｄＢｏｏｔ的编译。这些配置文件一般位于平台ＨＡＬ的ｍｉｓｃ
子目录下。

经过上述编译过程将得到三种不同格式的ＲｅｄＢｏｏｔ映像文件。这些映像文件位于目录

ｉｎｓｔａｌｌ／ｂｉｎ下。开发人员可以根据具体硬件平台的实际需要选择相应格式的ＲｅｄＢｏｏｔ映像。
三种格式的映像文件分别是：

●ｉｎｓｔａｌｌ／ｂｉｎ／ｒｅｄｂｏｏｔ．ｅｌｆ ＥＬＦ格式的ＲｅｄＢｏｏｔ映像。
●ｉｎｓｔａｌｌ／ｂｉｎ／ｒｅｄｂｏｏｔ．ｓｒｅｃ ＭｏｔｏｒｏｌａＳＲＥＣ格式。
●ｉｎｓｔａｌｌ／ｂｉｎ／ｒｅｄｂｏｏｔ．ｂｉｎ 二进制映像，可直接写入ＲＯＭ／ＦｌａｓｈＲＯＭ。

４４ ＲｅｄＢｏｏｔ的更新与运行

ＲｅｄＢｏｏｔ通常运行在ＦｌａｓｈＲＯＭ和ＲＯＭ内。各种平台都具有各自将ＲｅｄＢｏｏｔ映像安装

３７

到这些非易失性内存的方法。一般来讲，可以用软件将其写入到ＦｌａｓｈＲＯＭ，而对于ＲＯＭ则
要使用ＲＯＭ编程工具。在使用Ｆｌａｓｈ的情况下，可以直接使用ＲｅｄＢｏｏｔ对其进行更新。
要完成ＲｅｄＢｏｏｔ的更新，需要两个版本的ＲｅｄＢｏｏｔ：一个从Ｆｌａｓｈ运行，而另一个从ＲＡＭ

运行。更新的主要过程是：首先从Ｆｌａｓｈ运行ＲｅｄＢｏｏｔ，在此环境下加载并运行基于ＲＡＭ的

ＲｅｄＢｏｏｔ，然后加载新版基于Ｆｌａｓｈ的ＲｅｄＢｏｏｔ，最后将此ＲｅｄＢｏｏｔ写入到Ｆｌａｓｈ。
下面介绍更新ＲｅｄＢｏｏｔ的具体步骤：

１）启动目标平台，运行Ｆｌａｓｈ内即将被更新的ＲｅｄＢｏｏｔ。由于更新过程要用到Ｆｌａｓｈ映像
系统命令（ＦＩＳ），因此首先必须运行下面的命令对ＦＩＳ进行初始化：

ＲｅｄＢｏｏｔ＞ｆｉｓｉｎｉｔ

该命令对Ｆｌａｓｈ映像系统ＦＩＳ进行初始化，并使能新映像文件，使其可以使用ｆｉｓ命令对

Ｆｌａｓｈ进行编程操作。在ＦＩＳ初始化完成后，可以使用如下命令查看Ｆｌａｓｈ内存中所有的映
像：

ＲｅｄＢｏｏｔ＞ｆｉｓｌｉｓｔ
Ｎａｍｅ ｆｌａｓｈａｄｄｒ Ｍｅｍａｄｄｒ Ｌｅｎｇｔｈ Ｅｎｔｒｙｐｏｉｎｔ

ＲｅｄＢｏｏｔ ０ｘＡ０００００００ ０ｘＡ０００００００ ０ｘ０２００００ ０ｘ８０００００００

ＲｅｄＢｏｏｔ［ｂａｃｋｕｐ］ ０ｘＡ００２００００ ０ｘ８Ｃ０１００００ ０ｘ０１００００ ０ｘ８Ｃ０１００００

ＲｅｄＢｏｏｔｃｏｎｆｉｇ ０ｘＡ０ＦＣ０００００ｘＡ０ＦＣ０００００ｘ０２００００ ｖ０ｘ００００００００

ＦＩＳｄｉｒｅｃｔｏｒｙ ０ｘＡ０ＦＥ０００００ｘＡ０ＦＥ０００００ｘ０２００００ ０ｘ００００００００

上述命令的执行结果仅是一个例子，地址、长度、入口点在不同的平台中各有不同。从该

命令运行的输出结果可以看出，名字为“ＲｅｄＢｏｏｔ”的映像就是当前正在运行的ＲｅｄＢｏｏｔ映像。
名字为“ＲｅｄＢｏｏｔ［ｂａｃｋｕｐ］”的映像是备份映像，可以在ＲＡＭ执行。

２）加载并启动另一个从ＲＡＭ运行的ＲｅｄＢｏｏｔ。如果ＦＩＳ中已经存在一个ＲｅｄＢｏｏｔ的

ＲＡＭ映像，例如上面ｆｉｓｌｉｓｔ命令所列出的ＲｅｄＢｏｏｔ［ｂａｃｋｕｐ］，则该映像可以直接被加载到

ＲＡＭ并运行。命令如下：

ＲｅｄＢｏｏｔ＞ｆｉｓｌｏａｄＲｅｄＢｏｏｔ［ｂａｃｋｕｐ］

ＲｅｄＢｏｏｔ＞ｇｏ

如果ＦＩＳ中不存在这样的ＲｅｄＢｏｏｔ映像，或者该映像不能运行，则必须从外部加载

ＲｅｄＢｏｏｔ的ＲＡＭ映像。ＲｅｄＢｏｏｔ的ＲＡＭ映像可以通过前面介绍的ＲｅｄＢｏｏｔ编译方法得到。
需要注意的是，在配置时必须选择启动类型（ＣＹＧ ＨＡＬ ＳＴＡＲＴＵＰ）为ＲＡＭ。ＲＡＭ映像
和ＲＯＭ映像要使用不同的工作目录。如果有了ＲｅｄＢｏｏｔ的ＲＡＭ映像文件，则可以通过下面
的命令将该映像文件通过串口Ｘ／ＹＭｏｄｅｍ协议或者ＴＦＴＰ网络协议加载到ＲＡＭ内，并执行
该映像。

ＲｅｄＢｏｏｔ＞ｌｏａｄｒｅｄｂｏｏｔ ｒａｍ．ｂｉｎ
ＲｅｄＢｏｏｔ＞ｇｏ

此时目标平台上运行的是最新被加载的ＲｅｄＢｏｏｔＲＡＭ映像。

３）加载并更新新版ＲｅｄＢｏｏｔＦｌａｓｈ映像。使用下面的命令加载ＲｅｄＢｏｏｔ映像：

４７

ＲｅｄＢｏｏｔ＞ｌｏａｄｒｅｄｂｏｏｔ ｒｏｍ．ｂｉｎｂ＜ｒａｍ ａｄｄｒ＞

这里的ｒａｍ ａｄｄｒ是映像文件加载到内存的位置。ｒｅｄｂｏｏｔ ｒｏｍ．ｂｉｎ映像在被写入到

Ｆｌａｓｈ之前将临时存放在ＲＡＭ内。当该映像加载到内存后，就可以准备进行Ｆｌａｓｈ编程操作
了。一些平台支持对Ｆｌａｓｈ内存的锁定（ｌｏｃｋ）和解锁（ｕｎｌｏｃｋ）操作，在进行Ｆｌａｓｈ编程前必须
对Ｆｌａｓｈ进行解锁：

ＲｅｄＢｏｏｔ＞ｆｉｓｕｎｌｏｃｋｆ＜ｆｌａｓｈ ａｄｄｒ＞ｌ＜ｆｌａｓｈ ｌｅｎ＞

上面命令的ｆｌａｓｈ ａｄｄｒ和ｆｌａｓｈ ｌｅｎ可以通过ｆｉｓｌｉｓｔ命令得到。解锁后可以使用下面的
命令进行Ｆｌａｓｈ编程，将临时存放在ＲＡＭ内的ＲｅｄＢｏｏｔＦｌａｓｈ映像写入Ｆｌａｓｈ中：

ＲｅｄＢｏｏｔ＞ｆｉｓｃｒｅａｔｅＲｅｄＢｏｏｔｆ＜ｆｌａｓｈ ａｄｄｒ＞ｂ＜ｒａｍ ａｄｄｒ＞ｌ
＜ｆｌａｓｈ ｌｅｎ＞ｓ＜ｄａｔａ ｌｅｎ＞

这里的ｆｌａｓｈ ａｄｄｒ是该映像写入到Ｆｌａｓｈ的地址，可以从ｆｉｓｌｉｓｔ命令得到。ｒａｍ ａｄｄｒ是
该映像临时存放在ＲＡＭ中的地址。ｆｌａｓｈ ｌｅｎ是ＲｅｄＢｏｏｔＦｌａｓｈ映像的长度，也可以从ｆｉｓｌｉｓｔ
命令得到。ｄａｔａ ｌｅｎ是将被写入到Ｆｌａｓｈ的ｒｅｄｂｏｏｔ ｒｏｍ．ｂｉｎ文件的长度。
当新的ＲｅｄＢｏｏｔＦｌａｓｈ映像被写入到Ｆｌａｓｈ后，如果平台支持Ｆｌａｓｈ锁定（ｌｏｃｋ）操作，则使

用下面的命令对其进行锁定：

ＲｅｄＢｏｏｔ＞ｆｉｓｌｏｃｋｆ＜ｆｌａｓｈ ａｄｄｒ＞ｌ＜ｆｌａｓｈ ｌｅｎ＞

４）重启目标平台，此时将运行刚才被更新的ＲｅｄＢｏｏｔ映像。

５７

第５章 系 统 内 核

ｅＣｏｓ的核心部分是它功能强大、灵活且具有可配置性的嵌入式内核。内核主要由多线程
机制、调度机制、同步机制、内存分配机制、例外处理机制、中断处理机制以及定时机制组成。

它的模块化结构和可配置特性可以保证在对其某些模块进行改变和更换时不会对内核的其余

部分造成影响。ｅＣｏｓ内核的主要功能包括：

１）调度算法的选择。

２）内存分配算法的选择。

３）提供了一组丰富的同步原语。

４）支持对称多处理（ＳＭＰ）。

５）中断处理。

６）例外处理。

７）Ｃａｃｈｅ控制。

８）提供定时器、计数器和告警机制。

９）支持多线程。

１０）支持多线程ＧＤＢ调试。
本章主要介绍内核的调度机制、中断和例外处理机制、定时机制、内存分配机制以及它们

相应的ＡＰＩ，另外线程及同步机制将在下一章讨论。对应用程序的入口点也作介绍。

５１ 系统内核

内核是ｅＣｏｓ系统的一个关键性的包。它为多线程应用程序的开发提供核心支持。它具
有在系统开始启动和系统运行期间创建新线程的能力，可以对系统中的各种线程进行控制和

操作。它可以选择一种调度算法来决定当前执行哪一个线程，并提供了大量的线程同步原语。

系统内核还提供了例外和中断处理机制。大多数操作系统通常在其内核内包含了内存分配机

制和设备驱动程序，而ｅＣｏｓ却不同，为了支持系统的可配置性，它采用一个单独的包来支持对
内存的分配，对每一个设备驱动程序也提供一个单独的包来支持。这种方式的采用使得可以

根据具体应用程序的实际需求，通过ｅＣｏｓ的配置技术来对各种包进行组合，为系统提供最大
限度上的可配置能力。

ｅＣｏｓ内核本身也是一个可选的包。在开发一个单线程的应用程序时，有的情况下可以不
需要内核的支持，ＲｅｄＢｏｏｔ就是一个例子。这种无内核的单线程应采用一种循环查询的方式，
连续不停地对所有设备进行检查，当有Ｉ／Ｏ事件发生时再进行相应的处理。这种查询方式的
每一次循环都可能需要进行少量的计算，从Ｉ／Ｏ事件的发生到查询循环体检测到该事件的发
生之间的延时将会因此而增加。如果这样可以满足应用需求，那么采用循环查询的方式是可

行的，可以简化应用程序的开发过程，避免使用复杂的多线程机制和线程间的同步机制。当应

用较为复杂需要使用多线程机制时，就必须使用内核。事实上，ｅＣｏｓ的许多高级软件包（如

６７

ＴＣＰ／ＩＰ）都使用了多线程机制。如果应用程序使用了这样的软件包，那么内核已经变成一种
必需的包，而不是一个可选的包。

可以采用两种方式来使用内核所提供的功能：一种方式是应用程序和其他的软件包直接

调用内核提供的ＡＰＩ接口函数，内核提供了许多像ｃｙｇ ｔｈｒｅａｄ ｃｒｅａｔｅ和ｃｙｇ ｍｕｔｅｘ ｌｏｃｋ
这样的Ｃ函数作为其ＡＰＩ；另一种方式是使用ｅＣｏｓ兼容层提供的标准函数。ｅＣｏｓ有许多软件
包提供对现有ＡＰＩ的兼容，如ＰＯＳＩＸ和μＩＴＲＯＮ。应用程序可以调用一些标准函数（如

ｐｔｈｒｅａｄ ｃｒｅａｔｅ），这些标准函数使用了ｅＣｏｓ内核所提供的基本功能。在ｅＣｏｓ应用程序中使用
标准函数可以更容易实现在其他环境下开发的软件的可重用性，从而实现程序代码的共享。

虽然不同的兼容包对内核有相似的需求，但它们的具体实现会有所不同。例如，严格意义

上的μＩＴＲＯＮ兼容要求禁止内核的时间片。这就需要对内核进行配置，这种配置的具体实现
主要通过ｅＣｏｓ的配置技术来完成。内核提供了许多配置选项来控制它们所需要的功能，各种
各样的兼容包需要对这些选项进行特殊的设置。由于不同的兼容包在同一个配置中可能引起

内核内部选项的冲突，因此，通常在同一个配置内不能同时使用两个不同的兼容包。另外，由

于内核内部配置选项的多样性，内核自己的ＡＰＩ函数只是一种不精确的实现。例如，ＡＰＩ函
数ｃｙｇ ｍｕｔｅｘ ｌｏｃｋ尝试对一个互斥体进行锁定，它具有一些不同的配置选项，可以对这些选
项进行配置来确定当互斥体已被锁定以及可能存在优先级倒置时应该采取的行为。

内核的这种可选特性给某些程序特别是设备驱动程序增加了复杂性。不管内核是否存

在，设备驱动程序都应该能够工作。在包含内核的多线程环境中，系统的某些部分尤其是与中

断处理相关的部分的实现方法不同于在无内核的单线程环境中的实现方法。为了在这两种环

境下都能正确处理，硬件抽象层的公共ＨＡＬ包提供了一些驱动程序ＡＰＩ函数，如ｃｙｇ ｄｒｖ
ｉｎｔｅｒｒｕｐｔ ａｔｔａｃｈ（），当系统中包含有内核时，这些ＡＰＩ函数将映射到等同的内核函数，如ｃｙｇ
ｉｎｔｅｒｒｕｐｔ ａｔｔａｃｈ。当系统没有内核时，公共ＨＡＬ包将直接实现这些驱动程序ＡＰＩ函数。公
共ＨＡＬ包的这种直接实现方式的假设条件是在单线程环境，比在有内核环境下的实现要简
单。

５２ 内核调度机制

ｅＣｏｓ内核的核心是调度器。当系统包含多个线程时，必须使用调度器来决定当前执行哪
一个线程。调度器对线程的运行进行控制，并为线程提供一种同步机制。此外，它还对中断影

响线程执行的方式进行控制。单个调度器不可能适用于所有可能的系统配置，ｅＣｏｓ内核为此
提供了两种可选的调度机制，当前版本的ｅＣｏｓ具有两个调度器：

① 位图（ｂｉｔｍａｐ）调度器。

② 多级队列（ＭＬＱ）调度器。
相对来说，位图调度器效率要高一些，但存在许多限制。大多数系统通常采用多级队列调

度器。这两个调度器都使用一个简单的数字优先级来决定当前应该执行哪一个线程。优先级

的数目可以通过配置选项ＣＹＧＮＵＭ ＫＥＲＮＥＬ ＳＣＨＥＤ ＰＲＩＯＲＩＴＩＥＳ在配置工具中指
定。典型的系统通常设置为３２个优先级，线程的优先级范围从０到３１，０的优先级最高，３１
的优先级最低。一般只有系统的空闲线程运行在最低优先级。线程的优先级具有绝对性，因

此在所有高优先级的线程被阻塞时，内核只能执行一个优先级较低的线程。

７７

图５１为ｅＣｏｓ配置工具对内核调度器进行配置的示意图。

图５１ ｅＣｏｓ内核调度器的配置

５２１ 位图调度器

位图调度器是一个相当简单的调度器。其主要思想是设置若干个不同的线程优先级（具

体多少个线程优先级可以通过ｅＣｏｓ配置工具进行设定），任何时刻每一个优先级不可能同时
有两个或两个以上的线程，也就是说任何时刻不可能有相同优先级的线程。位图调度器所允

许的线程个数有严格的限制。如果系统被配置成具有３２个优先级，那么系统中最多只能有

３２个线程。在许多应用中３２个线程已足够满足其需要。位图调度器使用一个位图（ｂｉｔｍａｐ）
来表示所有的线程，位图中的每一位都对应于一个可运行的线程，每一个线程的优先级是惟一

的。从位图上可以很容易查出当前哪一个线程处于活跃状态、哪一个线程具有最高优先级。

使用位图还可以查找出哪些线程正在等待一个互斥体或其他同步原语。对位图进行简单的操

作就可以识别出最高优先级线程和处于等待状态的线程，使用一个数组索引操作就可以获取

线程自身的数据结构。因此，位图调度器具有简单、快速、准确的特点。

５２２ 多级队列调度器

多级队列调度器是一种具有优先级的ＦＩＦＯ调度策略。它具有多个线程优先级，允许多
个线程具有相同的优先级。因此，只要有足够可用的内存，系统所允许的线程数目是没有限制

的。像查找最高优先级线程这样的操作在多级队列调度机制中的开销要比位图调度器中的开

销要大。多级队列调度器支持优先级继承。

多级队列调度器中相同优先级的线程形成一个ＦＩＦＯ队列。这些线程采用时间片轮转策
略进行调度，时间片的大小可以通过配置工具进行设置。只有在同一优先级具有两个以上的

线程而且没有更高优先级线程的情况下才启动时间片。如果时间片被禁止，那么线程不会被

另一个同一优先级的线程抢先，它将继续运行直到它产生某个结果或者直到被阻塞（例如等待

一个同步原语）。用于控制时间片的配置选项是 ＣＹＧＳＥＭ ＫＥＲＮＥＬ ＳＣＨＥＤ
ＴＩＭＥＳＬＩＣＥ和ＣＹＧＮＵＭ ＫＥＲＮＥＬ ＳＣＨＥＤ ＴＩＭＥＳＬＩＣＥ ＴＩＣＫＳ。位图调度器不提供

８７

时间片支持，在每一个优先级只允许运行一个线程，因此不可能存在同一优先级的线程抢

先。

影响多级队列调度器的另一个重要配置选项是 ＣＹＧＩＭＰ ＫＥＲＮＥＬ ＳＣＨＥＤ
ＳＯＲＴＥＤ ＱＵＥＵＥＳ，它决定当线程被阻塞时的行为。系统所采取的默认行为是后进先出队
列。例如，如果系统有几个线程正在等待一个信号量（ｓｅｍａｐｈｏｒｅ），那么被唤醒的线程将是最
后一个调用ｃｙｇ ｓｅｍａｐｈｏｒｅ ｗａｉｔ等待该信号量的线程。这种方式使队列的入列操作和出列
操作既简单又迅速。然而，如果进入队列的线程具有不同的优先级，被唤醒的可能不是最高优

先级的线程。在实际运行过程中这种现象很少出现，队列中通常最多只有一个线程处于等待

状态，或者在有多个等待线程的情况下它们可能具有相同优先级。如果需要有严格的优先级

队列，可以使能ＣＹＧＩＭＰ ＫＥＲＮＥＬ ＳＣＨＥＤ ＳＯＲＴＥＤ ＱＵＥＵＥＳ配置选项。但它有一个
缺点，当对线程进行队列操作时要做更多的工作，并且该操作需要锁定调度器，因此将会造成

很大的系统延迟。

内核的某些功能目前只受到多级队列调度器的支持，位图调度器并不支持它们。这些功

能包括对ＳＭＰ系统的支持、使用互斥体优先级置顶或优先级继承的优先级倒置保护机制等。

５２３ 调度器操作及ＡＰＩ函数

ｅＣｏｓ目前只允许在其目标系统中使用一个单独的调度器，用户在进行配置时可根据实际
需要在这两个调度器中进行选择。未来版本的ｅＣｏｓ可以允许多个调度器协同工作。
为保证调度安全，必须提供一种机制，在对调度器数据结构进行同时访问时使用这种保护

机制对这些数据结构进行保护。传统的保护方法是采用禁止中断的方法。但是，这种方法将

会增加中断处理的延时，这在实时系统中是应该尽量避免的。ｅＣｏｓ通过对计数器Ｓｃｈｅｄｕｌｅｒ：：

ｓｃｈｅｄ ｌｏｃｋ的管理来实现这一机制。当该计数器的值不为０时，它阻止再次调度的发生。当
前线程通过调用ｃｙｇ ｓｃｈｅｄｕｌｅｒ ｌｏｃｋ（）函数对其进行锁定，计数器加１，阻止其他调度操作。

ｃｙｇ ｓｃｈｅｄｕｌｅｒ ｕｎｌｏｃｋ（）函数使计数器减１，如果计数器为０，就允许继续进行调度操作。线
程可以多次调用ｃｙｇ ｓｃｈｅｄｕｌｅｒ ｌｏｃｋ，每一次都将使计数器加１。但为了重新使能线程之间
的切换，必须调用ｃｙｇ ｓｃｈｅｄｕｌｅｒ ｕｎｌｏｃｋ相同的次数。这种行为与互斥体不同，如果一个线
程试图对某个互斥体进行多次锁定操作将会导致死锁或错误的发生。

为保证在发生中断的情况下这种保护机制能正常工作，这就需要中断服务程序ＩＳＲ将任
何与调度有关的操作推迟到解锁（计数器为０）后进行处理。为了实现这一目的，ｅＣｏｓ将中断
服务程序ＩＳＲ分割成两部分。它的第一部分在响应中断时进行即时处理，负责处理与实时相
关的部分，它的第二部分称为滞后服务程序ＤＳＲ，这一部分的实时相关性小，ＤＳＲ排队等待直
到调度器认为安全时才继续执行。

ｅＣｏｓ提供了一些对调度器状态进行控制的ＡＰＩ函数，应用程序在使用它们的时候应该包
含头文件＜ｃｙｇ／ｋｅｒｎｅｌ／ｋａｐｉ．ｈ＞。它们分别是：

ｖｏｉｄｃｙｇ ｓｃｈｅｄｕｌｅｒ ｓｔａｒｔ（ｖｏｉｄ）；

该函数启动调度器开始工作。它使能系统中断，使系统可以开始进行Ｉ／Ｏ操作。在启动
调度器之后，系统控制权将被交给优先级最高的线程。该函数被调用时将不会再返回。它只

能被调用一次，表明系统的初始化操作已经结束。在典型的配置中，系统启动程序（ｓｔａｒｔｕｐ）通

９７

常会自动调用该函数，应用程序不应该再调用该函数。在某些不使用系统启动程序的应用中，

必须调用该函数。

ｖｏｉｄｃｙｇ ｓｃｈｅｄｕｌｅｒｌｏｃｋ（ｖｏｉｄ）；

该函数用于锁定调度器，它阻止线程被另一个线程抢先。调度器的锁定机制使用了一个

锁计数器，当调用该函数时，锁计数器将加１。为重新使能多个任务之间的切换，必须调用ｃｙｇ
ｓｃｈｅｄｕｌｅｒ ｕｎｌｏｃｋ（）进行解锁，而且调用ｃｙｇ ｓｃｈｅｄｕｌｅｒ ｕｎｌｏｃｋ的次数应该等于ｃｙｇ
ｓｃｈｅｄｕｌｅｒ ｌｏｃｋ的次数。

ｖｏｉｄｃｙｇ ｓｃｈｅｄｕｌｅｒ ｓａｆｅｌｏｃｋ（ｖｏｉｄ）；

如果调度器还没有被锁定，则锁定调度器。如果调度器已经被锁定一次或多次，则该函数

对锁计数器不起任何作用。如果锁计数器为０（即调度器还没有被锁定），则锁定调度器并将
锁计数器置为１。

ｖｏｉｄｃｙｇ ｓｃｈｅｄｕｌｅｒ ｕｎｌｏｃｋ（ｖｏｉｄ）；

对调度器解锁。每一次调用该函数都将使锁计数器减１。为保证对调度器的真正解锁操
作并使能线程之间的切换，对每一次ｃｙｇ ｓｃｈｅｄｕｌｅｒ ｌｏｃｋ的调用都应该调用一次ｃｙｇ
ｓｃｈｅｄｕｌｅｒ ｕｎｌｏｃｋ。

ｃｙｇ ｕｃｏｕｎｔ３２ｃｙｇ ｓｃｈｅｄｕｌｅｒ ｒｅａｄ ｌｏｃｋ（ｖｏｉｄ）；

该函数读取调度器的锁计数器，获取调度器的当前锁定次数。如果线程没有锁定调度器，

则返回０。如果锁计数器为Ｎ，则应该调用ｃｙｇ ｓｃｈｅｄｕｌｅｒ ｕｎｌｏｃｋ函数Ｎ次，从而重新使能线
程上下文切换操作。

一般来说，应用程序不应使用调度器锁，应该使用诸如互斥体和信号等这样的同步原语。

虽然锁定调度器可以使当前线程不会被抢先，但也阻碍了具有更高优先级的线程的运行。它

还将使系统中的ＤＳＲ无法运行，从而导致设备驱动程序不能对Ｉ／Ｏ请求进行服务。
尽管如此，还是有一种情况合适于调度器锁定机制的使用。如果某些数据结构需要被应

用线程和某个中断的ＤＳＲ所共享，那么该线程可以使用调度器锁来防止ＤＳＲ对这些数据结
构的并发请求，从而安全地对数据进行操作。这种锁定只需要很短的一段时间。在某些异常

情况下，使用调度器锁比使用互斥体将更为有效。

ｃｙｇ ｓｃｈｅｄｕｌｅｒ ｓｔａｒｔ只能在系统初始化过程中被调用，这是因为它标志着这一初始化阶
段的结束。调度器的其他ＡＰＩ函数可以在线程和ＤＳＲ的环境下被调用。在ＤＳＲ内对调度器
进行锁定将不会有任何实际效果，中断机制在运行ＤＳＲ之前自动进行了这种锁定操作。

５３ 内存分配

大多数的ｅＣｏｓ系统调用在被使用时，要求将预先指定的由系统调用所产生的目标对象的
内存地址传递给该系统调用（即对其进行静态内存分配）。在嵌入式系统中，这是一种常用的

较好方法。对内存进行静态分配可以对资源进行很好的控制。

ｅＣｏｓ是一个单进程多线程系统，作为一个嵌入式可配置操作系统，它的内存管理相对简

０８

单，不分段也不分页。惟一较复杂的地方是其可配置部分。ｅＣｏｓ采用一种基于内存池的动态
内存分配机制。这是由μＩＴＲＯＮ兼容层实现的一种灵活有效的内存管理方式。ｅＣｏｓ的内存
分配机制不在内核包内，而是使用一个单独的内存分配包，其目录位于ｃｙｇ＼ｐａｃｋａｇｅｓ＼
ｓｅｒｖｉｃｅｓ＼ｍｅｍａｌｌｏｃ。

５３１ 内存分配机制

ｅＣｏｓ提供两种可供选择的内存模板Ｃｙｇ Ｍｅｍｐｏｏｌｔ和Ｃｙｇ Ｍｅｍｐｏｌｔ２，每种内存模板又
提供两种可选的内存池：一种是变长内存池（ｖａｒｉａｂｌｅｓｉｚｅｍｅｍｏｒｙｐｏｏｌ），根据申请的大小进行
分配；另一种是定长内存池（ｆｉｘｅｄｓｉｚｅｍｅｍｏｒｙｐｏｏｌ），以固定大小的块为单位进行分配。变长
内存池使用链表来进行管理，定长内存池使用位图来进行管理。默认情况下，ｅＣｏｓ使用变长
内存池方式管理内存，Ｃ库函数ｍａｌｌｏｃ（）使用了变长内存池来实现内存分配。如果在配置时
选择了标准Ｃ库，编程时可以调用库函数ｍａｌｌｏｃ（）进行内存分配。
图５２为ｅＣｏｓ图形配置工具中的内存分配机制的配置方法。内存分配器的选择通过选

项ＣＹＧＢＬＤ ＭＥＭＡＬＬＯＣ ＭＡＬＬＯＣ ＩＭＰＬＥＭＥＮＴＡＴＩＯＮ ＨＥＡＤＥＲ来指定。在选择
新的分配器的时候，必须将新分配器的“ｒｅｑｕｉｒｅｓ”条件设置为该内存分配器所使用的头文件所
在位置，否则将会引起冲突。使能新的内存分配器的时候还应该对ＣＹＧＩＮＴ ＭＥＭＡＬＬＯＣ
ＭＡＬＬＯＣ ＡＬＬＯＣＡＴＯＲＳ进行声称。

图５２ ｅＣｏｓ配置工具中的内存分配机制的配置

在多线程环境下，必须以一种安全的方式使用内存分配器。目前所有内存分配器所采用

的一种有效方式是使用模板Ｃｙｇ Ｍｅｍｐｏｌｔ２。该模板提供了额外的一些函数，例如具有阻塞
能力的ａｌｌｏｃ（）函数，这些函数在返回前等待内存被释放，并且还具有一个用于超时处理的定时

１８

变量。

ｅＣｏｓ允许对拥有所有可用内存的内存池进行自动定义，可以自动分配堆的大小。要实现
这一功能，必须使用ｅＣｏｓ配置工具中的内存布局工具 ＭＬＴ对用户定义段（ｕｓｅｒｄｅｆｉｎｅｄ
ｓｅｃｔｉｏｎ）进行定义。这些段的名字必须冠以“ｈｅａｐ”的前缀，如“ｈｅａｐ１”、“ｈｅａｐ２”、“ｈｅａｐｄｒａｍ”等
等。用户定义段可以是固定大小，也可以是一个未知的大小。如果是未知大小，它的大小可以

通过下一个具有绝对地址的段的位置或内存区的末端来确定，通常使用后者。如果没有发现

以“ｈｅａｐ”开头的用户定义段，将使用一个ｆａｌｌｂａｃｋ静态数组（ｆａｌｌｂａｃｋｓｔａｔｉｃａｒｒａｙ），其大小在配
置时指定。

在具有多个不连续的内存区并且没有存储管理单元 ＭＭＵ将它们连接成一个连续的内
存空间时，可以定义多个堆段。此时将自动使用一个特殊封装的分配器，该分配器定义于

ｍｅｍｊｏｉｎ．ｈｘｘ文件内，是Ｃｙｇ Ｍｅｍｐｏｏｌ Ｊｏｉｎｅｄ模板类的一个实例。它将每一个堆段的记录
形成一个列表，根据该表可以确定使用的是哪一个内存池。使用Ｃｙｇ Ｍｅｍｐｏｏｌ Ｊｏｉｎｅｄ类将
增加开销，如果开销过大，最好不要使用这种多个不连续的堆。

在一些特殊情况下，某些系统具有现场增加内存的支持能力。这种情形要求对这些内存

进行自动分配。为此，在硬件抽象层ＨＡＬ中（ｈａｌｉｎｔｒ．ｈ）有一个宏定义：

ＨＡＬ ＭＥＭ ＲＥＡＬ ＲＥＧＩＯＮ ＴＯＰ（ｃｙｇ ｕｉｎｔ８ｒｅｇｉｏｎｅｎｄ）

该宏采用正常情况下的内存末端地址作为参数。它与 ＭＬＴ中的内存区大小相对应，是
内存没有扩充之前的内存区的最高端地址。它返回一个由ＨＡＬ实时检测到的实际内存末端
地址。通过该宏的使用，可以灵活地对多个内存区进行操作。

５３２ 固定长度内存分配ＡＰＩ

ｅＣｏｓ的内存分配包提供了一些用于进行固定长度内存分配操作的ＡＰＩ函数。这些函数
的定义位于头文件＜ｃｙｇ／ｍｅｍａｌｌｏｃ／ｋａｐｉ．ｈ＞内。下面是这些ＡＰＩ函数的简单介绍。

ｖｏｉｄｃｙｇ ｍｅｍｐｏｏｌｆｉｘ ｃｒｅａｔｅ
（

ｖｏｉｄｂａｓｅ， ／ｐｏｉｎｔｅｒｔｏｍｅｍｏｒｙｔｏｕｓｅａｓｈｅａｐ／

ｃｙｇ ｉｎｔ３２ｓｉｚｅ， ／ｓｉｚｅｏｆｍｅｍｏｒｙｔｏｕｓｅａｓｈｅａｐ／

ｃｙｇ ｉｎｔ３２ｂｌｏｃｋｓｉｚｅ， ／ｓｉｚｅｏｆｂｌｏｃｋｓｉｎｆｉｘｅｄｍｅｍｐｏｏｌ／

ｃｙｇ ｈａｎｄｌｅ ｔｈａｎｄｌｅ， ／ｒｅｔｕｒｎｅｄｈａｎｄｌｅｔｏｐｏｏｌ／

ｃｙｇ ｍｅｍｐｏｏｌｆｉｘｆｉｘ ／ｆｉｘｍｅｍｐｏｏｌｓｔｒｕｃｔｕｒｅ／
）

该函数用于产生一个可以进行固定大小内存分配的定长内存池。参数ｓｉｚｅ不一定是整个
可用内存的大小。定长内存池在速度上要优于变长内存池。新产生的内存池可以通过ｈａｎｄｌｅ
对其进行访问。

ｖｏｉｄｃｙｇ ｍｅｍｐｏｏｌｆｉｘ ｄｅｌｅｔｅ
（

ｃｙｇ ｈａｎｄｌｅ ｔｆｉｘｐｏｏｌ／ｆｉｘｅｄｓｉｚｅｄｍｅｍｏｒｙｐｏｏｌｔｏｄｅｌｅｔｅ／
）

２８

该函数删除一个定长内存池。使用时应该注意不要删除正在使用的内存池，否则将会引

起系统错误。

ｖｏｉｄｃｙｇ ｍｅｍｐｏｏｌｆｉｘ ａｌｌｏｃ
（

ｃｙｇ ｈａｎｄｌｅ ｔｆｉｘｐｏｏｌ／ｆｉｘｅｄｓｉｚｅｄｍｅｍｏｒｙｐｏｏｌｔｏａｌｌｏｃａｔｅｆｒｏｍ／
）

该函数从内存池中分配一个固定大小的内存块。内存分配的最小边界为４Ｂ。如果没有
可用的内存，调用该函数的任务将被阻塞，直至有足够的满足需要的内存。其返回值为新分配

的内存指针，如果没有分配内存则为ＮＵＬＬ。

ｖｏｉｄｃｙｇ ｍｅｍｐｏｏｌｆｉｘ ｔｉｍｅｄ ａｌｌｏｃ
（

ｃｙｇ ｈａｎｄｌｅ ｔｆｉｘｐｏｏｌ， ／ｆｉｘｅｄｍｅｍｏｒｙｐｏｏｌｔｏａｌｌｏｃａｔｅｆｒｏｍ／

ｃｙｇ ｔｉｃｋ ｃｏｕｎｔ ｔａｂｓｔｉｍｅ ／ａｂｓｏｌｕｔｅｔｉｍｅｏｕｔｖａｌｕｅ／
）

该函数从内存池中分配一个固定长度的内存块。内存分配的最小边界为４Ｂ。如果没有
可用的内存，调用该函数的任务将被阻塞，直到有足够的满足需要的内存或者到达ａｂｓｔｉｍｅ指
定的时间（超时）。其返回值为新分配的内存指针，如果超时则为ＮＵＬＬ。

ｖｏｉｄｃｙｇ ｍｅｍｐｏｏｌｆｉｘ ｔｒｙ ａｌｌｏｃ
（

ｃｙｇ ｈａｎｄｌｅ ｔｆｉｘｐｏｏｌ／ｆｉｘｅｄｍｅｍｏｒｙｐｏｏｌｔｏａｌｌｏｃａｔｅｆｒｏｍ／
）

该函数从内存池中分配一个固定长度的内存块。内存分配的最小边界为４Ｂ。如果没有
可用的内存，则立即返回ＮＵＬＬ。其返回值为新分配的内存指针，如果不能分配内存则为

ＮＵＬＬ。

ｖｏｉｄｃｙｇ ｍｅｍｐｏｏｌｆｉｘ ｆｒｅｅ
（

ｃｙｇ ｈａｎｄｌｅ ｔｆｉｘｐｏｏｌ，／ｐｏｏｌｍｅｍｏｒｙｗａｓａｌｌｏｃａｔｅｄｆｒｏｍ／

ｖｏｉｄｐ ／ｍｅｍｏｒｙｔｏｒｅｔｕｒｎｔｏｐｏｏｌ／
）

该函数释放从定长内存池中分配的内存。必须确认被释放的内存是在同一个内存池

ｆｉｘｐｏｏｌ中分配的。如果把从某个内存池分配的内存释放到另一个内存池，则将出现无法预料
的结果。

ｃｙｇ ｂｏｏｌｔｃｙｇ ｍｅｍｐｏｏｌｆｉｘ ｗａｉｔｉｎｇ
（

ｃｙｇ ｈａｎｄｌｅ ｔｆｉｘｐｏｏｌ／ｆｉｘｐｏｏｌｔｏｃｈｅｃｋ／
）

该函数检查是否有线程正在等待从定长内存池中分配内存而处于被阻塞状态。如果有线

３８

程被阻塞，则返回ｔｒｕｅ，否则返回ｆａｌｓｅ。

ｖｏｉｄｃｙｇ ｍｅｍｐｏｏｌｆｉｘ ｇｅｔｉｎｆｏ
（

ｃｙｇ ｈａｎｄｌｅ ｔｆｉｘｐｏｏｌ， ／ｐｏｏｌｔｏｇｅｔｉｎｆｏｏｎ／

ｃｙｇ ｍｅｍｐｏｏｌｉｎｆｏｉｎｆｏ／ｒｅｃｅｉｖｅｓｉｎｆｏ／
）

该函数返回定长内存池的信息。返回的内存池信息是一个结构体：

ｔｙｐｅｄｅｆｓｔｒｕｃｔ｛

ｃｙｇ ｉｎｔ３２ｔｏｔａｌｍｅｍ；

ｃｙｇ ｉｎｔ３２ｆｒｅｅｍｅｍ；

ｖｏｉｄｂａｓｅ；

ｃｙｇ ｉｎｔ３２ｓｉｚｅ；

ｃｙｇ ｉｎｔ３２ｂｌｏｃｋｓｉｚｅ；

ｃｙｇ ｉｎｔ３２ｍａｘｆｒｅｅ；
｝ｃｙｇ ｍｅｍｐｏｏｌｉｎｆｏ；

５３３ 可变长度内存分配ＡＰＩ

除了固定长度内存分配ＡＰＩ外，ｅＣｏｓ还提供了可变长度内存分配的一些ＡＰＩ函数，函数
的定义位于头文件＜ｃｙｇ／ｍｅｍａｌｌｏｃ／ｋａｐｉ．ｈ＞内。下面是这些ＡＰＩ函数的简单介绍。

ｖｏｉｄｃｙｇ ｍｅｍｐｏｏｌ ｖａｒ ｃｒｅａｔｅ
（

ｖｏｉｄｂａｓｅ， ／ｐｏｉｎｔｅｒｔｏｍｅｍｏｒｙｔｏｕｓｅａｓｈｅａｐ／

ｃｙｇ ｉｎｔ３２ｓｉｚｅ， ／ｓｉｚｅｏｆｍｅｍｏｒｙｔｏｕｓｅａｓｈｅａｐ／

ｃｙｇ ｈａｎｄｌｅ ｔｈａｎｄｌｅ，／ｒｅｔｕｒｎｅｄｈａｎｄｌｅｔｏｐｏｏｌ／

ｃｙｇ ｍｅｍｐｏｏｌ ｖａｒｖａｒ／ｍｅｍｐｏｏｌｓｔｒｕｃｔｕｒｅ／
）

该函数用于产生一个可以进行可变长度内存分配的变长内存池。参数ｓｉｚｅ不一定是整个
可用内存的大小。它的功能等同于标准Ｃ函数ｆｒｅｅ和ｍａｌｌｏｃ。新产生的内存池可以通过

ｈａｎｄｌｅ进行访问。

ｖｏｉｄｃｙｇ ｍｅｍｐｏｏｌ ｖａｒ ｄｅｌｅｔｅ
（

ｃｙｇ ｈａｎｄｌｅ ｔｖａｒｐｏｏｌ／ｖａｒｉａｂｌｅｓｉｚｅｄｍｅｍｏｒｙｐｏｏｌｔｏｄｅｌｅｔｅ／
）

该函数删除一个变长内存池。使用时应该注意不要删除正在使用的内存池，否则将引起

系统错误。

ｖｏｉｄｃｙｇ ｍｅｍｐｏｏｌ ｖａｒ ａｌｌｏｃ
（

ｃｙｇ ｈａｎｄｌｅ ｔｖａｒｐｏｏｌ，／ｖａｒｉａｂｌｅｍｅｍｏｒｙｐｏｏｌｔｏａｌｌｏｃａｔｅｆｒｏｍ／

４８

ｃｙｇ ｉｎｔ３２ｓｉｚｅ ／ｓｉｚｅｏｆｍｅｍｏｒｙｂｌｏｃｋｔｏａｌｌｏｃａｔｅ／
）

该函数从变长内存池中分配一个任意长度的内存块。内存分配的最小边界为４Ｂ。如果
没有可用的内存，调用该函数的任务将被阻塞，直至有足够的满足需要的内存。其返回值为新

分配的内存指针，如果没有分配内存则为ＮＵＬＬ。

ｖｏｉｄｃｙｇ ｍｅｍｐｏｏｌ ｖａｒ ｔｉｍｅｄ ａｌｌｏｃ
（

ｃｙｇ ｈａｎｄｌｅ ｔｖａｒｐｏｏｌ， ／ｖａｒｉａｂｌｅｍｅｍｏｒｙｐｏｏｌｔｏａｌｌｏｃａｔｅｆｒｏｍ／

ｃｙｇ ｉｎｔ３２ｓｉｚｅ， ／ｓｉｚｅｏｆｍｅｍｏｒｙｂｌｏｃｋｔｏａｌｌｏｃａｔｅ／

ｃｙｇ ｔｉｃｋ ｃｏｕｎｔ ｔａｂｓｔｉｍｅ／ａｂｓｏｌｕｔｅｔｉｍｅｏｕｔｖａｌｕｅ／
）

该函数从变长内存池中分配一个任意长度的内存块。内存分配的最小边界为４Ｂ。如果
没有可用的内存，调用该函数的任务将被阻塞，直至有足够的满足需要的内存或者到达

ａｂｓｔｉｍｅ指定的时间（超时）。其返回值为新分配的内存指针，如果超时则为ＮＵＬＬ。

ｖｏｉｄｃｙｇ ｍｅｍｐｏｏｌ ｖａｒ ｔｒｙ ａｌｌｏｃ
（

ｃｙｇ ｈａｎｄｌｅ ｔｖａｒｐｏｏｌ，／ｖａｒｉａｂｌｅｍｅｍｏｒｙｐｏｏｌｔｏａｌｌｏｃａｔｅｆｒｏｍ／

ｃｙｇ ｉｎｔ３２ｓｉｚｅ ／ｓｉｚｅｏｆｍｅｍｏｒｙｂｌｏｃｋｔｏａｌｌｏｃａｔｅ／
）

该函数从变长内存池中分配一个任意长度的内存块。内存分配的最小边界为４Ｂ。如果
没有可用的内存，则立即返回ＮＵＬＬ。其返回值为新分配的内存指针，如果不能分配内存则为

ＮＵＬＬ。

ｖｏｉｄｃｙｇ ｍｅｍｐｏｏｌ ｖａｒ ｆｒｅｅ
（

ｃｙｇ ｈａｎｄｌｅ ｔｖａｒｐｏｏｌ，／ｐｏｏｌｍｅｍｏｒｙｗａｓａｌｌｏｃａｔｅｄｆｒｏｍ／

ｖｏｉｄｐ ／ｍｅｍｏｒｙｔｏｒｅｔｕｒｎｔｏｐｏｏｌ／
）

该函数释放从变长内存池中分配的内存。必须确认被释放的内存是在同一个内存池

ｖａｒｐｏｏｌ中分配的。如果把从某个内存池分配的内存释放到另一个内存池，则其结果无法预
料。

ｃｙｇ ｂｏｏｌｔｃｙｇ ｍｅｍｐｏｏｌ ｖａｒ ｗａｉｔｉｎｇ
（

ｃｙｇ ｈａｎｄｌｅ ｔｖａｒｐｏｏｌ／ｖａｒｐｏｏｌｔｏｃｈｅｃｋ／
）

该函数检查是否有线程正在等待从变长内存池ｖａｒｐｏｏｌ中分配内存而处于被阻塞状态。
如果有线程被阻塞，则返回ｔｒｕｅ，否则返回ｆａｌｓｅ。

ｖｏｉｄｃｙｇ ｍｅｍｐｏｏｌ ｖａｒ ｇｅｔｉｎｆｏ

５８

（

ｃｙｇ ｈａｎｄｌｅ ｔｖａｒｐｏｏｌ， ／ｐｏｏｌｔｏｇｅｔｉｎｆｏｏｎ／

ｃｙｇ ｍｅｍｐｏｏｌｉｎｆｏｉｎｆｏ／ｒｅｃｅｉｖｅｓｉｎｆｏ／
）

该函数返回一个变长内存池的信息。返回的内存池信息是一个结构体：

ｔｙｐｅｄｅｆｓｔｒｕｃｔ｛

ｃｙｇ ｉｎｔ３２ｔｏｔａｌｍｅｍ；

ｃｙｇ ｉｎｔ３２ｆｒｅｅｍｅｍ；

ｖｏｉｄｂａｓｅ；

ｃｙｇ ｉｎｔ３２ｓｉｚｅ；

ｃｙｇ ｉｎｔ３２ｂｌｏｃｋｓｉｚｅ；

ｃｙｇ ｉｎｔ３２ｍａｘｆｒｅｅ；
｝ｃｙｇ ｍｅｍｐｏｏｌｉｎｆｏ；

５４ 中断处理

中断是由外部设备引起的异步事件。它可能随时发生，可能与当前正在运行的线程没有

任何关联关系。在实时操作系统设计中，对中断的处理颇为复杂。中断向量的定义、中断如何

交付软件处理、中断的屏蔽方法等等都与具体硬件结构有着密切的联系。ｅＣｏｓ采取的方法是
采用一个通用的中断处理机制，它具有足够多的函数钩用于放置与硬件结构相关的程序代码。

５４１ 线程与中断处理程序

在正常情况下，处理器上运行的是系统中的某一个线程，它可能是应用线程，也可能是系

统线程或空闲线程。当发生中断时，系统将转到中断处理程序进行处理。在中断完成后，再由

系统调度器来决定是返回被中断的线程还是转入其他线程。

线程和中断处理程序必须能够进行交互。如果一个线程正在等待Ｉ／Ｏ操作的完成，相应
的中断处理程序必须具有通知该线程此次Ｉ／Ｏ操作已经完成的能力。有许多方法可以实现
这种需求。一种简单的实现方法是使用变量，中断处理程序对该变量进行设置，而线程则对该

变量进行连续或定时查询。连续查询会占用大量的ＣＰＵ时间，而定时查询将会造成一定的延
时。另外一种更好的方法是使用同步原语，中断处理程序可以使用条件变量、信号或其他的同

步原语来通知正在等待中断操作完成的线程。这种方式在Ｉ／Ｏ事件发生之前不会占用ＣＰＵ
时间，而且在Ｉ／Ｏ事件发生的时候该线程可以立即重新运行（当然是在没有更高优先级线程
的条件下）。

同步原语有一些数据是共享的，在并发访问时应该注意数据的安全性。如果被中断的线

程只进行一些计算操作，则中断处理程序可以十分安全地访问同步原语。但如果被中断的线

程正在执行内核调用，则有可能破坏内核数据。避免这一问题的方法之一是在处于临界区的

内核函数中禁止中断。许多系统可以简单而快速地实现这种方法，但同时也带来了一个问题：

中断被频繁地禁止，而且被禁止的时间可能相当长。在某些应用中这种问题可以不考虑，但许

多嵌入式应用要求中断能够尽快得到处理，这种情况下不适合使用禁止中断的方式。

６８

为解决这一问题，内核将中断处理分成两个层次。与中断向量直接相连的是中断服务程

序ＩＳＲ，它对中断进行尽可能的快速处理。ＩＳＲ只能使用少量的内核调用，不能使用唤醒线程
的调用。当ＩＳＲ检测到Ｉ／Ｏ操作已经完成因而要唤醒线程的时候，它引起中断的另一层处理
程序的运行，这一层中断处理程序叫做滞后中断服务程序ＤＳＲ。ＤＳＲ可以进行更多的内核调
用，它可以给条件变量一个信号，也可以发出一个信号量。

禁止中断可以阻止ＩＳＲ的运行，但对中断的禁止要尽可能少，而且时间不能太长。线程
禁止中断的主要原因是它要对一些ＩＳＲ共享数据进行操作。例如，线程在一个空闲ｂｕｆｆｅｒ链
表上增加一个ｂｕｆｆｅｒ时需要禁止中断，如果在对链表操作过程中有硬件中断发生，该中断将被
挂起直至中断被重新使能。

内核还使用了调度锁对中断处理进行控制。使用各种内核函数（如ｃｙｇ ｍｕｔｅｘ ｌｏｃｋ和

ｃｙｇ ｓｅｍａｐｈｏｒｅ ｐｏｓｔ等）对调度锁进行声称，在对内核数据的操作完成之后再释放调度锁。
如果中断要求运行ＤＳＲ但调度器已被锁定时，ＤＳＲ将被挂起。当调度锁被释放之后，再运行
被挂起的ＤＳＲ。可以给同步原语发送事件，唤醒具有更高优先级的线程。
综上所述，中断处理程序包括两部分。其中一部分为中断服务程序ＩＳＲ，当中断发生时

立即执行这一部分程序，执行过程中中断是被禁止的。由于整个ＩＳＲ都要禁止中断，因此ＩＳＲ
应尽可能简短，而且不要使用任何系统服务。当ＩＳＲ执行完后，将执行中断程序的另一部分
即滞后服务程序ＤＳＲ。在ＤＳＲ的执行过程中，中断处于使能状态。

５４２ 中断的处理

ｅＣｏｓ内核提供了一个对中断进行处理的接口，该接口具有许多ＡＰＩ函数，它们用于安装
中断处理程序并对中断进行控制。这些函数主要被设备驱动程序和那些与硬件直接交互的应

用程序所使用。在大多数情况下，应该避免对这些内核函数的直接使用，而应该使用公共

ＨＡＬ所提供的设备驱动程序ＡＰＩ函数。内核包是一个可选包，某些应用（如ＲｅｄＢｏｏｔ）不需要
使用多线程机制和同步机制。在这种无内核的ｅＣｏｓ配置中，如果程序直接调用内核ＡＰＩ而不
是调用设备驱动程序ＡＰＩ，那么这样的程序将不能正常工作。
不同体系结构对中断的处理过程不完全一致，内核所提供的中断处理对这些不同的处理

细节进行抽象和提炼，从而简化了应用程序的开发过程。中断处理的具体过程都在硬件抽象

层ＨＡＬ中实现。ｅＣｏｓ为每一个中断都分配了一个中断向量，当系统调用涉及到中断处理程
序时，将会用到这些向量。中断向量的具体分配依赖于具体硬件平台所使用的微处理器和中

断控制器。

ｅＣｏｓ采用一个通用的中断处理机制，它具有足够多的函数钩子用于放置与硬件结构相关
的程序代码。在系统初始化阶段，要完成中断句柄的产生、中断与中断向量的挂接以及中断的

配置等操作。在安装中断处理程序时，首先要根据中断向量和中断优先级以及相应的中断服

务程序ＩＳＲ和滞后中断服务程序ＤＳＲ使用内核ＡＰＩ函数ｃｙｇ ｉｎｔｅｒｒｕｐｔ ｃｒｅａｔｅ为中断产生
一个中断句柄，然后再调用ｃｙｇ ｉｎｔｅｒｒｕｐｔ ａｔｔａｃｈ将实际中断挂接到中断句柄上。一个中断
向量可能有多个中断句柄，但只能使用其中的一个。在更换中断向量的中断句柄时，必须先调

用ｃｙｇ ｉｎｔｅｒｒｕｐｔ ｄｅｔａｃｈ解除该中断句柄与中断的挂接关系，然后再调用ｃｙｇ ｉｎｔｅｒｒｕｐｔ
ａｔｔａｃｈ将中断挂接到新的中断句柄上。如果不再需要某个中断句柄，则可用ｃｙｇ ｉｎｔｅｒｒｕｐｔ
ｄｅｌｅｔｅ将其删除。在某些系统中需要对中断的触发方式进行配置，使用ｃｙｇ ｉｎｔｅｒｒｕｐｔ

７８

ｃｏｎｆｉｇｕｒｅ函数可以选择中断的触发方式：电平触发或者边沿触发、高电平触发或者低电平触
发、上升沿触发或者下降沿触发。

有两种方法可用于控制是否允许中断的发生。一种方法是使用ｃｙｇ ｉｎｔｅｒｒｕｐｔ ｄｉｓａｂｌｅ
函数和ｃｙｇ ｉｎｔｅｒｒｕｐｔ ｅｎａｂｌｅ函数，全局性地禁止或使能所有中断。这些工作通常由ＣＰＵ在
内部对自身进行操作来实现。另一种方法是利用中断控制器的屏蔽寄存器对指定的具体中断

进行屏蔽操作。有两个函数用于屏蔽指定的中断：ｃｙｇ ｉｎｔｅｒｒｕｐｔ ｍａｓｋ和ｃｙｇ ｉｎｔｅｒｒｕｐｔ
ｉｎｔｕｎｓａｆｅ。对中断的屏蔽不是一个原子操作，如果两个线程同时进行中断屏蔽操作可能会出
现问题。ｃｙｇ ｉｎｔｅｒｒｕｐｔ ｍａｓｋ函数对中断屏蔽进行操作时，要禁止所有的中断。在已经知道
中断被禁止的情况下，可以使用ｃｙｇ ｉｎｔｅｒｒｕｐｔｉｎｔｕｎｓａｆｅ函数进行屏蔽操作。
为支持ＳＭＰ系统，内核提供了两个针对ＳＭＰ系统的中断处理函数。ｃｙｇ ｉｎｔｅｒｒｕｐｔ ｓｅｔ

ｃｐｕ函数用于把某个中断指定给某个ＣＰＵ进行处理，只有该ＣＰＵ才能检测到该中断的发
生，而且相应的向量服务程序ＶＳＲ以及中断服务程序ＩＳＲ和ＤＳＲ也只能在该ＣＰＵ上运行。
另一个函数ｃｙｇ ｉｎｔｅｒｒｕｐｔ ｇｅｔ ｃｐｕ函数用于查找中断由哪一个处理器进行处理。
当中断发生时，首先将进入向量服务程序ＶＳＲ。ＶＳＲ是一小段程序，一般是一段汇编程

序，ｅＣｏｓ提供了默认的ＶＳＲ。默认ＶＳＲ的运行独立于处理该中断的ＩＳＲ，并为ＩＳＲ建立Ｃ语
言环境。在某些应用中，有可能需要替换ｅＣｏｓ的默认ＶＳＲ而直接对中断进行处理。ｃｙｇ
ｉｎｔｅｒｒｕｐｔ ｇｅｔ ｖｓｒ函数用于保存指定中断向量的当前ＶＳＲ，在需要的时候可以恢复ＶＳＲ。

ｃｙｇ ｉｎｔｅｒｒｕｐｔ ｓｅｔ ｖｓｒ函数用于安装一个ＶＳＲ。

５４３ 内核中断处理ＡＰＩ函数

前面已经提及了内核对中断进行处理的一些ＡＰＩ函数，这些函数的定义位于头文件＜
ｃｙｇ／ｋｅｒｎｅｌ／ｋａｐｉ．ｈ＞内，使用时应该包含该文件。下面简单介绍这些ＡＰＩ函数。

ｖｏｉｄｃｙｇ ｉｎｔｅｒｒｕｐｔ ｃｒｅａｔｅ
（

ｃｙｇ ｖｅｃｔｏｒ ｔｖｅｃｔｏｒ， ／ｉｎｔｅｒｒｕｐｔｖｅｃｔｏｒ／

ｃｙｇ ｐｒｉｏｒｉｔｙ ｔｐｒｉｏｒｉｔｙ， ／ｐｒｉｏｒｉｔｙｏｆｉｎｔｅｒｒｕｐｔ／

ｃｙｇ ａｄｄｒｗｏｒｄ ｔｄａｔａ， ／ｄａｔａｐｏｉｎｔｅｒ／

ｃｙｇ ＩＳＲ ｔｉｓｒ， ／ｉｎｔｅｒｒｕｐｔｓｅｒｖｉｃｅｒｏｕｔｉｎｅ／

ｃｙｇ ＤＳＲ ｔｄｓｒ， ／ｄｅｆｅｒｒｅｄｓｅｒｖｉｃｅｒｏｕｔｉｎｅ／

ｃｙｇ ｈａｎｄｌｅ ｔｈａｎｄｌｅ， ／ｒｅｔｕｒｎｅｄｈａｎｄｌｅｔｏｉｎｔｅｒｒｕｐｔ／

ｃｙｇ ｉｎｔｅｒｒｕｐｔｉｎｔｒ ／ｐｕｔｉｎｔｅｒｒｕｐｔｈｅｒｅ／
）

该函数用于创建一个新的中断句柄。其中参数ｖｅｃｔｏｒ和ｐｒｉｏｒｉｔｙ分别为中断向量和中断
的优先级。ｄａｔａ是对中断进行处理时传递给ＩＳＲ和ＤＳＲ的数据的指针。当响应中断时，首先
执行的是ＶＳＲ，然后再调用参数ｉｓｒ所指定的中断服务程序ＩＳＲ。ＩＳＲ是一个Ｃ函数，其函数
格式如下：

ｃｙｇ ｕｉｎｔ３２
ｉｓｒ ｆｕｎｃｔｉｏｎ（ｃｙｇ ｖｅｃｔｏｒ ｔｖｅｃｔｏｒ，ｃｙｇ ａｄｄｒｗｏｒｄ ｔｄａｔａ）
｛ ｃｙｇ ｂｏｏｌｔｄｓｒ ｒｅｑｕｉｒｅｄ＝０；

８８

．．．
ｒｅｔｕｒｎｄｓｒ ｒｅｑｕｉｒｅｄ？ＣＹＧ ＩＳＲ ＣＡＬＬ ＤＳＲ：ＣＹＧ ＩＳＲ ＨＡＮＤＬＥＤ；

｝

ＩＳＲ函数的第一个参数是中断向量；第二个参数就是传送给ｃｙｇ ｉｎｔｅｒｒｕｐｔ ｃｒｅａｔｅ的参
数。如果ＩＳＲ返回ＣＹＧ ＩＳＲ ＨＡＮＤＬＥＤ，则不再调用ＤＳＲ，如果返回ＣＹＧ ＩＳＲ ＣＡＬＬ
ＤＳＲ，则还要调用ＤＳＲ。与该中断相对应的ＤＳＲ由参数ｄｓｒ指定，ＤＳＲ的函数原型如下：

ｖｏｉｄｄｓｒ ｆｕｎｃｔｉｏｎ（ｃｙｇ ｖｅｃｔｏｒ ｔｖｅｃｔｏｒ，

ｃｙｇ ｕｃｏｕｎｔ３２ｃｏｕｎｔ，

ｃｙｇ ａｄｄｒｗｏｒｄ ｔｄａｔａ）；

ＤＳＲ函数的第一个参数为中断向量；第二个参数指明该中断发生并且由ＩＳＲ调用该ＤＳＲ
的次数，其值通常为１，当系统负载很大时可能大于１；第三个参数就是传递给ｃｙｇ ｉｎｔｅｒｒｕｐｔ
ｃｒｅａｔｅ的ｄａｔａ参数。当ＩＳＲ返回ＣＹＧ ＩＳＲ ＣＡＬＬ ＤＳＲ时，将调用ＤＳＲ，此时如果调度器
没有被锁定，则立即运行ＤＳＲ。如果被中断的线程处于内核调用期间且锁定了调度器，则

ＤＳＲ将被推迟到调度器被释放时才运行。

ｃｙｇ ｉｎｔｅｒｒｕｐｔ ｃｒｅａｔｅ的另一个参数是ｈａｎｄｌｅ，它是该函数所创建的新的中断句柄。另外
还有一个参数ｉｎｔｒ，它为内核提供一个保存该中断句柄和相应数据的内存区域。

ｖｏｉｄｃｙｇ ｉｎｔｅｒｒｕｐｔ ｄｅｌｅｔｅ
（

ｃｙｇ ｈａｎｄｌｅ ｔｉｎｔｅｒｒｕｐｔ／ｉｎｔｅｒｒｕｐｔｔｏｄｅｌｅｔｅ／
）

该函数从系统中删除一个中断句柄。

ｖｏｉｄｃｙｇ ｉｎｔｅｒｒｕｐｔ ａｔｔａｃｈ
（

ｃｙｇ ｈａｎｄｌｅ ｔｉｎｔｅｒｒｕｐｔ／ｉｎｔｅｒｒｕｐｔｔｏａｔｔａｃｈ／
）

该函数将中断挂接到中断句柄上。在调用此函数之前，不能对中断进行处理。

ｖｏｉｄｃｙｇ ｉｎｔｅｒｒｕｐｔ ｄｅｔａｃｈ
（

ｃｙｇ ｈａｎｄｌｅ ｔｉｎｔｅｒｒｕｐｔ／ｉｎｔｅｒｒｕｐｔｔｏｄｅｔａｃｈ／
）

该函数解除中断与中断句柄的挂接。

ｖｏｉｄｃｙｇ ｉｎｔｅｒｒｕｐｔ ｇｅｔ ｖｓｒ
（

ｃｙｇ ｖｅｃｔｏｒ ｔｖｅｃｔｏｒ，／ｖｅｃｔｏｒｔｏｇｅｔ／

ｃｙｇ ＶＳＲ ｔｖｓｒ／ｐｏｉｎｔｅｒｔｏｓｔｏｒｅｖｓｒｐｏｉｎｔｅｒ／
）

该函数通过第二个参数获取中断的ＶＳＲ。ＶＳＲ由ｅＣｏｓ的硬件抽象层提供，通常不需要

９８

修改。

ｖｏｉｄｃｙｇ ｉｎｔｅｒｒｕｐｔ ｓｅｔ ｖｓｒ
（

ｃｙｇ ｖｅｃｔｏｒ ｔｖｅｃｔｏｒ，／ｖｅｃｔｏｒｔｏｓｅｔ／

ｃｙｇ ＶＳＲ ｔｖｓｒ ／ｐｏｉｎｔｅｒｔｏｎｅｗｖｓｒ／
）

该函数设置中断的ＶＳＲ。它将中断与相应的ＶＳＲ进行挂接。

ｖｏｉｄｃｙｇ ｉｎｔｅｒｒｕｐｔ ｄｉｓａｂｌｅ
（

ｖｏｉｄ
）

该函数禁止系统中的所有中断。除非在非用不可的情况才使用，正常情况下应尽量避免

使用该函数，该函数将会引起一定的中断延迟。该函数的每一次调用都要有相应的ｃｙｇ
ｉｎｔｅｒｒｕｐｔ ｅｎａｂｌｅ调用对中断进行重新使能。

ｖｏｉｄｃｙｇ ｉｎｔｅｒｒｕｐｔ ｅｎａｂｌｅ
（

ｖｏｉｄ
）

该函数用于使能中断。

ｖｏｉｄｃｙｇ ｉｎｔｅｒｒｕｐｔ ｍａｓｋ
（

ｃｙｇ ｖｅｃｔｏｒ ｔｖｅｃｔｏｒ／ｖｅｃｔｏｒｔｏｍａｓｋ／
）

该函数屏蔽指定的一个中断。

ｖｏｉｄｃｙｇ ｉｎｔｅｒｒｕｐｔ ｍａｓｋ ｉｎｔｕｎｓａｆｅ
（

ｃｙｇ ｖｅｃｔｏｒ ｔｖｅｃｔｏｒ／ｖｅｃｔｏｒｔｏｍａｓｋ／
）

该函数屏蔽指定的某个中断，它不具有中断安全性。

ｖｏｉｄｃｙｇ ｉｎｔｅｒｒｕｐｔ ｕｎｍａｓｋ
（

ｃｙｇ ｖｅｃｔｏｒ ｔｖｅｃｔｏｒ／ｖｅｃｔｏｒｔｏｕｎｍａｓｋ／
）

该函数解除对一个指定中断的屏蔽。

ｖｏｉｄｃｙｇ ｉｎｔｅｒｒｕｐｔ ｕｎｍａｓｋ ｉｎｔｕｎｓａｆｅ
（

０９

ｃｙｇ ｖｅｃｔｏｒ ｔｖｅｃｔｏｒ／ｖｅｃｔｏｒｔｏｕｎｍａｓｋ／
）

该函数解除对一个指定中断的屏蔽。该调用不具有中断安全性。

ｖｏｉｄｃｙｇ ｉｎｔｅｒｒｕｐｔ ａｃｋｎｏｗｌｅｄｇｅ
（

ｃｙｇ ｖｅｃｔｏｒ ｔｖｅｃｔｏｒ／ｖｅｃｔｏｒｔｏａｃｋｎｏｗｌｅｄｇｅ／
）

该函数对中断进行应答（清中断）。

ｖｏｉｄｃｙｇ ｉｎｔｅｒｒｕｐｔ ｃｏｎｆｉｇｕｒｅ
（

ｃｙｇ ｖｅｃｔｏｒ ｔｖｅｃｔｏｒ，／ｖｅｃｔｏｒｔｏｃｏｎｆｉｇｕｒｅ／

ｃｙｇ ｂｏｏｌｔｌｅｖｅｌ， ／ｌｅｖｅｌｏｒｅｄｇｅｔｒｉｇｇｅｒｅｄ／

ｃｙｇ ｂｏｏｌｔｕｐ ／ｒｉｓｉｎｇ／ｆａｌｌｉｎｇｅｄｇｅ，ｈｉｇｈ／ｌｏｗｌｅｖｅｌ／
）

该函数对指定中断进行配置。参数ｌｅｖｅｌ选择电平触发还是边沿触发，参数ｕｐ选择高电
平触发还是低电平触发，或者选择上升沿触发还是下降沿触发。

ｖｏｉｄｃｙｇ ｉｎｔｅｒｒｕｐｔ ｓｅｔ ｃｐｕ
（

ｃｙｇ ｖｅｃｔｏｒ ｔｖｅｃｔｏｒ，／ｖｅｃｔｏｒｔｏｃｏｎｔｒｏｌ／

ｃｙｇ ｃｐｕ ｔｃｐｕ ／ＣＰＵｔｏｓｅｔ／
）

该函数将ＳＭＰ系统中的某个中断分配给指定的ＣＰＵ进行处理。

ｃｙｇ ｃｐｕ ｔｃｙｇ ｉｎｔｅｒｒｕｐｔ ｇｅｔ ｃｐｕ
（

ｃｙｇ ｖｅｃｔｏｒ ｔｖｅｃｔｏｒ／ｖｅｃｔｏｒｔｏｃｏｎｔｒｏｌ／
）

该函数获取ＳＭＰ系统中某个中断被指定给哪个ＣＰＵ进行处理的信息。

５５ 例外处理

例外是线程运行时引起的同步事件。它包括硬件例外（如内存故障、非法指令等）和软件

例外（如超时）。在实时系统中采用标准Ｃ的例外处理代价太高，而且有些例外有可能得不到
正确处理。最简单和最灵活的例外处理方法就是采用调用例外处理函数的方法。这种例外处

理函数需要一个运行环境，要求对运行数据进行访问。它还需要一些有关例外的一些数据，包

括例外信息数据指针、例外向量、错误码及其他一些与例外有关的信息。从例外处理函数返回

后，线程将继续运行。根据对配置选项的设置，例外处理可以是全局的，也可以是以线程为单

位的，或者两者都是。如果是以线程为单位的，则每个线程都必须有一组例外处理程序。

１９

５５１ 例外处理程序

与中断处理一样，不同平台的例外处理有着很大的区别，因此例外处理程序的具体实现位

于硬件抽象层ＨＡＬ内。对于每一个例外都分配一个与其相对应的向量，即例外向量。当系
统调用涉及到例外处理程序时，将使用该例外向量。例外的发生在很大程度上取决于系统硬

件，尤其是处理器。处理器的相关说明文档有详细的例外说明，硬件抽象层中的头文件ｈａｌ
ｉｎｔｒ．ｈ中有例外的相关定义。
例外处理是一个可选项，可以通过配置选项ＣＹＧＰＫＧ ＫＥＲＮＥＬ ＥＸＣＥＰＴＩＯＮＳ对其

进行使能或禁止。在应用程序经过严格的测试，并且能确信不会出现任何例外的情况下，可以

禁止该选项，这样可以减少程序和数据的代码量。如果例外处理被使能，系统将为各种例外提

供默认的例外处理程序，但这些例外程序不做任何操作。如果应用程序要安装自己的例外处

理程序和了解例外的详细情况，则必须使能ＣＹＧＳＥＭ ＫＥＲＮＥＬ ＥＸＣＥＰＴＩＯＮＳ ＤＥＣＯＤＥ
选项。该选项使能内核对例外进行译码，并将例外交给与其相对应的例外处理程序进行处理。

图５３为ｅＣｏｓ配置工具对例外和中断处理进行配置的示意图。

图５３ ｅＣｏｓ配置工具对例外和中断处理的配置

如果要使用一个新的例外处理程序，可以使用ＡＰＩ函数ｃｙｇ ｅｘｃｅｐｔｉｏｎ ｓｅｔ ｈａｎｄｌｅｒ函
数进行安装，它为例外程序产生一个例外句柄。使用该函数时需要一个例外号、新的例外处理

程序的函数指针和传递给该处理程序的一个参数。该函数在返回时将带回原来的例外句柄的

信息，允许对它进行重新安装。如果不需要原来的例外处理程序的信息，则它返回时带回的可

以是一个空指针。

例外处理程序所采用的格式如下：

ｖｏｉｄ
ｍｙ ｅｘｃｅｐｔｉｏｎ ｈａｎｄｌｅｒ（ｃｙｇ ａｄｄｒｗｏｒｄ ｔｄａｔａ，

ｃｙｇ ｃｏｄｅ ｔｅｘｃｅｐｔｉｏｎ，

ｃｙｇ ａｄｄｒｗｏｒｄ ｔｉｎｆｏ）

｛

．．．
｝

例外处理程序的第一个参数ｄａｔａ是已传递给ｃｙｇ ｅｘｃｅｐｔｉｏｎ ｓｅｔ ｈａｎｄｌｅｒ函数的第三个
参数；第二个参数是例外号；第三个参数与硬件及例外有关。

如果需要的话，可以使用ｃｙｇ ｅｘｃｅｐｔｉｏｎ ｃｌｅａｒ ｈａｎｄｌｅｒ函数来恢复默认的例外处理程
序。

２９

在默认情况下，系统提供一组全局例外处理程序。由于例外是同步发生的，因此有些时候

以线程为单位对例外进行处理较为有效，这种情况下每一个线程都有一组不同的例外处理程

序。在配置工具中通过禁止ＣＹＧＳＥＭ ＫＥＲＮＥＬ ＥＸＣＥＰＴＩＯＮＳ ＧＬＯＢＡＬ选项可以实现
这种基于以线程为单位的例外处理。如果使用这种以线程为单位的例外处理，那么ｃｙｇ
ｅｘｃｅｐｔｉｏｎ ｓｅｔ ｈａｎｄｌｅｒ函数和ｃｙｇ ｅｘｃｅｐｔｉｏｎ ｃｌｅａｒ ｈａｎｄｌｅｒ函数将只作用于当前线程。

５５２ 例外处理内核ＡＰＩ函数

内核为例外处理提供了几个ＡＰＩ函数，头文件＜ｃｙｇ／ｋｅｒｎｅｌ／ｋａｐｉ．ｈ＞内有这些函数的定
义。下面是这些函数的简单说明。

ｖｏｉｄｃｙｇ ｅｘｃｅｐｔｉｏｎ ｓｅｔ ｈａｎｄｌｅｒ
（

ｃｙｇ ｃｏｄｅ ｔｅｘｃｅｐｔｉｏｎ ｎｕｍｂｅｒ， ／ｅｘｃｅｐｔｉｏｎｎｕｍｂｅｒ／

ｃｙｇ ｅｘｃｅｐｔｉｏｎ ｈａｎｄｌｅｒ ｔｎｅｗ ｈａｎｄｌｅｒ， ／ｐｏｉｎｔｅｒｔｏｎｅｗｈａｎｄｌｅｒ／

ｃｙｇ ａｄｄｒｗｏｒｄ ｔｎｅｗ ｄａｔａ， ／ｎｅｗｈａｎｄｌｅｒｄａｔａｇｕｍｅｎｔ／

ｃｙｇ ｅｘｃｅｐｔｉｏｎ ｈａｎｄｌｅｒ ｔｏｌｄ ｈａｎｄｌｅｒ，／ｒｅｃｅｉｖｅｓｏｌｄｈａｎｄｌｅｒ／

ｃｙｇ ａｄｄｒｗｏｒｄ ｔｏｌｄ ｄａｔａ ／ｒｅｃｅｉｖｅｓｏｌｄｄａｔａ／
）

该函数创建一个新的例外处理句柄，并取回原来的例外处理句柄。其中ｎｅｗ ｈａｎｄｌｅｒ为
新的例外处理程序的函数指针，ｎｅｗ ｄａｔａ是例外发生时传递给例外处理程序的一个参数。
原来的例外处理句柄的信息将由参数ｏｌｄ ｈａｎｄｌｅｒ和ｏｌｄ ｄａｔａ带回。

ｖｏｉｄｃｙｇ ｅｘｃｅｐｔｉｏｎ ｃｌｅａｒ ｈａｎｄｌｅｒ
（

ｃｙｇ ｃｏｄｅ ｔｅｘｃｅｐｔｉｏｎ ｎｕｍｂｅｒ／ｅｘｃｅｐｔｉｏｎｔｏｃｌｅａｒ／
）

该函数从系统中清除一个例外句柄。

ｖｏｉｄｃｙｇ ｅｘｃｅｐｔｉｏｎ ｃａｌｌ ｈａｎｄｌｅｒ
（

ｃｙｇ ｈａｎｄｌｅ ｔｔｈｒｅａｄ， ／ｔｈｒｅａｄＩＤ／

ｃｙｇ ｃｏｄｅ ｔｅｘｃｅｐｔｉｏｎ ｎｕｍｂｅｒ，／ｅｘｃｅｐｔｉｏｎｎｕｍｂｅｒ／

ｃｙｇ ａｄｄｒｗｏｒｄ ｔｅｒｒｏｒ ｃｏｄｅ ／ｅｒｒｏｒｃｏｄｅ／
）

该函数调用一个例外处理程序，参数ｅｒｒｏｒ ｃｏｄｅ是传递给例外处理程序的第三个参数

ｉｎｆｏ。

５６ ＳＭＰ支持

ｅＣｏｓ支持对称多处理器（ＳＭＰ）系统，但只对某些体系结构和平台才提供支持。这种支持
具有一定的限制性，具体细节可参阅第１１章硬件抽象层与ｅＣｏｓ移植。这一节主要介绍ｅＣｏｓ

３９

内核为支持ＳＭＰ系统而采取的一些措施。

５６１ ＳＭＰ系统的启动

在ＳＭＰ系统中，系统的启动与单处理器系统有所不同，但对应用程序是透明的。启动的
主要过程只由一个ＣＰＵ完成，这个ＣＰＵ称为主ＣＰＵ。而其他所有的ＣＰＵ都是从ＣＰＵ，在系
统复位后可能是处于挂起状态，也可能在硬件抽象层将它们启动后进入一种循环状态。主

ＣＰＵ负责对数据结构进行初始化，并调用硬件抽象层中的初始化程序，最后主ＣＰＵ将调用

ｃｙｇ ｓｔａｒｔ进入应用程序。
只有在应用程序调用ｃｙｇ ｓｃｈｅｄｕｌｅｒ ｓｔａｒｔ的时候，从ＣＰＵ才进行初始化操作。该函数

扫描所有可用的从ＣＰＵ，并调用ＨＡＬ ＳＭＰ ＣＰＵ ＳＴＡＲＴ启动每一个ＣＰＵ。最后它调用
一个内部函数Ｃｙｇ Ｓｃｈｅｄｕｌｅｒ：：ｓｔａｒｔ ｃｐｕ，从而使从ＣＰＵ进入调度器。
每个从ＣＰＵ都在ＨＡＬ中被启动，在内核函数ｃｙｇ ｋｅｒｎｅｌｃｐｕ ｓｔａｒｔｕｐ被调用之前它们

都已经完成了各自的初始化。从ＣＰＵ对调度锁进行声称，并调用Ｃｙｇ Ｓｃｈｅｄｕｌｅｒ：：ｓｔａｒｔ ｕｐ。

Ｃｙｇ Ｓｃｈｅｄｕｌｅｒ：：ｓｔａｒｔ ｃｐｕ是主ＣＰＵ和从ＣＰＵ所共有的，它的第一步工作是为该ＣＰＵ
的机间中断安装一个中断对象，该函数此后的工作与单ＣＰＵ的情形完全一致，即选择并运行
初始线程。

在完成上述工作后，所有ＣＰＵ都处于平等地位。但在进行中断处理时可能有所区别。

５６２ ＳＭＰ系统的调度

为保证系统功能的正确性，操作系统内核必须对关键数据的并发访问进行保护，例如对执

行队列的保护。在单处理器系统中，所要考虑的并发行为只有异步中断，内核可以简单地禁止

中断就可以对数据进行保护。但是在ＳＭＰ系统中这种方法并不完全适用，它不能阻塞其他

ＣＰＵ的访问。

ｅＣｏｓ内核使用调度锁来保护关键数据。在单处理器系统中，调度锁是一个简单的计数
器，在获取调度锁时它自动加１，释放调度锁时自动减１。当锁计数器减为０时，调度器可以选
择运行另一个线程。由于在调度锁被声称的时候还可以继续为中断提供服务，因此不允许

ＩＳＲ为内核数据提供服务和访问内核函数，这些操作被放置到滞后中断服务程序ＤＳＲ中进
行。

内核锁机制对数据的保护并不依赖于中断操作，因此，它的使用可以比其他方法更易于使

ｅＣｏｓ支持ＳＭＰ。使ｅＣｏｓ具有ＳＭＰ安全性的一个主要变化是将调度锁转化为一个可嵌套的

ｓｐｉｎｌｏｃｋ，这可以通过在原来的锁计数器中增加一个ｓｐｉｎｌｏｃｋ和ＣＰＵ的标识号ｉｄ就可以实现。
获取调度锁的算法非常简单。如果调度锁的ＣＰＵｉｄ与当前ＣＰＵ相符，则只需对计数器

加１就可以进行工作。如果不相匹配，则当前ＣＰＵ必须等待ｓｐｉｎｌｏｃｋ，在获得ｓｐｉｎｌｏｃｋ之后它
可以对锁计数器加１，并写入它自己的ＣＰＵｉｄ。在对锁进行释放时，计数器减１。如果其值为

０，那么ＣＰＵｉｄ值必须置为ＮＵＬＬ，并清ｓｐｉｎｌｏｃｋ。
为保护这些操作序列不受中断的影响，在进行这种操作时必须禁止中断。由于这些程序

代码量很少，因此不会对中断造成很大的延时。

目前只有多级队列调度器 ＭＬＱ具有支持ＳＭＰ配置的能力。为使调度器支持ＳＭＰ系
统，需要对它进行一定的改进。一个主要变化是使调度器能够处理同时执行的多个线程。正

４９

在执行的线程具有一个标识符表明它运行于哪一个ＣＰＵ上。在对线程进行调度时，调度器跳
过正在执行的线程，查找出一个处于悬挂状态的线程。

另一个需要改进的地方是用于决定什么时候调用调度器来选择运行新线程的程序段。调

度器尽量保持每个ＣＰＵ上运行一个最高优先级的线程（有多少个ＣＰＵ就运行多少个当前优
先级最高的线程）。由于一个ＣＰＵ上的事件或中断可能需要对另一个ＣＰＵ进行重新调度，因
此必须有一个决策机制。为此，ｅＣｏｓ目前提供了一个非常简单的算法。假设有一个刚被唤醒
的新线程（或者刚改变其优先级），调度器将从当前ＣＰＵ开始对所有ＣＰＵ进行审查，查找一个
当前正在运行的优先级比新线程要低的线程。当找到这样一个线程时，给执行这一线程的

ＣＰＵ发送一个重新调度的中断。此后调度器将继续进行查找，但此时作为候选线程的是刚才
被重新调度的ＣＰＵ的当前线程。这种调度方法可以使新线程尽可能快地得到执行。新线程
最有可能运行在当前ＣＰＵ上，其余的ＣＰＵ通过对重新调度中断的处理可以从剩余的线程中
依次挑选出优先级最高的线程运行。

调度器还有一个需要进行改进的地方是对时间片的处理。虽然所有ＣＰＵ都必须处理时
间片，但只能有一个ＣＰＵ接收定时中断。接收定时中断的ＣＰＵ必须为所有的ＣＰＵ的时间片
计数器进行操作，而不仅仅只为自己。当某个ＣＰＵ的时间片计数器到达０时，它将给该ＣＰＵ
发送一个时间片中断。该目标ＣＰＵ收到中断后进入调度器查找并执行另一个具有相同优先
级的线程。

在ＳＭＰ系统中，可以使用单处理器系统中的已有的所有同步机制。此外，ＳＭＰ系统还增
加了一个ＳＭＰ的同步机制ｓｐｉｎｌｏｃｋ，这将在第６章线程与同步中加以介绍。

５６３ ＳＭＰ系统的中断处理

ＳＭＰ系统中一个值得重视的地方是设备驱动程序和中断处理。在ＳＭＰ系统中，设备驱
动程序的ＩＳＲ、ＤＳＲ和线程组件极有可能运行在不同的ＣＰＵ上。因此，具有ＳＭＰ能力的设备
驱动程序对与中断相关的函数的正确使用显得尤为重要。设备驱动程序通常使用驱动程序

ＡＰＩ函数，而不是直接调用内核函数，但在ＳＭＰ系统中不使用内核包的可能性极小。
内核提供了两条ＡＰＩ函数用于支持ＳＭＰ系统中的中断路由，可以将指定的中断路由到

指定的ＣＰＵ进行处理。这两个ＡＰＩ函数分别是ｃｙｇ ｉｎｔｅｒｒｕｐｔ ｓｅｔ ｃｐｕ和ｃｙｇ ｉｎｔｅｒｒｕｐｔ
ｇｅｔ ｃｐｕ，本章第４节对其进行了介绍。ｅＣｏｓ目前只支持对中断的静态路由。某个中断一旦
被路由到指定的ＣＰＵ进行处理，该中断的屏蔽和配置操作也将由该ＣＰＵ进行处理。

ＳＭＰ系统中对中断的处理在第８章设备驱动程序与ＰＣＩ库中有详细介绍。

５７ 计数器与时钟

硬件必须提供一个周期性的时钟或定时器，用于支持系统中与时间相关的功能部件。目

前许多ＣＰＵ都有一个内置定时器，它提供周期性的中断，可以对时间相关的功能部件提供支
持。如果没有内置定时器，则必须使用外部定时器或时钟。

ｅＣｏｓ提供的定时机制包括计数器（Ｃｏｕｎｔｅｒ）、时钟（Ｃｌｏｃｋ）、告警器（Ａｌａｒｍ）和定时器
（Ｔｉｍｅｒ）。计数器对某些特殊事件进行单调递增计数。时钟是一个对具有一定周期性的时间
滴答进行计数的计数器（对时间进行计数）。告警器是在计数器的基础上增加一个产生提示功

５９

能的机制，或者基于计数器的值产生具有周期性的事件。定时器是一个简单的附加在时钟上

面的告警器。

５７１ 计数器

内核计数器用于对特殊事件发生的次数进行跟踪，这些特殊事件通常是某种类型的外部

信号。计数器的最普通的一个实现就是时钟。应用程序可以在计数器上附加一个告警器，当

某类事件发生次数达到一定的数目时调用某个相应的函数（告警函数）。

通过调用ｃｙｇ ｃｏｕｎｔｅｒ ｃｒｅａｔｅ函数可以产生一个新的计数器。该函数的第一个参数用
于返回新计数器的句柄，随后对该计数器的操作将使用这个句柄进行；它的第二个参数允许应

用程序为该计数器提供所需的内存，从而减少了在内核中进行动态内存分配的需求。如果不

再需要某个计数器并且没有任何告警器与其相连，则可以使用ｃｙｇ ｃｏｕｎｔｅｒ ｄｅｌｅｔｅ函数删除
该计数器并释放其占用的资源，使ｃｙｇ ｃｏｕｎｔｅｒ数据结构可以被重新使用。
产生一个新计数器时不会自动将事件源连接到该计数器上。无论相对应的事件何时发

生，都需要调用ｃｙｇ ｃｏｕｎｔｅｒ ｔｉｃｋ函数使计数器计数，并有可能引起告警器的触发。计数器
的当前计数值可以使用ｃｙｇ ｃｏｕｎｔｅｒ ｃｕｒｒｅｎｔ ｖａｌｕｅ函数读取，也可以使用ｃｙｇ ｃｏｕｎｔｅｒ ｓｅｔ
ｖａｌｕｅ函数进行修改。后一函数通常只在初始化期间进行，例如，将时钟设置为墙上时间时需
要调用该函数。在需要的时候也可以用它对计数器进行复位。这一计数器设置函数不会引起

告警器的触发。新产生的计数器的初始值为０。
内核提供了计数器的两种不同实现方法，默认的计数器实现方法是ＣＹＧＩＭＰ ＫＥＲＮＥＬ

ＣＯＵＮＴＥＲＳ ＳＩＮＧＬＥ ＬＩＳＴ，它将所有连接到该计数器上的告警器都存放到一个单独的
链表中。这种方法简单而有效，但当事件发生的时候内核程序必须在该链表中来回移动。因

此，如果与该计数器相连的告警器太多，势必影响系统的分配延时。另一种实现方法是

ＣＹＧＩＭＰ ＫＥＲＮＥＬ ＣＯＵＮＴＥＲＳ ＭＵＬＴＩ ＬＩＳＴ，它具有多个存放告警器的链表，每个告
警器被存放到其中的一个链表，这样在每一个事件发生时最多只需查找一个链表。这种方法

需要更多的程序代码和数据，但能提高实时响应速度。链表的数目可以在配置时指定，它的默

认值为８。另一个与计数器相关的配置选项是ＣＹＧＩＭＰ ＫＥＲＮＥＬ ＣＯＵＮＴＥＲＳ ＳＯＲＴ
ＬＩＳＴ，默认情况下它是被禁止的。这一配置选项对计数器链表进行分类，减少了对计数器的
触发事件进行处理时的工作量。使用该选项可以选择两种不同的工作量：给计数器增加一个

新的告警器所需完成的工作；事件发生时进行处理所需完成的工作。在使用时可根据具体情

况进行选择。ｅＣｏｓ图形配置工具中对计数器和时钟的配置如图５４所示。
下面是内核提供的计数器ＡＰＩ函数，头文件＜ｃｙｇ／ｋｅｒｎｅｌ／ｋａｐｉ．ｈ＞内有这些函数的定义，

使用时必须包含该头文件。

ｖｏｉｄｃｙｇ ｃｏｕｎｔｅｒ ｃｒｅａｔｅ
（

ｃｙｇ ｈａｎｄｌｅ ｔｈａｎｄｌｅ，／ｒｅｔｕｒｎｅｄｃｏｕｎｔｅｒｈａｎｄｌｅ／

ｃｙｇ ｃｏｕｎｔｅｒｃｏｕｎｔｅｒ ／ｃｏｕｎｔｅｒｏｂｊｅｃｔ／

）

该函数创建一个新的计数器，新计数器的句柄通过ｈａｎｄｌｅ返回。

６９

图５４ ｅＣｏｓ配置工具对计数器和时钟的配置

ｖｏｉｄｃｙｇ ｃｏｕｎｔｅｒ ｄｅｌｅｔｅ
（

ｃｙｇ ｈａｎｄｌｅ ｔｃｏｕｎｔｅｒ／ｃｏｕｎｔｅｒｔｏｄｅｌｅｔｅ／
）

该函数删除一个计数器。

ｃｙｇ ｔｉｃｋ ｃｏｕｎｔ ｔｃｙｇ ｃｏｕｎｔｅｒ ｃｕｒｒｅｎｔ ｖａｌｕｅ
（

ｃｙｇ ｈａｎｄｌｅ ｔｃｏｕｎｔｅｒ／ｃｏｕｎｔｅｒｔｏｇｅｔｔｈｅｖａｌｕｅｏｆ／
）

该函数读取指定计数器的当前计数值。

ｖｏｉｄｃｙｇ ｃｏｕｎｔｅｒ ｓｅｔ ｖａｌｕｅ
（

ｃｙｇ ｈａｎｄｌｅ ｔｃｏｕｎｔｅｒ， ／ｃｏｕｎｔｅｒｔｏｓｅｔ／

ｃｙｇ ｔｉｃｋ ｃｏｕｎｔ ｔｎｅｗ ｖａｌｕｅ ／ｎｅｗｖａｌｕｅｏｆｃｏｕｎｔｅｒ／
）

该函数设置计数器的值。

ｖｏｉｄｃｙｇ ｃｏｕｎｔｅｒ ｔｉｃｋ
（

ｃｙｇ ｈａｎｄｌｅ ｔｃｏｕｎｔｅｒ／ｃｏｕｎｔｅｒｔｏａｄｖａｎｃｅ／
）

该函数使计数器加１。

ｖｏｉｄｃｙｇ ｃｏｕｎｔｅｒ ｍｕｌｔｉｔｉｃｋ
（

ｃｙｇ ｈａｎｄｌｅ ｔｃｏｕｎｔｅｒ， ／ｃｏｕｎｔｅｒｔｏａｄｖａｎｃｅ／

ｃｙｇ ｔｉｃｋ ｃｏｕｎｔ ｔｔｉｃｋｓ／ｎｕｍｂｅｒｏｆｔｉｃｋｓｔｏａｄｖａｎｃｅ／
）

７９

该函数使计数器的值增加参数ｔｉｃｋｓ所指定的数目。

５７２ 时钟

ｅＣｏｓ内核所提供的时钟是计数器的一种特殊形式，它们与一种特殊类型的硬件相连，这
些硬件可以产生非常精确的时间间隔。在默认配置下，内核提供一个单独的时钟实例，即实时

时钟ＲＴＣ，它用于时间片以及一些与超时相关的操作（如ｃｙｇ ｓｅｍａｐｈｏｒｅ ｔｉｍｅｄ ｗａｉｔ）。如
果不需要这种功能，可以使用配置选项ＣＹＧＶＡＲ ＫＥＲＮＥＬ ＣＯＵＮＴＥＲＳ ＣＬＯＣＫ将其从
系统中删除（见图５４）。实时时钟ＲＴＣ可以被ｃｙｇ ｒｅａｌ ｔｉｍｅ ｃｌｏｃｋ函数访问，允许应用程
序对其附加一个告警器，它的当前计数值可以使用ｃｙｇ ｃｕｒｒｅｎｔ ｔｉｍｅ函数读取。
应用程序根据需要可以使用ｃｙｇ ｃｌｏｃｋ ｃｒｅａｔｅ函数和ｃｙｇ ｃｌｏｃｋ ｄｅｌｅｔｅ函数创建和废

除所附加的时钟。ｃｙｇ ｃｌｏｃｋ ｃｒｅａｔｅ的第一个参数指定了时钟的分辨率，第二个参数用于返
回该时钟对象的句柄，第三个参数为内核提供该时钟对象所需要的内存。应用程序负责对硬

件定时器进行初始化，使其以适当的频率产生中断，并为此中断安装一个中断处理程序，在

ＤＳＲ内部调用ｃｙｇ ｃｏｕｎｔｅｒ ｔｉｃｋ函数，形成所创建时钟的滴答源。与每一个时钟相关联的是
一个内核计数器，该计数器的句柄可以使用ｃｙｇ ｃｌｏｃｋ ｔｏ ｃｏｕｎｔｅｒ函数获取。
内核级的所有与时钟相关的操作包括延时、超时和告警等都是以时钟滴答为单位进行工

作的，而不是以秒或微秒为单位。如果应用程序或其他软件需要使用秒或微秒这样的时间单

位，则需要将这些时间单位转换为时钟滴答。这是因为只有时钟滴答才能精确地反映出硬件

的支持条件。如果使用传统意义上的时间单位如纳秒（ｎｓ），则硬件有可能不能提供支持。另
一个原因是在时钟滴答和传统意义上的时间单位之间的转换需要浪费很多的代码和数据，采

用时间滴答为单位可以节省代码量和ＣＰＵ时间。进行这种时钟单位的转换需要一个分辨率，
分辨率是一个具有两个域的数据结构，一个域为被除数，另一个域为除数，用于指定在两个时

钟滴答之间的纳秒数。例如，一个以１００Ｈｚ运行的时钟在两个时钟滴答之间的时间是１０ｍｓ
（１０００００００ｎｓ），那么其分辨率（被除数和除数之间的比率）是１０００００００：１，被除数和除数的典
型值为１０００００００００和１００。如果时钟运行在不同的频率，如６０Ｈｚ，那么它们的值相应为

１０００００００００和６０。如果给定一个以纳秒为单位的延时，则可以让其与分辨率中的除数相乘，
再除以被除数，就可以将其转换为时钟滴答。

例如，一个５０ｍｓ的延时（５０００００００ｎｓ），时钟频率为１００Ｈｚ，那么可以通过下面的计算转换
为时钟滴答：

５０００００００×１００／１０００００００００次＝５次

平台实时时钟ＲＴＣ的默认频率是１００Ｈｚ，通常可以根据硬件的实际情况来使用配置选项
修改频率值（见图５４）。时钟的分辨率可以通过ｃｙｇ ｃｌｏｃｋ ｇｅｔ ｒｅｓｏｌｕｔｉｏｎ函数获取。对于
应用程序创建的时钟，还有一个ｃｙｇ ｃｌｏｃｋ ｓｅｔ ｒｅｓｏｌｕｔｉｏｎ函数可用于设置分辨率，但它不会
对定时器硬件产生影响。

内核提供了一些时钟ＡＰＩ函数，这些函数定义于头文件＜ｃｙｇ／ｋｅｒｎｅｌ／ｋａｐｉ．ｈ＞内，使用时
应包含该头文件。下面是这些ＡＰＩ函数的简单介绍。

ｖｏｉｄｃｙｇ ｃｌｏｃｋ ｃｒｅａｔｅ
（

８９

ｃｙｇ ｒｅｓｏｌｕｔｉｏｎ ｔｒｅｓｏｌｕｔｉｏｎ，／ｒｅｓｏｌｕｔｉｏｎ／

ｃｙｇ ｈａｎｄｌｅ ｔｈａｎｄｌｅ， ／ｃｒｅａｔｅｄｈａｎｄｌｅ／

ｃｙｇ ｃｌｏｃｋｃｌｏｃｋ ／ｃｌｏｃｋｏｂｊｅｃｔ／
）

该函数使用给定的分辨率创建一个新的时钟，新时钟的句柄由ｈａｎｄｌｅ带回。

ｖｏｉｄｃｙｇ ｃｌｏｃｋ ｄｅｌｅｔｅ
（

ｃｙｇ ｈａｎｄｌｅ ｔｃｌｏｃｋ／ｃｌｏｃｋｔｏｄｅｌｅｔｅ／
）

该函数删除一个时钟。调用此函数时应确认系统中已经没有使用该时钟的组件。

ｖｏｉｄｃｙｇ ｃｌｏｃｋ ｔｏ ｃｏｕｎｔｅｒ
（

ｃｙｇ ｈａｎｄｌｅ ｔｃｌｏｃｋ， ／ｃｌｏｃｋｔｏｃｏｎｖｅｒｔ／

ｃｙｇ ｈａｎｄｌｅ ｔｃｏｕｎｔｅｒ ／ａｄｄｒｅｓｓｏｆｃｏｕｎｔｅｒｏｂｊｅｃｔ／
）

该函数将时钟转换为计数器。返回的计数器对象由ｃｏｕｎｔｅｒ带回。

ｖｏｉｄｃｙｇ ｃｌｏｃｋ ｓｅｔ ｒｅｓｏｌｕｔｉｏｎ
（

ｃｙｇ ｈａｎｄｌｅ ｔｃｌｏｃｋ， ／ｃｌｏｃｋ／

ｃｙｇ ｒｅｓｏｌｕｔｉｏｎ ｔｒｅｓｏｌｕｔｉｏｎ ／ｎｅｗｒｅｓｏｌｕｔｉｏｎｔｏｓｅｔｃｌｏｃｋ／
）

该函数对时钟的分辨率进行设置。分辨率是一个数据结构，其定义如下：

ｔｙｐｅｄｅｆｓｔｒｕｃｔ｛

ｃｙｇ ｕｉｎｔ３２ｄｉｖｉｄｅｎｄ；

ｃｙｇ ｕｉｎｔ３２ｄｉｖｉｓｏｒ；
｝ｃｙｇ ｒｅｓｏｌｕｔｉｏｎ ｔ

ｃｙｇ ｒｅｓｏｌｕｔｉｏｎ ｔｃｙｇ ｃｌｏｃｋ ｇｅｔ ｒｅｓｏｌｕｔｉｏｎ
（

ｃｙｇ ｈａｎｄｌｅ ｔｃｌｏｃｋ／ｃｌｏｃｋｔｏｇｅｔｒｅｓｏｌｕｔｉｏｎｏｆ／
）

该函数获取时钟的分辨率。

ｃｙｇ ｈａｎｄｌｅ ｔｃｙｇ ｒｅａｌｔｉｍｅ ｃｌｏｃｋ
（

ｖｏｉｄ
）

该函数获取系统的实时时钟（ＲＴＣ）。实时时钟用于系统的延时、阻塞等待等操作。

ｃｙｇ ｔｉｃｋ ｃｏｕｎｔ ｔｃｙｇ ｃｕｒｒｅｎｔ ｔｉｍｅ

９９

（

ｖｏｉｄ
）

该函数获取当前的系统时间，单位为时钟滴答。系统时间用６４位的数字表示。

５７３ 告警器

内核告警器与计数器一起使用，使得当某种事件发生了一定的次数时采取相应的行动。

如果与计数器一起使用的是时钟，那么当时间滴答的个数达到适当的值也就是在一定的时间

周期后时将发生告警行为。

设置一个告警器需要进行两步操作。首先必须调用ｃｙｇ ａｌａｒｍ ｃｒｅａｔｅ函数创建一个告
警器。该函数有五个参数，第一个参数表明该告警器与哪一个计数器相连。如果告警器与系

统的实时时钟相连，那么ｃｙｇ ｒｅａｌｔｉｍｅ ｃｌｏｃｋ函数和ｃｙｇ ｃｌｏｃｋ ｔｏ ｃｏｕｎｔｅｒ函数可以用来
获取相应的句柄。随后的两个参数是一个函数指针和数据，用于指定当告警被触发时所采取

的行为。这个告警函数的格式如下：

ｖｏｉｄ
ａｌａｒｍ ｈａｎｄｌｅｒ（ｃｙｇ ｈａｎｄｌｅ ｔａｌａｒｍ，ｃｙｇ ａｄｄｒｗｏｒｄ ｔｄａｔａ）
｛

．．．
｝

它的ｄａｔａ参数就是传递给ｃｙｇ ａｌａｒｍ ｃｒｅａｔｅ的第三个参数。ｃｙｇ ａｌａｒｍ ｃｒｅａｔｅ的第四
个参数用于返回新产生的告警器对象，最后一个参数提供该告警器对象所需要的内存，这样可

以避免在内核中进行动态内存分配。

在创建一个新的告警器之后，必须调用ｃｙｇ ａｌａｒｍ ｉｎｉｔｉａｌｉｚｅ函数对它进行激活。它的第
一个参数指定告警器，第二个参数指定该告警器被触发之前事件（如时钟滴答）发生的次数。

如果第三个参数为０，那么该告警器只被触发一次，如果是一个非０值，那么它将指定告警器
将被重复触发，触发的间隔为前面所指定的事件发生次数。

使用ｃｙｇ ａｌａｒｍ ｄｉｓａｂｌｅ函数和ｃｙｇ ａｌａｒｍ ｅｎａｂｌｅ函数可以临时禁止和使能告警器。
另外还有一个ｃｙｇ ａｌａｒｍ ｉｎｉｔｉａｌｉｚｅ函数可用于修改告警器的行为。如果不再需要某个告警
器，则可以使用ｃｙｇ ａｌａｒｍ ｄｅｌｅｔｅ函数释放其资源。
这些函数都是内核提供的告警器ＡＰＩ函数，在头文件＜ｃｙｇ／ｋｅｒｎｅｌ／ｋａｐｉ．ｈ＞内有定义。

下面是它们的详细说明。

ｖｏｉｄｃｙｇ ａｌａｒｍ ｃｒｅａｔｅ
（

ｃｙｇ ｈａｎｄｌｅ ｔｃｏｕｎｔｅｒ， ／ｃｏｕｎｔｅｒｔｏａｔｔａｃｈｔｏａｌａｒｍ／

ｃｙｇ ａｌａｒｍ ｔａｌａｒｍｆｎ，／ａｌａｒｍｃａｌｌｂａｃｋｆｕｎｃｔｉｏｎ／

ｃｙｇ ａｄｄｒｗｏｒｄ ｔｄａｔａ， ／ｄａｔａｔｏｂｅｐａｓｓｅｄｔｏｃａｌｌｂａｃｋ／

ｃｙｇ ｈａｎｄｌｅ ｔｈａｎｄｌｅ，／ｒｅｔｕｒｎｅｄｈａｎｄｌｅｔｏａｌａｒｍｏｂｊｅｃｔ／

ｃｙｇ ａｌａｒｍａｌａｒｍ ／ａｌａｒｍｏｂｊｅｃｔ／
）

００１

该函数创建一个新的告警器。其参数在上面已有介绍。告警器的触发周期由ｃｙｇ ａｌａｒｍ
ｉｎｉｔｉａｌｉｚｅ函数设置。当告警器被触发时，将调用“ａｌａｒｍｆｎ”函数，“ｄａｔａ”为其参数。告警器
可以被设置为可重复触发方式和单次触发方式。新产生的告警器句柄由ｈａｎｄｌｅ带回。

ｖｏｉｄｃｙｇ ａｌａｒｍ ｄｅｌｅｔｅ
（

ｃｙｇ ｈａｎｄｌｅ ｔａｌａｒｍ／ａｌａｒｍｔｏｄｅｌｅｔｅ／
）

该函数从系统中删除一个告警器，并释放该告警器句柄。一旦删除，就不能再使用该告警

器。

ｖｏｉｄｃｙｇ ａｌａｒｍ ｉｎｉｔｉａｌｉｚｅ
（

ｃｙｇ ｈａｎｄｌｅ ｔａｌａｒｍ， ／ｈａｎｄｌｅｏｆａｌａｒｍｔｏｉｎｉｔｉａｌｉｚｅ／

ｃｙｇ ｔｉｃｋ ｃｏｕｎｔ ｔｔｒｉｇｇｅｒ，／ａｂｓｏｌｕｔｅｔｒｉｇｇｅｒｔｉｍｅ／

ｃｙｇ ｔｉｃｋ ｃｏｕｎｔ ｔｉｎｔｅｒｖａｌ／ｒｅｔｒｉｇｇｅｒｉｎｔｅｒｖａｌ／
）

该函数初始化并启动一个告警器，告警器的触发时间由ｔｒｉｇｇｅｒ指定，它是一个绝对时间。
可以对计数器调用ｃｙｇ ｃｏｕｎｔｅｒ ｃｕｒｒｅｎｔ ｖａｌｕｅ函数来获取一个时钟的当前触发时间。如果
告警器以一个有规律的间隔周期重复触发，则ｉｎｔｅｒｖａｌ应该为一个非０值。当告警器被触发
时，将调用相应的告警器函数。

ｖｏｉｄｃｙｇ ａｌａｒｍ ｇｅｔ ｔｉｍｅｓ
（

ｃｙｇ ｈａｎｄｌｅ ｔａｌａｒｍ， ／ａｌａｒｍｔｏｇｅｔｔｈｅｔｉｍｅｓｏｆ／

ｃｙｇ ｔｉｃｋ ｃｏｕｎｔ ｔｔｒｉｇｇｅｒ，／ｎｅｘｔｔｒｉｇｇｅｒｔｉｍｅ／

ｃｙｇ ｔｉｃｋ ｃｏｕｎｔ ｔｉｎｔｅｒｖａｌ／ｃｕｒｒｅｎｔｒｅｔｒｉｇｇｅｒｉｎｔｅｒｖａｌ／
）

该函数返回告警器的下一次触发的绝对时间和它的触发间隔。如果不需要返回其中的某

个返回数据，可以使用ＮＵＬＬ来代替这个参数（函数的第二个参数或第三个参数）。

ｖｏｉｄｃｙｇ ａｌａｒｍ ｅｎａｂｌｅ
（

ｃｙｇ ｈａｎｄｌｅ ｔａｌａｒｍ／ａｌａｒｍｔｏｒｅｅｎａｂｌｅ／
）

该函数重新使能先前被禁止的告警器，通常用于具有周期性的告警器。被重新使能的周

期性告警器的触发间隔与它被禁止之前是相同的。例如，假设一个周期性的告警器每隔１０ｓ
被触发一次，触发时刻为Ｔ０、Ｔ１０、Ｔ２０、Ｔ３０，如果在Ｔ３１处被禁止，那么被禁止１５ｓ后重新使
能时（Ｔ４６）被触发的时刻将是Ｔ５０、Ｔ６０、Ｔ７０、等等。如果想复位它的间隔周期，可以使用ｃｙｇ
ａｌａｒｍ ｉｎｉｔｉａｌｉｚｅ函数。

ｖｏｉｄｃｙｇ ａｌａｒｍ ｄｉｓａｂｌｅ

１０１

（

ｃｙｇ ｈａｎｄｌｅ ｔａｌａｒｍ／ａｌａｒｍｔｏｄｉｓａｂｌｅ／

）

该函数禁止一个警告器。通常用于周期性的警告器。

５８ 应用程序入口

ｅＣｏｓ启动以后将经历许多不同的阶段，包括对硬件的设置和调用Ｃ＋＋静态构造函数。
在这些过程中，中断被禁止，调度器被锁定。在一个包含有内核的配置中，最后的操作将是调

用ｃｙｇ ｓｃｈｅｄｕｌｅｒ ｓｔａｒｔ函数。从此处开始中断被使能，调度器被解锁，控制权将交给具有最
高优先级的线程。如果包含有Ｃ库软件包，那么Ｃ库的启动软件将创建一个调用应用程序

ｍａｉｎ（）入口点的线程。
某些应用程序还可以在调度器启动之前运行，这些程序运行于初始化的环境之中。如果

应用程序使用了Ｃ＋＋，那么将为静态对象调用构造函数。另外，应用程序还可以定义一个

ｃｙｇ ｕｓｅｒ ｓｔａｒｔ函数，该函数在Ｃ＋＋静态构造函数之后被调用。这种方式允许应用程序全部
使用Ｃ语言编程。作为应用程序入口点的ｃｙｇ ｕｓｅｒ ｓｔａｒｔ函数，其格式如下：

ｖｏｉｄ
ｃｙｇ ｕｓｅｒ ｓｔａｒｔ（ｖｏｉｄ）

｛

／Ｐｅｒｆｏｒｍａｐｐｌｉｃａｔｉｏｎｓｐｅｃｉｆｉｃｉｎｉｔｉａｌｉｚａｔｉｏｎｈｅｒｅ／

｝

应用程序不需要提供ｃｙｇ ｕｓｅｒ ｓｔａｒｔ函数，系统已经提供了该函数的一个默认实现，但
它没有做任何操作。

在静态构造函数或ｃｙｇ ｕｓｅｒ ｓｔａｒｔ函数内所完成的工作主要包括创建线程和同步原语、
设置告警器，并注册应用程序专用的中断处理程序。事实上，大部分的应用程序都在此完成这

些创建操作，并且使用了静态分配数据，避免了动态内存分配的需要。

５８１ 调用环境

ｅＣｏｓ定义了许多上下文环境，在每一种环境下只允许进行某些调用。例如，在中断服务
程序ＩＳＲ的上下文环境中，对线程和同步原语的大部分操作是不允许的。这些上下文环境包
括初始化环境、线程环境、ＩＳＲ环境和ＤＳＲ环境。
在初始化环境中，中断被禁止，调度器被锁定。在这种环境中的程序不允许重新使能中断

和对调度器解锁，这是因为在这种环境下系统的完全一致性得不到保证。因此，初始化程序不

能使用诸如ｃｙｇ ｓｅｍａｐｈｏｒｅ ｗａｉｔ这样的同步原语来等待外部事件的发生。对互斥体的锁定
和解锁是允许的，此时没有其他的线程运行，从而可以保证互斥体还没有被锁定，因此对它的

锁定操作不会被阻塞。这有助于可能使用了内部互斥体的库调用。

系统在启动序列的最后阶段将调用ｃｙｇ ｓｃｈｅｄｕｌｅｒ ｓｔａｒｔ函数，各种线程将开始运行。在
线程环境下，几乎所有的内核函数都是可用的。根据具体目标平台硬件的特性，在进行中断相

２０１

关的操作时可能会有一些限制。例如，硬件可能要求在返回线程环境之前在ＩＳＲ或ＤＳＲ内进
行中断应答。在这种情况下，ｃｙｇ ｉｎｔｅｒｒｕｐｔ ａｃｋｎｏｗｌｅｄｇｅ函数不应该被线程调用。
处理器在任何时刻都有可能收到外部中断，引起控制权从当前线程被转移。此时系统通

常运行的是ｅＣｏｓ提供的ＶＳＲ，由它来确定发生的是哪一个中断，然后再从ＶＳＲ转移到适当的

ＩＳＲ。ＩＳＲ可能由硬件抽象层或者设备驱动程序提供，也可能是由应用程序提供。此时系统运
行在ＩＳＲ环境，大多数的内核函数调用是不允许的，包括各种同步原语。在ＩＳＲ内部，通常所
做的只能是与中断机制自己相关的一些操作，如屏蔽一个中断或者应答一个已经得到处理的

中断。在ＳＭＰ系统中可以使用ｓｐｉｎｌｏｃｋ。
当ＩＳＲ返回时，它可能请求运行相应的ＤＳＲ。ＤＳＲ一旦安全就可以运行，此时将运行在

ＤＳＲ环境。这种环境可用于运行告警器函数，线程可以通过锁定调度器与ＤＳＲ进行临时的上
下文切换。ＤＳＲ环境下也只能调用部分内核函数，但能够调用的函数要比ＩＳＲ环境要多。尤
其是它可以使用一些同步原语而不会引起阻塞，这些同步原语包括ｃｙｇ ｓｅｍａｐｈｏｒｅ ｐｏｓｔ、ｃｙｇ
ｃｏｎｄ ｓｉｇｎａｌ、ｃｙｇ ｃｏｎｄ ｂｒｏａｄｃａｓｔ、ｃｙｇ ｆｌａｇ ｓｅｔｂｉｔｓ和ｃｙｇ ｍｂｏｘ ｔｒｙｐｕｔ。不能使用那些
可能引起阻塞的同步原语如ｃｙｇ ｓｅｍａｐｈｏｒｅ ｗａｉｔ、ｃｙｇ ｍｕｔｅｘ ｌｏｃｋ或ｃｙｇ ｍｂｏｘ ｐｕｔ，在

ＤＳＲ内调用这些函数可能引起系统的挂起。

５８２ 应用程序编程要求

ｅＣｏｓ是一个实时操作系统，基于ｅＣｏｓ的程序与基于ＵＮＩＸ和 Ｗｉｎｄｏｗｓ这些分时系统和
虚拟内存系统的程序不完全相同。在进行ｅＣｏｓ应用程序编程时必须了解相应的编程要求。

ｅＣｏｓ用户应用程序的入口点是ｃｙｇ ｕｓｅｒ ｓｔａｒｔ（），如果在配置时选择了ＩＳＯＣ库包，也
可以使用ｍａｉｎ（）作为程序的入口点。ｅＣｏｓ的内核ＡＰＩ调用函数定义于头文件＜ｃｙｇ／ｋｅｒｎｅｌ／

ｋａｐｉ．ｈ＞内，任何一个使用ｅＣｏｓ系统内核调用的程序必须在其源程序文件最前面使用下面语
句：

＃ｉｎｃｌｕｄｅ＜ｃｙｇ／ｋｅｒｎｅｌ／ｋａｐｉ．ｈ＞

在编程时必须注意头文件路径的设置。其路径可以通过一个系统环境变量 Ｃ
ＩＮＣＬＵＤＥ ＰＡＴＨ进行设置，也可以在编译器命令行中使用“－Ｉ”标志对其进行指定。
在完成对ｅＣｏｓ的配置后，可以对其进行编译，编译结果将形成一个单独的库，即ｌｉｂｔａｒｇｅｔ．

ａ，它包含了配置时所有被选择的ｅＣｏｓ组件。ｌｉｂｔａｒｇｅｔ．ａ不包含其他用户库。如果需要使用其
他的用户库，在链接命令中必须对所使用的用户库加以指明。

利用ｅＣｏｓ配置工具对ｅＣｏｓ进行编译后得到的结果不能直接加载到目标系统运行。

ＲｅｄＢｏｏｔ是一个例外，ＲｅｄＢｏｏｔ编译后得到的结果可以直接加载到目标系统内存或者ＲＯＭ内
运行。用户应用程序必须与前面提及的对ｅＣｏｓ进行编译后得到的ｌｉｂｔａｒｇｅｔ．ａ和ＧＮＣＣ编译
器提供的库ｌｉｂｇｃｃ．ａ进行链接，链接时还必须使用ｅＣｏｓ编译后得到的链接脚本ｔａｒｇｅｔ．ｌｄ。进
行链接的时候不能使用标准Ｃ＋＋库，可以用ｎｏｓｔｄｌｉｂ选项来加以说明。对应用程序进行链
接的命令如下（其中ＧＣＣ是目标平台的交叉编译器，如ｉ３８６ｅｌｆｇｃｃ）：

ＧＣＣ［ｏｐｔｉｏｎｓ］［ｏｂｊｅｃｔｆｉｌｅｓ］Ｔｔａｒｇｅｔ．ｌｄｎｏｓｔｄｌｉｂ

编译得到的最终结果包含了ｅＣｏｓ系统和应用程序。

３０１

５８３ 应用程序的启动

经过编译和链接的ｅＣｏｓ在目标平台上运行时，首先运行的是硬件抽象层中的启动代码。
硬件抽象层中包含了所有的启动代码，其主要启动过程可以概括为：

１）ＨＡＬ对硬件进行初始化操作，与ＲＯＭ监控程序协同工作，并进行诊断操作。

２）激活所有静态和全局Ｃ＋＋静态构造函数。

３）ＨＡＬ跳转到启动函数ｖｏｉｄｃｙｇ ｓｔａｒｔ（ｖｏｉｄ）。
下面分别介绍ｃｙｇ ｓｔａｒｔ（）函数和该函数内部的一些与启动应用程序相关的几个函数，包

括用户应用程序入口ｃｙｇ ｕｓｅｒ ｓｔａｒｔ（）函数。

１启动函数ｃｙｇ ｓｔａｒｔ（）
启动ｃｙｇ ｓｔａｒｔ（）函数是ｅＣｏｓ启动机制的核心。该函数位于源文件ｉｎｆｒａ／ｃｕｒｒｅｎｔ／ｓｒｃ／

ｓｔａｒｔｕｐ．ｃｘｘ，它依次调用下列函数：

ｃｙｇ ｐｒｅｓｔａｒｔ（）

ｃｙｇ ｐａｃｋａｇｅ ｓｔａｒｔ（）

ｃｙｇ ｕｓｅｒ ｓｔａｒｔ（）

如果在配置时选择了调度器，它还将启动被选择的ｅＣｏｓ调度器。
这只是ｅＣｏｓ所提供的一个实现方法。用户在进行自己的开发时，也可以使用下面的函数

原型对该函数进行修改：

ｖｏｉｄｃｙｇ ｓｔａｒｔ（ｖｏｉｄ）

一般来说不需要对该函数进行修改，因为ｃｙｇ ｐｒｅｓｔａｒｔ（）函数和ｃｙｇ ｕｓｅｒ ｓｔａｒｔ（）函数
具有足够的灵活性，允许用户加入其他程序代码，几乎可以满足所有的应用需求。

２函数ｃｙｇ ｐｒｅｓｔａｒｔ（）
该函数位于源文件ｉｎｆｒａ／ｃｕｒｒｅｎｔ／ｓｒｃ／ｐｒｅｓｔａｒｔ．ｃｘｘ内。ｅＣｏｓ提供了默认的ｃｙｇ ｐｒｅｓｔａｒｔ（）

函数，不做任何操作。如果在进行其他系统级初始化操作之前还需要进行某些初始化操作，则

可以使用该函数来实现。该函数原型为：

ｖｏｉｄｃｙｇ ｐｒｅｓｔａｒｔ（ｖｏｉｄ）

３函数ｃｙｇ ｐａｃｋａｇｅ ｓｔａｒｔ（）
该函数位于源程序ｉｎｆｒａ／ｃｕｒｒｅｎｔ／ｓｒｃ／ｐｋｇｓｔａｒｔ．ｃｘｘ内。它允许在进入用户主程序之前对

个别包进行初始化操作。ｃｙｇ ｐａｃｋａｇｅ ｓｔａｒｔ（）函数包含了两个包：μＩＴＲＯＮ包和标准Ｃ库
包。基础结构包中包含了两个配置选项ＣＹＧＳＥＭ ＳＴＡＲＴ ＵＩＴＲＯＮ ＣＯＭＰＡＴＩＢＩＬＩＴＹ
和ＣＹＧＳＥＭ ＳＴＡＲＴ ＩＳＯ Ｃ ＣＯＭＰＡＴＩＢＩＬＩＴＹ，它们用于控制这些特殊包的初始化。
函数原型为：

ｖｏｉｄｃｙｇ ｐａｃｋａｇｅ ｓｔａｒｔ（）

用户可以根据该原型编写自己的ｃｙｇ ｐａｃｋａｇｅ ｓｔａｒｔ（）函数，但在初始化默认包时必须加
以小心。下面是用户编写该函数的一个例子：

ｖｏｉｄｃｙｇ ｐａｃｋａｇｅ ｓｔａｒｔ（ｖｏｉｄ）

４０１

｛

＃ｉｆｄｅｆＣＹＧＳＥＭ ＳＴＡＲＴ ＵＩＴＲＯＮ ＣＯＭＰＡＴＡＢＩＬＩＴＹ
ｃｙｇ ｕｉｔｒｏｎ ｓｔａｒｔ（）；／ｋｅｅｐｔｈｅｕＩＴＲＯＮｉｎｉｔｉａｌｉｚａｔｉｏｎ／

＃ｅｎｄｉｆ
ｍｙ ｐａｃｋａｇｅ ｓｔａｒｔ（）；／ｍａｋｅｓｕｒｅＩｉｎｉｔｉａｌｉｚｅｍｙｐａｃｋａｇｅ／

｝

４函数ｃｙｇ ｕｓｅｒ ｓｔａｒｔ（）
该函数位于源文件ｉｎｆｒａ／ｃｕｒｒｅｎｔ／ｓｒｃ／ｕｓｅｒｓｔａｒｔ．ｃｘｘ内。ｃｙｇ ｕｓｅｒ ｓｔａｒｔ（）函数是用户程

序的正常入口点。ｅＣｏｓ源码提供的该函数不做任何操作。这是用户创建自己线程的一个理
想的地方。如果在配置时没有选择ＩＳＯ标准Ｃ库包，则必须实现该函数，此时它是用户程序
的一个强制性入口。其函数原型为：

ｖｏｉｄｃｙｇ ｕｓｅｒ ｓｔａｒｔ（ｖｏｉｄ）

用户可以编写自己的ｃｙｇ ｕｓｅｒ ｓｔａｒｔ（）函数。ｅＣｏｓ为该函数提供了一个默认实现，但不
做任何工作。应用程序使用该函数作为入口时，将覆盖其默认实现，实现应用程序与ｅＣｏｓ系
统的连接。

当从ｃｙｇ ｕｓｅｒ ｓｔａｒｔ（）函数返回时，ｃｙｇ ｓｔａｒｔ（）函数将启动调度器，用户在ｃｙｇ ｕｓｅｒ
ｓｔａｒｔ（）函数中所产生和唤醒的所有线程都将开始执行。注意最好不要在ｃｙｇ ｕｓｅｒ ｓｔａｒｔ（）函
数内直接启动调度器，而应该让其自动启动。另一个值得注意的地方是由于ｃｙｇ ｕｓｅｒ
ｓｔａｒｔ（）函数是在调度器启动之前执行的，因此在该函数中不要使用任何需要调度器的内核服
务。

５０１

第６章 线程与同步

ｅＣｏｓ是一个抢占式多任务实时操作系统。它的基本运行单位是线程，是一个多线程系
统。在某一时间段内，系统中可以存在多个活动线程，但在某一时刻只有一个线程被执行。多

个线程的运行通过可配置的两种调度策略进行调度。系统中的线程可以具有不同的优先级，

同一优先级的线程以时间片轮转的方式调度运行。

为允许多个线程之间的协同工作和它们对资源的竞争，需要提供一种同步和通信机制。

典型的同步机制是采用互斥、条件变量和信号量，ｅＣｏｓ也同样采用了这些方法。此外，ｅＣｏｓ还
采用其他一些在实时系统中普遍使用的同步／通信机制，如事件标志、消息队列等。

线程和同步机制是ｅＣｏｓ内核的一个重要组成部分。本章主要介绍ｅＣｏｓ线程机制和同步
机制，并介绍与其相关的一些内核ＡＰＩ函数。

６１ 线程的创建

线程是ｅＣｏｓ的基本运行单位。简单的系统中只需要一个线程，较复杂的系统需要使用多
线程。ｅＣｏｓ内核提供一个ＡＰＩ函数ｃｙｇ ｔｈｒｅａｄ ｃｒｅａｔｅ用于创建一个新的线程。在大多数系
统中，只在系统初始化的时候使用该函数创建线程，并对线程所需要的数据进行动态分配。如

果需要的话，也可以在其他任何时候调用该函数创建一个新的线程，但在滞后中断服务程序

ＤＳＲ中不能调用该函数。新创建的线程处于挂起状态，在调用另一个ＡＰＩ函数ｃｙｇ ｔｈｒｅａｄ
ｒｅｓｕｍｅ之前它不会启动运行，在系统初始化期间所产生的线程在ｅＣｏｓ调度器被启动之前也不
会运行。

６１１ 创建新线程

创建线程的ＡＰＩ函数定义于头文件＜ｃｙｇ／ｋｅｒｎｅｌ／ｋａｐｉ．ｈ＞内，其函数原型为：

ｖｏｉｄｃｙｇ ｔｈｒｅａｄ ｃｒｅａｔｅ
（

ｃｙｇ ａｄｄｒｗｏｒｄ ｔｓｃｈｅｄ ｉｎｆｏ，／ｓｃｈｅｄｕｌｉｎｇｉｎｆｏ（ｐｒｉｏｒｉｔｙ）／

ｃｙｇ ｔｈｒｅａｄ ｅｎｔｒｙ ｔｅｎｔｒｙ，／ｔｈｒｅａｄｅｎｔｒｙｐｏｉｎｔ／

ｃｙｇ ａｄｄｒｗｏｒｄ ｔｅｎｔｒｙ ｄａｔａ，／ｅｎｔｒｙｐｏｉｎｔａｒｇｕｍｅｎｔ／

ｃｈａｒｎａｍｅ， ／ｎａｍｅｏｆｔｈｒｅａｄ／

ｖｏｉｄｓｔａｃｋ ｂａｓｅ， ／ｐｏｉｎｔｅｒｔｏｓｔａｃｋｂａｓｅ／

ｃｙｇ ｕｃｏｕｎｔ３２ｓｔａｃｋ ｓｉｚｅ， ／ｓｉｚｅｏｆｓｔａｃｋｉｎｂｙｔｅｓ／

ｃｙｇ ｈａｎｄｌｅ ｔｈａｎｄｌｅ， ／ｒｅｔｕｒｎｅｄｔｈｒｅａｄｈａｎｄｌｅ／

ｃｙｇ ｔｈｒｅａｄｔｈｒｅａｄ ／ｓｐａｃｅｔｏｓｔｏｒｅｔｈｒｅａｄｄａｔａ／
）

新产生的线程都分配有一个惟一的句柄（即线程ＩＤ），它通过参数ｈａｎｄｌｅ带回。此后所有

６０１

对该线程的操作都使用该句柄来表示这个线程。参数ｎａｍｅ是该线程的名字，主要用于调试
目的，使用它可以容易跟踪ｃｙｇ ｔｈｒｅａｄ结构与哪一个应用级的线程相对应。内核的一个配置
选项ＣＹＧＶＡＲ ＫＥＲＮＥＬ ＴＨＲＥＡＤＳ ＮＡＭＥ用于控制是否使用线程名字。ｅＣｏｓ配置工
具对线程的配置如图６１所示。

图６１ ｅＣｏｓ配置工具对线程相关部分的配置

对于每一个线程，内核都需要为其提供一个小的内存空间，该空间具有ｃｙｇ ｔｈｒｅａｄ数据
结构的形式，用于存放线程的相关信息（如线程的当前状态）。为避免在内核内进行动态内存

分配，该内存空间由高层程序进行分配，通常使用静态变量的形式。参数ｔｈｒｅａｄ提供了该空
间。

参数ｅｎｔｒｙ和ｅｎｔｒｙ ｄａｔａ分别是线程的入口函数和入口函数的参数，ｓｔａｃｋ ｂａｓｅ和ｓｔａｃｋ
ｓｉｚｅ分别是分配给该线程的栈和栈大小。参数ｓｃｈｅｄ ｉｎｆｏ提供了线程的优先级信息。

６１２ 线程入口函数

线程创建函数中的第二个参数指定了新线程的入口函数。线程入口函数的格式如下：

ｖｏｉｄ
ｔｈｒｅａｄ ｅｎｔｒｙ ｆｕｎｃｔｉｏｎ（ｃｙｇ ａｄｄｒｗｏｒｄ ｔｄａｔａ）
｛

．．．
｝

其参数ｄａｔａ是线程创建函数的第三个参数。线程创建函数的这个参数通常是一个指向
一些静态数据的指针，或者是一个小的整数。如果该线程不需要任何数据，则线程创建函数的

该参数为０。新创建的线程在被ｃｙｇ ｔｈｒｅａｄ ｒｅｓｕｍｅ函数启动运行后，将进入该线程的入口

７０１

函数。

如果线程入口函数始终能够返回，则它等同于一个调用了ｃｙｇ ｔｈｒｅａｄ ｅｘｉｔ函数返回的
线程。当线程返回后，即使线程不会再次运行，仍然保留它在调度器中的注册。如果应用程序

需要回收该线程的ｃｙｇ ｔｈｒｅａｄ数据结果，则必须调用ｃｙｇ ｔｈｒｅａｄ ｄｅｌｅｔｅ函数将该线程删除。

６１３ 线程优先级

线程创建函数的第一个参数ｓｃｈｅｄ ｉｎｆｏ给调度器提供了一些有关该线程的优先级信息。
信息的详细内容与使用的调度器相关。对于位图调度器和多级队列调度器，它是一个小的整

数，通常是０～３１之间的一个值，表示该线程的优先级，其中０的优先级最高。最低优先级

ＣＹＧ ＴＨＲＥＡＤ ＭＩＮ ＰＲＩＯＲＩＴＹ通常只有系统的空闲线程使用。优先级的具体数目可
以通过内核配置选项ＣＹＧＮＵＭ ＫＥＲＮＥＬ ＳＣＨＥＤ ＰＲＩＯＲＩＴＩＥＳ进行控制。在使用位图
调度器时，同一优先级不能有两个线程。

在开发ｅＣｏｓ应用程序时，必须了解系统中的各种线程（包括ｅＣｏｓ包所产生的线程），并且
要保证所有的线程都以适当的优先级运行。

内核提供了三个ＡＰＩ函数：ｃｙｇ ｔｈｒｅａｄ ｓｅｔ ｐｒｉｏｒｉｔｙ、ｃｙｇ ｔｈｒｅａｄ ｇｅｔ ｐｒｉｏｒｉｔｙ和ｃｙｇ
ｔｈｒｅａｄ ｇｅｔ ｃｕｒｒｅｎｔ ｐｒｉｏｒｉｔｙ，用于对线程的优先级进行操作。

６１４ 堆栈和堆栈大小

每一个线程都需要有自己的堆栈空间，用于本地变量和跟踪函数的调用和返回。堆栈的

分配应该由调用程序以静态数据的形式提供，以避免内核对它进行动态内存分配操作。线程

创建函数ｃｙｇ ｔｈｒｅａｄ ｃｒｅａｔｅ有两个参数与堆栈有关，一个参数指向堆栈的基地址，另一个参
数指明了堆栈的大小。在许多处理器结构中，堆栈通常是自顶向下分配的，因此内核确定堆栈

的起始地址的方法是基地址加上堆栈大小。

线程对堆栈大小的具体要求与许多因素有关。最主要的一个因素是在该线程环境下执行

的程序，如果这些程序使用了大量的嵌套调用、递归或大的数组，则堆栈大小应该设置为适当

高的值。ＣＰＵ体系结构方面对堆栈的大小也有影响，例如，ＣＰＵ寄存器的数目以及调用约定
都对堆栈的使用有影响。另外，根据具体的配置情况，有时可能有其他的一些程序（如中断处

理程序）会在当前线程堆栈中运行。这种情况可以使用一些配置选项（如配置选项ＣＹＧＩＭＰ
ＨＡＬ ＯＭＭＯＮ ＩＮＴＥＲＲＵＰＴＳ ＵＳＥ ＩＮＴＥＲＲＵＰＴ ＳＴＡＣＫ以及ＣＹＧＳＥＭ ＨＡＬ
ＣＯＭＭＯＮ ＩＮＴＥＲＲＵＰＴＳ ＡＬＬＯＷ ＮＥＳＴＩＮＧ等）对它们进行控制。
开发应用程序时，应该由开发人员自己确定应用程序实际所需的堆栈大小，内核无法事先

知道线程中将运行什么程序。为此，系统提供了两个常数，它们用于指导选择合理的堆栈大

小。这两个常数分别是ＣＹＧＮＵＭ ＨＡＬ ＳＴＡＣＫ ＳＩＺＥ ＭＩＮＩＭＵＭ和ＣＹＧＮＵＭ ＨＡＬ
ＳＴＡＣＫ ＳＩＺＥ ＴＹＰＩＣＡＬ，它们被定义在硬件抽象层中。ＭＩＮＩＭＵＭ值（最小堆栈大小）
适合于那些只运行一个函数而且只有简单的系统调用的线程。ＴＹＰＩＣＡＬ值（典型堆栈大小）
适合于那些嵌套调用层次不多并且没有太大数组的应用程序。

如果对堆栈的大小估计不足，则有可能发生堆栈溢出，其结果是可能会破坏内存数据。出

现这种情况时，用常规调试手段很难跟踪到错误。内核提供了一些程序代码用于帮助对堆栈

溢出的检测，配置选项ＣＹＧＦＵＮ ＫＥＲＮＥＬ ＴＨＲＥＡＤＳ ＳＴＡＣＫ ＣＨＥＣＫＩＮＧ可以对此

８０１

进行控制。使能该选项时，在堆栈的界限处保留少量的空间，该空间具有特殊的标记，每一次

发生线程上下文切换时对该标记进行检查，如果标记被改变则表示发生了堆栈溢出。当系统

的Ｄｅｂｕｇ功能被使能时，这种堆栈检查方法处于默认使能状态。

６１５ 线程创建例子程序

下面举例说明线程是如何创建的。该例产生了五个线程，一个是ｐｒｏｄｕｃｅｒ，另外四个是

ｗｏｒｋｅｒ。线程创建于系统的ｃｙｇ ｕｓｅｒ ｓｔａｒｔ函数，也可以在ｍａｉｎ入口函数内产生。
线程创建例子程序：

ｅｘａｍｐｌｅｐｒｏｇｒａｍｆｏｒｃｒｅａｔｅｔｈｒｅａｄ
＃ｉｎｃｌｕｄｅ＜ｃｙｇ／ｈａｌ／ｈａｌ ａｒｃｈ．ｈ＞
＃ｉｎｃｌｕｄｅ＜ｃｙｇ／ｋｅｒｎｅｌ／ｋａｐｉ．ｈ＞

／／Ｔｈｅｓｅｎｕｍｂｅｒｓｄｅｐｅｎｄｅｎｔｉｒｅｌｙｏｎｙｏｕｒａｐｐｌｉｃａｔｉｏｎ
＃ｄｅｆｉｎｅＮＵＭＢＥＲ ＯＦ ＷＯＲＫＥＲＳ ４
＃ｄｅｆｉｎｅＰＲＯＤＵＣＥＲ ＰＲＩＯＲＩＴＹ １０
＃ｄｅｆｉｎｅＷＯＲＫＥＲ ＰＲＩＯＲＩＴＹ １１
＃ｄｅｆｉｎｅＰＲＯＤＵＣＥＲ ＳＴＡＣＫＳＩＺＥＣＹＧＮＵＭ ＨＡＬ ＳＴＡＣＫ ＳＩＺＥ ＴＹＰＩＣＡＬ
＃ｄｅｆｉｎｅＷＯＲＫＥＲ ＳＴＡＣＫＳＩＺＥ（ＣＹＧＮＵＭ ＨＡＬ ＳＴＡＣＫ ＳＩＺＥ ＭＩＮＩＭＵＭ＋１０２４）

ｓｔａｔｉｃｕｎｓｉｇｎｅｄｃｈａｒｐｒｏｄｕｃｅｒ ｓｔａｃｋ［ＰＲＯＤＵＣＥＲ ＳＴＡＣＫＳＩＺＥ］；

ｓｔａｔｉｃｕｎｓｉｇｎｅｄｃｈａｒｗｏｒｋｅｒ ｓｔａｃｋｓ［ＮＵＭＢＥＲ ＯＦ ＷＯＲＫＥＲＳ］［ＷＯＲＫＥＲ ＳＴＡＣＫＳＩＺＥ］；

ｓｔａｔｉｃｃｙｇ ｈａｎｄｌｅ ｔｐｒｏｄｕｃｅｒ ｈａｎｄｌｅ，ｗｏｒｋｅｒ ｈａｎｄｌｅｓ［ＮＵＭＢＥＲ ＯＦ ＷＯＲＫＥＲＳ］；

ｓｔａｔｉｃｃｙｇ ｔｈｒｅａｄ ｔｐｒｏｄｕｃｅｒ ｔｈｒｅａｄ，ｗｏｒｋｅｒ ｔｈｒｅａｄｓ［ＮＵＭＢＥＲ ＯＦ ＷＯＲＫＥＲＳ］；

ｓｔａｔｉｃｖｏｉｄ
ｐｒｏｄｕｃｅｒ（ｃｙｇ ａｄｄｒｗｏｒｄ ｔｄａｔａ）
｛

．．．
｝

ｓｔａｔｉｃｖｏｉｄ
ｗｏｒｋｅｒ（ｃｙｇ ａｄｄｒｗｏｒｄ ｔｄａｔａ）
｛

．．．
｝

ｖｏｉｄ
ｃｙｇ ｕｓｅｒ ｓｔａｒｔ（ｖｏｉｄ）
｛

ｉｎｔｉ；

ｃｙｇ ｔｈｒｅａｄ ｃｒｅａｔｅ（ＰＲＯＤＵＣＥＲ ＰＲＩＯＲＩＴＹ，＆ｐｒｏｄｕｃｅｒ，０，″ｐｒｏｄｕｃｅｒ″，

ｐｒｏｄｕｃｅｒ ｓｔａｃｋ，ＰＲＯＤＵＣＥＲ ＳＴＡＣＫＳＩＺＥ，

９０１

＆ｐｒｏｄｕｃｅｒ ｈａｎｄｌｅ，＆ｐｒｏｄｕｃｅｒ ｔｈｒｅａｄ）；

ｃｙｇ ｔｈｒｅａｄ ｒｅｓｕｍｅ（ｐｒｏｄｕｃｅｒ ｈａｎｄｌｅ）；

ｆｏｒ（ｉ＝０；ｉ＜ＮＵＭＢＥＲ ＯＦ ＷＯＲＫＥＲＳ；ｉ＋＋）｛

ｃｙｇ ｔｈｒｅａｄ ｃｒｅａｔｅ（ＷＯＲＫＥＲ ＰＲＩＯＲＩＴＹ，＆ｗｏｒｋｅｒ，ｉ，″ｗｏｒｋｅｒ″，

ｗｏｒｋｅｒ ｓｔａｃｋｓ［ｉ］，ＷＯＲＫＥＲ ＳＴＡＣＫＳＩＺＥ，

＆（ｗｏｒｋｅｒ ｈａｎｄｌｅｓ［ｉ］），＆（ｗｏｒｋｅｒ ｔｈｒｅａｄｓ［ｉ］））；

ｃｙｇ ｔｈｒｅａｄ ｒｅｓｕｍｅ（ｗｏｒｋｅｒ ｈａｎｄｌｅｓ［ｉ］）；
｝

｝

６２ 线程信息的获取

对线程进行操作时，有时需要了解线程相关的一些信息。内核提供了一些函数用于获取

线程的信息，包括线程句柄、线程堆栈基地址和线程堆栈大小等。下面分别对这些ＡＰＩ函数
进行简单的介绍。

ｃｙｇ ｈａｎｄｌｅ ｔｃｙｇ ｔｈｒｅａｄ ｓｅｌｆ（ｖｏｉｄ）

该函数返回当前线程的句柄。其值与当前线程在创建时被ｃｙｇ ｔｈｒｅａｄ ｃｒｅａｔｅ函数返回
的ｈａｎｄｌｅ值相同。调用该函数得到的句柄可以被其他线程函数使用。ｃｙｇ ｔｈｒｅａｄ ｓｅｌｆ函数
只能被当前线程调用。

ｃｙｇ ｈａｎｄｌｅ ｔｃｙｇ ｔｈｒｅａｄ ｉｄｌｅ ｔｈｒｅａｄ（ｖｏｉｄ）

该函数返回空闲线程的句柄。空闲线程是内核自动产生的一个线程，应用程序除了使用

该函数外，没有其他方法可以获取这一信息。该函数可以在线程和ＤＳＲ环境下调用，但只能
在系统初始化完成之后进行。

ｃｙｇ ａｄｄｒｗｏｒｄ ｔｃｙｇ ｔｈｒｅａｄ ｇｅｔ ｓｔａｃｋ ｂａｓｅ（ｃｙｇ ｈａｎｄｌｅ ｔｔｈｒｅａｄ）

该函数返回指定线程的堆栈基地址。返回的基地址可能与在创建该线程时传递给ｃｙｇ
ｔｈｒｅａｄ ｃｒｅａｔｅ函数的值相同，也可能不一致。这是因为为了满足ｄｅｂｕｇ调试和字节排列的需
要，有可能对它的堆栈基地址进行了修改。在线程被创建后，可以在任何时间调用该函数来获

取线程的实际堆栈基地址。

ｃｙｇ ｕｉｎｔ３２ｃｙｇ ｔｈｒｅａｄ ｇｅｔ ｓｔａｃｋ ｓｉｚｅ（ｃｙｇ ｈａｎｄｌｅ ｔｔｈｒｅａｄ）

该函数返回指定线程的堆栈大小。返回的堆栈大小可能与在创建该线程时传递给ｃｙｇ
ｔｈｒｅａｄ ｃｒｅａｔｅ函数的值相同，也可能不一致，这是因为为了满足ｄｅｂｕｇ调试和字节排列的需
要，有可能对线程堆栈大小进行了修改。在线程被创建后，可以在任何时间调用该函数来获取

线程的实际堆栈大小。

ｃｙｇ ｕｉｎｔ３２ｃｙｇ ｔｈｒｅａｄ ｍｅａｓｕｒｅ ｓｔａｃｋ ｕｓａｇｅ（ｃｙｇ ｈａｎｄｌｅ ｔｔｈｒｅａｄ）；

该函数只有在配置选项ＣＹＧＦＵＮ ＫＥＲＮＥＬ ＴＨＲＥＡＤＳ ＳＴＡＣＫ ＭＥＡＳＵＲＥＭＥＮＴ
被使能时才可用。它的返回值是指定线程到目前为止所使用的堆栈空间的最大字节数。返回

０１１

的值不一定是堆栈空间的实际上限。如果返回０，则有可能会发生堆栈溢出。这是一个必需
的ｄｅｂｕｇ函数。

６３ 线程的控制

新线程的启动、线程在什么时候被唤醒以及挂起一个线程需要有一个机制对它们进行控

制。ｅＣｏｓ内核提供了一些ＡＰＩ函数对这些行为进行控制。应用程序在使用这些函数时，有时
还需要适当地使用条件变量或者信箱等一些同步原语。下面是这些ＡＰＩ函数的介绍。

ｖｏｉｄｃｙｇ ｔｈｒｅａｄ ｙｉｅｌｄ（ｖｏｉｄ）

该函数使线程放弃对处理器的控制，允许另一个相同优先级的线程运行。这对具有比当

前线程优先级高的线程没有任何作用，因为如果有比当前线程优先级要高的线程，则当前线程

自然会被优先级高的线程抢先。同样，对于优先级比当前线程要低的线程也不会有任何作用，

因为当前线程总是会抢先在优先级低的线程之前运行。因此，该函数只在使用多级队列调度

器时允许多个线程具有相同优先级的情况下才有用。如果没有相同优先级的其他线程，该函

数将不起作用。

即使采用了多级队列调度器，ｃｙｇ ｔｈｒｅａｄ ｙｉｅｌｄ函数也不一定有用。由于使用了时间片
轮转，同一优先级的所有线程都可以公平地得到ＣＰＵ时间。如果使用配置选项ＣＹＧＳＥＭ
ＫＥＲＮＥＬ ＳＣＨＥＤ ＴＩＭＥＳＬＩＣＥ将时间片禁止，那么可以使用这一函数来实现多任务之间
的协同工作。

ｖｏｉｄｃｙｇ ｔｈｒｅａｄ ｄｅｌａｙ（ｃｙｇ ｔｉｃｋ ｃｏｕｎｔ ｔｄｅｌａｙ）

该函数将线程挂起一定的时间，参数ｄｅｌａｙ为被挂起的时钟滴答数。假设系统时钟频率
为１００Ｈｚ，如果ｄｅｌａｙ为１，那么线程将被挂起１０ｍｓ。线程控制的这种挂起功能依赖于系统的
实时时钟，受到配置选项ＣＹＧＶＡＲ ＫＥＲＮＥＬ ＣＯＵＮＴＥＲＳ ＣＬＯＣＫ的控制。
如果应用程序要求使用毫秒或类似的时间单位而不使用时钟滴答，则必须进行转换计算，

通常需要由开发者自己进行这种计算。程序在每一次调用该函数之前进行这种计算势必会增

加系统不必要的开销。

ｖｏｉｄｃｙｇ ｔｈｒｅａｄ ｓｕｓｐｅｎｄ（ｃｙｇ ｈａｎｄｌｅ ｔｔｈｒｅａｄ）

该函数挂起指定的线程。线程可以被挂起多次，每调用一次该函数，都必须相应地调用一

次ｃｙｇ ｔｈｒｅａｄ ｒｅｓｕｍｅ函数，使线程走出挂起状态。
每一个线程都有一个悬挂计数器，当线程被创建时，该计数器的值为１。调用该函数时将

使悬挂计数器加１，而ｃｙｇ ｔｈｒｅａｄ ｒｅｓｕｍｅ函数将使悬挂计数器减１。调度器不会调度运行一
个悬挂计数器不为０的线程，因此新创建的线程在被启动之前不会运行。

ｖｏｉｄｃｙｇ ｔｈｒｅａｄ ｒｅｓｕｍｅ（ｃｙｇ ｈａｎｄｌｅ ｔｔｈｒｅａｄ）

该函数启动指定线程重新运行，它使线程的悬挂计数器减１。如果计数器的值变为０，处
于挂起状态的线程将被恢复并继续运行。如果线程被退出，则重新被初始化。

在对线程进行挂起和恢复操作时，有时可能会出现一个问题，那就是线程被挂起的次数要

１１１

多于被恢复的参数，因此该线程将永远不会再次运行，这将导致非常严重的后果。为了帮助对

该问题进行调试，内核提供了一个配置选项ＣＹＧＮＵＭ ＫＥＲＮＥＬ ＭＡＸ ＳＵＳＰＥＮＤ
ＣＯＵＮＴ ＡＳＳＥＲＴ，它给出了一个悬挂次数与恢复次数不相匹配的上限。

ｖｏｉｄｃｙｇ ｔｈｒｅａｄ ｒｅｌｅａｓｅ（ｃｙｇ ｈａｎｄｌｅ ｔｔｈｒｅａｄ）

该函数将处于阻塞等待状态的线程释放出来。当一个线程在等待某个同步原语时，例如

它在等待一个信号量或互斥体、或者正在等待一个告警器被触发时，使用该函数可以强迫唤醒

该线程。这种操作通常会通知受到影响的同步原语返回ｆａｌｓｅ，指明此次操作没有成功。使用
该函数时要非常小心。应该特别加以注意的是，它只能使用在那些设计适当并对所有返回代

码进行检查的线程中。该函数主要用在ＰＯＳＩＸ兼容层内。

６４ 线程的终止和消除

在大多数嵌入式应用中，许多线程在系统的初始化阶段被创建，这些线程采用了静态内存

分配方式，它们从来不需要终止。这样避免了动态分配内存和其他资源管理的需要。然而，如

果某个应用要求动态创建线程、终止线程以及回收这些线程的堆栈等资源，那么内核必须提供

相应的支持。

６４１ 线程终止函数

ｅＣｏｓ内核提供了三个用于终止线程的函数，它们分别是ｃｙｇ ｔｈｒｅａｄ ｅｘｉｔ、ｃｙｇ ｔｈｒｅａｄ
ｋｉｌｌ和ｃｙｇ ｔｈｒｅａｄ ｄｅｌｅｔｅ。

ｖｏｉｄｃｙｇ ｔｈｒｅａｄ ｅｘｉｔ（ｖｏｉｄ）

该函数允许线程自己退出。线程在执行这一函数的时候将自行退出，调度器不会再对其

进行调度，但在使用ｃｙｇ ｔｈｒｅａｄ ｃｒｅａｔｅ函数创建该线程时的ｃｙｇ ｔｈｒａｅｄ数据结构仍然被使
用，该线程的句柄仍然有效。其他线程可以对被终止的线程进行某些操作，如使用ｃｙｇ
ｔｈｒｅａｄ ｍｅａｓｕｒｅ ｓｔａｃｋ ｕｓａｇｅ函数来确定它的堆栈使用情况。如果不再需要其句柄和ｃｙｇ
ｔｈｒｅａｄ结构，可以使用ｃｙｇ ｔｈｒｅａｄ ｄｅｌｅｔｅ函数释放这些资源。如果堆栈是动态分配的，在调
用ｃｙｇ ｔｈｒｅａｄ ｄｅｌｅｔｅ函数之前堆栈不会被释放。一般在调用该函数之前应该确认该线程的
资源已经释放，否则可能引起系统的崩溃。

ｖｏｉｄｃｙｇ ｔｈｒｅａｄ ｋｉｌｌ（ｃｙｇ ｈａｎｄｌｅ ｔｔｈｒｅａｄ）

该函数用于杀死另外的一个线程。其效果与被杀死的线程自己调用ｃｙｇ ｔｈｒｅａｄ ｅｘｉｔ函
数相同。该函数的使用是相当危险的，如果线程在被杀死的时候还有一些分配给它的资源（包

括内存、信号量、互斥体等等）没有被释放，则有可能造成系统死锁。因此应该尽量避免使用该

函数，最好使用ｃｙｇ ｔｈｒｅａｄ ｅｘｉｔ函数来终止线程。该函数不能被用来杀死线程自己。

ｖｏｉｄｃｙｇ ｔｈｒｅａｄ ｄｅｌｅｔｅ（ｃｙｇ ｈａｎｄｌｅ ｔｔｈｒｅａｄ）

该函数删除一个线程。在一个线程已经退出并且不再需要的时候，可以使用该函数将其

删除。调用该函数后，被删除线程的句柄不再有效，ｃｙｇ ｔｈｒｅａｄ数据结构和线程堆栈可以被

２１１

重新使用或被释放。对一个仍在运行的线程调用该函数将其删除时隐含调用了ｃｙｇ ｔｈｒｅａｄ
ｋｉｌｌ函数。使用该函数也是危险的，如果可以的话，可以给被删除的线程发送一个消息让它自
己使用ｃｙｇ ｔｈｒｅａｄ ｅｘｉｔ函数退出。

６４２ 线程消除函数

有些应用要求线程在退出的时候能自动调用一个函数，释放被该线程所占用的资源。这

个函数称为线程的消除函数。这种支持必须使用配置选项ＣＹＧＰＫＧ ＫＥＲＮＥＬ ＴＨＲＥＡＤＳ
ＤＥＳＴＲＵＣＴＯＲＳ对其进行使能。ｅＣｏｓ内核提供了两个对线程消除函数进行管理的ＡＰＩ函
数。

ｃｙｇ ｂｏｏｌｔｃｙｇ ｔｈｒｅａｄ ａｄｄ ｄｅｓｔｒｕｃｔｏｒ
（

ｃｙｇ ｔｈｒｅａｄ ｄｅｓｔｒｕｃｔｏｒ ｆｎｆｎ，／ｄｅｓｔｒｕｃｔｏｒｆｕｎｃｔｉｏｎ／
ｃｙｇ ａｄｄｒｗｏｒｄ ｔｄａｔａ ／ａｒｇｕｍｅｎｔｔｏｄｅｓｔｒｕｃｔｏｒ／
）

该函数为调用此函数的线程增加一个消除函数ｆｎ，当该线程退出时将执行这一消除函
数。消除函数的函数类型为ｃｙｇ ｔｈｒｅａｄ ｄｅｓｔｒｕｃｔｏｒ ｆｎ，可以将参数ｄａｔａ作为消除函数的参
数。如果成功增加消除函数，该函数返回ｔｒｕｅ，否则返回ｆａｌｓｅ。

ｃｙｇ ｂｏｏｌｔｃｙｇ ｔｈｒｅａｄ ｒｅｍ ｄｅｓｔｒｕｃｔｏｒ
（

ｃｙｇ ｔｈｒｅａｄ ｄｅｓｔｒｕｃｔｏｒ ｆｎｆｎ，／ｄｅｓｔｒｕｃｔｏｒｆｕｎｃｔｉｏｎ／
ｃｙｇ ａｄｄｒｗｏｒｄ ｔｄａｔａ ／ａｒｇｕｍｅｎｔｔｏｄｅｓｔｒｕｃｔｏｒ／
）

该函数将从调用该函数的线程中删除（禁止）消除函数。在线程退出或被杀死之前应该调

用消除函数。为了使消除函数删除成功，该函数中的ｆｎ和ｄａｔａ参数必须与安装消除函数时的

ｃｙｇ ｔｈｒｅａｄ ａｄｄ ｄｅｓｔｒｕｃｔｏｒ函数的参数完全一致。如果成功删除消除函数，该函数返回

ｔｒｕｅ，否则返回ｆａｌｓｅ。
在默认情况下，线程的消除函数只对一个线程有效，这意味着注册一个消除函数仅仅是只

将其注册到当前线程。每一个线程都有自己的消除函数。如果在配置的时候禁止了配置选项

ＣＹＧＳＥＭ ＫＥＲＮＥＬ ＴＨＲＥＡＤＳ ＤＥＳＴＲＵＣＴＯＲＳ ＰＥＲ ＴＨＲＥＡＤ，那么任何一个线程
在退出时都将调用所有被注册的消除函数。也就是说如果禁止了该配置选项，那么线程消除

函数是全局性的，所有线程都有相同的消除函数。

对于被注册的消除函数的个数有一定的限制，配置选项 ＣＹＧＮＵＭ ＫＥＲＮＥＬ
ＴＨＲＥＡＤＳ ＤＥＳＴＲＵＣＴＯＲＳ可以对它进行控制。在增加该配置选项的值时，所使用的内存
增加量很小，但当配置选项ＣＹＧＳＥＭ ＫＥＲＮＥＬ ＴＨＲＥＡＤＳ ＤＥＳＴＲＵＣＴＯＲＳ ＰＥＲ
ＴＨＲＥＡＤ被使能的时候，每个线程所使用的内存都将有所增加。当消除函数的注册个数达到
限定值时，ｃｙｇ ｔｈｒｅａｄ ａｄｄ ｄｅｓｔｒｕｃｔｏｒ函数将返回ｆａｌｓｅ。

６５ 线程优先级操作

调度器使用线程优先级来决定下一次启动哪一个线程运行。优先级的组成与具体选择的

３１１

调度器有关。一般来说，线程的优先级使用０～３１的整数来表示，只有空闲线程运行于最低优
先级。优先级数目可以在ｅＣｏｓ配置工具中指定，相应的配置选项是ＣＹＧＮＵＭ ＫＥＲＮＥＬ
ＳＣＨＥＤ ＰＲＩＯＲＩＴＩＥＳ。

ｅＣｏｓ内核提供了三个对线程优先级进行操作的ＡＰＩ函数。通过它们可以取得线程的优
先级或者对线程优先级进行设置。

ｃｙｇ ｐｒｉｏｒｉｔｙ ｔｃｙｇ ｔｈｒｅａｄ ｇｅｔ ｐｒｉｏｒｉｔｙ
（

ｃｙｇ ｈａｎｄｌｅ ｔｔｈｒｅａｄ／ｔｈｒｅａｄＩＤ／
）

该函数返回指定线程的优先级。这个优先级是对该线程进行最近的一次优先级设置（使

用ｃｙｇ ｔｈｒｅａｄ ｓｅｔ ｐｒｉｏｒｉｔｙ函数）所设定的值，或者是线程被首次创建时的优先级。在某些
情况下，线程可能实际运行在一个更高的优先级上。为解决优先级倒置问题，它有可能拥有一

个互斥体，并使用优先级置顶或者优先级继承等措施，它的优先级可能被临时提高。在这种情

况下，该函数返回的不是线程的当前优先级，而是正常设置的优先级。优先级的倒置问题将在

后面介绍。

ｃｙｇ ｐｒｉｏｒｉｔｙ ｔｃｙｇ ｔｈｒｅａｄ ｇｅｔ ｃｕｒｒｅｎｔ ｐｒｉｏｒｉｔｙ
（

ｃｙｇ ｈａｎｄｌｅ ｔｔｈｒｅａｄ／ｔｈｒｅａｄＩＤ／
）

该函数返回指定线程的当前优先级。如果线程的优先级被采用了优先级置顶或优先级继

承等机制的互斥体所改变，该函数将返回被改变之后的当前优先级，而不是正常设置的优先

级。

ｖｏｉｄｃｙｇ ｔｈｒｅａｄ ｓｅｔ ｐｒｉｏｒｉｔｙ
（

ｃｙｇ ｈａｎｄｌｅ ｔｔｈｒｅａｄ， ／ｔｈｒｅａｄＩＤ／

ｃｙｇ ｐｒｉｏｒｉｔｙ ｔｐｒｉｏｒｉｔｙ ／ｎｅｗｐｒｉｏｒｉｔｙ／
）

该函数将指定线程的优先级修改为指定的值。与ＵＮＩＸ一样，优先级的值越小其优先级
越高。优先级０的线程在系统中的优先级最高。配置选项 ＣＹＧ ＴＨＲＥＡＤ ＭＩＮ
ＰＲＩＯＲＩＴＹ指定的优先级是最低优先级，它的值与所使用的调度器有关。在许多应用中，可
以给线程静态指定一个合适的优先级。但有时需要对线程的优先级进行动态修改，此时可以

使用该函数实现这一目的。

６６ ｐｅｒｔｈｒｅａｄ数据

在一些应用程序和某些程序库中，每一个线程都可能需要用到一些专用数据。例如，在

ＰＯＳＩＸ兼容包中的许多函数用１的返回值来表示一个错误，并使用一个全局变量ｅｒｒｏｒ来保
存一些附加的信息。如果有多个线程并发调用ＰＯＸＩＳ库的函数，而且ｅｒｒｏｒ是一个全局变量，

４１１

那么线程将无法知道当前的ｅｒｒｏｒ是否是它自己所进行调用的返回值，也无法知道是否是同时
运行的其他线程在调用不同的ＰＯＳＩＸ函数时对这个全局变量进行了修改。为避免这种混淆，

ｅｒｒｏｒ应该作为一个线程专用数据，即ｐｒｅｔｈｒｅａｄ数据，每一个线程都应该有它的一个实例。
这种对ｐｒｅ ｔｈｒｅａｄ数据的支持可以通过配置选项ＣＹＧＶＡＲ ＫＥＲＮＥＬ ＴＨＲＥＡＤＳ

ＤＡＴＡ进行使能控制。如果被使能，每一个ｃｙｇ ｔｈｒｅａｄ数据结构都将保持有一个小的字
（ｗｏｒｄ）数组，该数组的大小由配置选项ＣＹＧＮＵＭ ＫＥＲＮＥＬ ＴＨＲＥＡＤＳ ＤＡＴＡ ＭＡＸ来
指定。当线程被创建时，该数组的所有元素被置０。
如果应用程序需要使用ｐｒｅｔｈｒｅａｄ数据，它需要该数组的一个还没有分配给其他程序的

索引。这个索引可以通过调用内核提供的ＡＰＩ函数ｃｙｇ ｔｈｒｅａｄ ｎｅｗ ｄａｔａ ｉｎｄｅｘ得到，并
被随后调用的另一个ＡＰＩ函数ｃｙｇ ｔｈｒｅａｄ ｇｅｔ ｄａｔａ所使用。索引的分配通常在系统初始
化期间进行，并保存在具体变量内。由于某种原因不再需要数组中的某个槽位并且可以重新

使用它的时候，可以调用ｃｙｇ ｔｈｒｅａｄ ｆｒｅｅ ｄａｔａ ｉｎｄｅｘ函数将它释放。
可以使用ＡＰＩ函数ｃｙｇ ｔｈｒｅａｄ ｇｅｔ ｄａｔａ获取当前线程在给定槽位上的ｐｒｅｔｈｒｅａｄ数

据。使用ｃｙｇ ｔｈｒｅａｄ ｓｅｔ ｄａｔａ函数可以对ｐｒｅｔｈｒｅａｄ数据进行更新。如果ｐｒｅｔｈｒｅａｄ的某
个特殊项被重复使用，可以使用ｃｙｇ ｔｈｒｅａｄ ｇｅｔ ｄａｔａ ｐｔｒ函数来获取数据的指针，利用这
个指针可以有效地对数据进行间接检查和更新。

一些包（如错误包和ＰＯＳＩＸ包）在ｐｅｒｔｈｒｅａｄ数据中具有预先分配的槽。正常情况下，应
用程序不得使用这些槽，而应该在初始化期间调用ｃｙｇ ｔｈｒｅａｄ ｎｅｗ ｄａｔａ ｉｎｄｅｘ函数进行
分配。假如在配置时不包含ＰＯＳＩＸ包，那么应用程序可以重新使用这些预先分配给这些未使
用包的槽位。

这些对ｐｒｅｔｈｒｅａｄ数据进行操作的内核ＡＰＩ函数定义于头文件＜ｃｙｇ／ｋｅｒｎｅｌ／ｋａｐｉ．ｈ＞内，
下面分别对它们加以介绍。

ｃｙｇ ｕｃｏｕｎｔ３２ｃｙｇ ｔｈｒｅａｄ ｎｅｗ ｄａｔａ ｉｎｄｅｘ（ｖｏｉｄ）

该函数获取一个新的没有被使用的数据索引。被分配的索引可用于保存每个线程的专用

数据。例如，全局变量ｅｒｒｏｒ可以被分配为ｐｒｅ ｔｈｒｅａｄ数据变量。如果没有新的索引，该函数
返回－１。

ｖｏｉｄｃｙｇ ｔｈｒｅａｄ ｆｒｅｅ ｄａｔａ ｉｎｄｅｘ
（

ｃｙｇ ｕｃｏｕｎｔ３２ｉｎｄｅｘ／ｉｎｄｅｘｔｏｆｒｅｅ／
）

该函数释放一个数据索引，系统可以重新使用该索引。

ＣＹＧ ＡＤＤＲＷＯＲＤｃｙｇ ｔｈｒｅａｄ ｇｅｔ ｄａｔａ
（

ｃｙｇ ｕｃｏｕｎｔ３２ｉｎｄｅｘ／ｉｎｄｅｘｏｆｐｅｒｔｈｒｅａｄｄａｔａ／
）

该函数获取ｐｒｅｔｈｒｅａｄ数据。

ＣＹＧ ＡＤＤＲＷＯＲＤｃｙｇ ｔｈｒｅａｄ ｇｅｔ ｄａｔａ ｐｔｒ

５１１

（

ｃｙｇ ｕｃｏｕｎｔ３２ｉｎｄｅｘ／ｉｎｄｅｘｏｆｐｅｒｔｈｒｅａｄｄａｔａ／

）

该函数返回ｐｅｒｔｈｒｅａｄ数据的指针。在使用ｃｙｇ ｔｈｒｅａｄ ｇｅｔ ｄａｔａ和ｃｙｇ ｔｈｒｅａｄ ｓｅｔ
ｄａｔａ函数时可以使用该函数。该指针只在当前线程的上下文环境中有效。

ｖｏｉｄｃｙｇ ｔｈｒｅａｄ ｓｅｔ ｄａｔａ
（

ｃｙｇ ｕｃｏｕｎｔ３２ｉｎｄｅｘ，／ｉｎｄｅｘｏｆｐｅｒｔｈｒｅａｄｄａｔａ／

ＣＹＧ ＡＤＤＲＷＯＲＤｄａｔａ／ｄａｔａｔｏｗｒｉｔｅ／

）

该函数对ｐｒｅｔｈｒｅａｄ数据进行设置。

６７ 同步原语

ｅＣｏｓ是一个多线程系统，为保证多个线程能够协同工作和它们对资源的合理竞争，它提
供一种同步和通信机制。ｅＣｏｓ内核的同步机制提供了许多同步原语，包括互斥、条件变量、信
号量，信箱和事件标志等。

互斥（Ｍｕｔｅｘｅｓ）允许多个线程能安全地共享资源。线程首先必须锁定互斥体，然后再对共
享资源进行操作，最后要对该互斥体进行解锁。其他的同步原语用于线程之间的通信，或者用

于滞后中断服务程序ＤＳＲ与线程的通信。
线程在锁定一个互斥体的时候可能需要等待某个条件得到满足，这就需要使用条件变量

（ＣｏｎｄｉｔｉｏｎＶａｒｉａｂｌｅｓ）。条件变量只在线程需要等待的时候才使用，其他线程或ＤＳＲ可以唤醒
处于等待状态的该线程。当线程等待一个条件变量时，它在进入等待状态之前将释放互斥体，

在被唤醒后又重新拥有互斥体。这种操作是原子操作，不需要使用同步竞争条件。

信号量（Ｓｅｍａｐｈｏｒｅｓ）用于指明某个特殊事件的发生。线程可以等待某个事件的发生，而
该事件将由另一个线程产生。信号量具有一个计数器，如果事件连续快速发生多次，也不会丢

失信息。

信箱（Ｍａｉｌｂｏｘｅｓ）也可以用来表示已经发生的某个特殊事件，允许在每个事件之间交换数
据。由于信箱需要保存数据，因此它的能力有限。如果线程产生信箱事件的速度快于对这些

事件的消耗，为避免溢出，该线程将被阻塞直到具有可用的信箱空间。因此，信箱通常不能被

ＤＳＲ用来唤醒线程，它只能用于两个线程之间。
事件标志（ＥｖｅｎｔＦｌａｇｓ）可以用于等待一定数量的不同事件的发生，并对发生的事件发出

信号。与信号量要对事件发生的次数进行跟踪不同，事件标志关心的只是事件是否发生，而不

是其发生的次数。它不可能像信箱那样随事件一起发送数据，它不可能出现溢出，因此它可以

在ＤＳＲ和线程之间已及两个线程之间使用。

Ｓｐｉｎｌｏｃｋ是为运行在ＳＭＰ环境下的线程提供的一个附加的同步原语。

ｅＣｏｓ的硬件抽象层提供了一些包含上述这些同步原语的设备驱动程序ＡＰＩ函数，允许中
断处理程序的ＤＳＲ给高层软件发出事件信号。如果是一个包含内核的配置，驱动程序ＡＰＩ函

６１１

数将被直接映射到同等的内核函数。如果是一个没有内核的配置，并且应用程序只是一个以

查询方式检测Ｉ／Ｏ事件发生的单线程的程序，那么驱动程序ＡＰＩ将完全实现于硬件抽象层
内，不需要对多线程进行考虑，其实现显然非常简单。

利用ｅＣｏｓ的图形配置工具可以对同步机制进行配置，图６２是对同步原语进行配置的一
个示意图。

图６２ ｅＣｏｓ配置工具对同步原语的配置

６８ 互斥体

使用互斥体（Ｍｕｔｅｘ）的目的是实现线程对资源的安全共享。如果两个或两个以上的线程
要对同一个数据结构进行操作而没有对它进行锁定，系统可能在当时不会出现什么问题，但不

久以后数据结构将会变得不一致，应用程序可能会出现异常并最终导致系统崩溃。这种现象

也可能出现在使用单个变量或其他资源的时候。

考虑下面的程序例子：

ｓｔａｔｉｃｖｏｌａｔｉｌｅｉｎｔｃｏｕｎｔｅｒ＝０；

ｖｏｉｄ
ｐｒｏｃｅｓｓ ｅｖｅｎｔ（ｖｏｉｄ）
｛

．．．
ｃｏｕｎｔｅｒ＋＋；
｝

假设在某个时候ｃｏｕｎｔｅｒ的值是４２，此时有两个在同一优先级上运行的线程Ａ和Ｂ，它们
都调用上面的ｐｒｏｃｅｓｓ ｅｖｅｎｔ函数。线程Ａ将读取ｃｏｕｎｔｅｒ的值，并将其值加１，此时ｃｏｕｎｔｅｒ
为４３。线程Ｂ也做同样的操作，ｃｏｕｎｔｅｒ的值为４４。但是如果线程Ａ在读取ｃｏｕｎｔｅｒ的值为４２
之后，在将其值加１之前调度器调度运行线程Ｂ，此时线程Ｂ读取的仍然是ｃｏｕｎｔｅｒ原来的值

４２，操作完成后ｃｏｕｎｔｅｒ变为４３。这样ｃｏｕｎｔｅｒ的值只增加了１，而不是２，因此最后ｃｏｕｎｔｅｒ的
值只是４３，而不是４４。这足以说明该应用程序的运行将是不可靠的。
像上面例子中对共享数据进行操作的程序代码段通常被称作临界区。为避免出现上述现

象，程序在进入临界区之前应该声称一个锁，在离开时再释放这个锁。互斥体就是为此而实现

的一个同步原语。

７１１

上面的例子可以按下面的方法使用互斥体：

ｓｔａｔｉｃｖｏｌａｔｉｌｅｉｎｔｃｏｕｎｔｅｒ＝０；

ｓｔａｔｉｃｃｙｇ ｍｕｔｅｘ ｔｌｏｃｋ；

ｖｏｉｄ
ｐｒｏｃｅｓｓ ｅｖｅｎｔ（ｖｏｉｄ）
｛

．．．
ｃｙｇ ｍｕｔｅｘ ｌｏｃｋ（＆ｌｏｃｋ）；

ｃｏｕｎｔｅｒ＋＋；

ｃｙｇ ｍｕｔｅｘ ｕｎｌｏｃｋ（＆ｌｏｃｋ）；
｝

６８１ 互斥体的实现与操作

在使用互斥体之前，必须调用内核ＡＰＩ函数ｃｙｇ ｍｕｔｅｘ ｉｎｉｔ对互斥体进行初始化。互
斥体是一个ｃｙｇ ｍｕｔｅｘ ｔ类型的数据结构，通常被静态分配。它有可能是某个大的数据结
构的一部分。如果不再需要某个互斥体，并且没有任何线程正在等待该互斥体，则可以调用

ｃｙｇ ｍｕｔｅｘ ｄｅｓｔｒｏｙ函数将其作废。
使用互斥体的主要函数是ｃｙｇ ｍｕｔｅｘ ｌｏｃｋ和ｃｙｇ ｍｕｔｅｘ ｕｎｌｏｃｋ。在正常情况下，ｃｙｇ

ｍｕｔｅｘ ｌｏｃｋ在成功对互斥锁进行声称后将返回ｔｒｕｅ，如果互斥体被另外的线程所拥有，该线
程将被阻塞等待该互斥体。如果其他程序调用ｃｙｇ ｍｕｔｅｘ ｒｅｌｅａｓｅ函数或者ｃｙｇ ｔｈｒｅａｄ
ｒｅｌｅａｓｅ函数，则这种锁定操作有可能失败。因此在使用这些函数时应该检查它们的返回值。
当前拥有互斥体的线程在不再需要该互斥体的时候，可以调用ｃｙｇ ｍｕｔｅｘ ｕｎｌｏｃｋ函数对互
斥体进行解锁，解锁操作必须由互斥体的拥有者进行，而不能由另外的线程进行。

ｃｙｇ ｍｕｔｅｘ ｔｒｙｌｏｃｋ函数是ｃｙｇ ｍｕｔｅｘ ｌｏｃｋ的一个变体，在被调用后将立即返回。这
个函数很少被使用。由于程序只是在进入临界区之前才对互斥体进行锁定，因此如果不能锁

定互斥体，那么当前线程将不会做其他工作。如果线程运行的优先级较低，它在使用这个函数

时可能会发生优先级倒置现象，因为优先级继承程序可能还没有被启动。

ｃｙｇ ｍｕｔｅｘ ｒｅｌｅａｓｅ函数可以用于唤醒那些由于调用了ｃｙｇ ｍｕｔｅｘ ｌｏｃｋ函数而当前正
处于被阻塞状态的所有线程。这些线程对ｃｙｇ ｍｕｔｅｘ ｌｏｃｋ的调用可能返回ｆａｌｓｅ，但不会影
响当前拥有该互斥体的线程。

ｅＣｏｓ内核互斥体的实现不支持递归锁。如果线程锁定了一个互斥体，那么试图对该互斥
体进行再一次的锁定操作（通常在复杂的递归调用中出现）将导致错误的发生，或者导致线程

进入死锁状态。

６８２ 互斥体ＡＰＩ函数

上面提到的ｅＣｏｓ内核对互斥体进行操作的ＡＰＩ函数均被定义在头文件＜ｃｙｇ／ｋｅｒｎｅｌ／

ｋａｐｉ．ｈ＞内，使用这些函数时应该包含该头文件。下面是这些ＡＰＩ函数的简要介绍。

ｖｏｉｄｃｙｇ ｍｕｔｅｘ ｉｎｉｔ
（

８１１

ｃｙｇ ｍｕｔｅｘ ｔｍｕｔｅｘ／ｍｕｔｅｘｔｏｉｎｉｔｉａｌｉｚｅ／
）

该函数初始化一个互斥体。在ｅＣｏｓ系统中，同一个线程不能对互斥体进行多次锁定。如
果对同一个线程进行了多次锁定，将会发生无法预料的结果。

ｖｏｉｄｃｙｇ ｍｕｔｅｘ ｄｅｓｔｒｏｙ
（

ｃｙｇ ｍｕｔｅｘ ｔｍｕｔｅｘ／ｍｕｔｅｘｔｏｄｅｓｔｒｏｙ（ｉｎｖａｌｉｄａｔｅ）／
）

该函数使一个互斥体作废（失效）。使用该函数时应该注意没有其他线程正在等待或使用

该互斥体。如果作废一个正在被使用的互斥体，则有可能会造成系统死锁。

ｃｙｇ ｂｏｏｌｔｃｙｇ ｍｕｔｅｘ ｌｏｃｋ
（

ｃｙｇ ｍｕｔｅｘ ｔｍｕｔｅｘ／ｍｕｔｅｘｔｏｌｏｃｋ／
）

该函数锁定一个互斥体。如果互斥体不可用，线程将被阻塞直到该互斥体可用，或者直到

该线程被一个信号唤醒。如果互斥体被成功锁定则返回ｔｒｕｅ，否则返回ｆａｌｓｅ。

ｃｙｇ ｂｏｏｌｔｃｙｇ ｍｕｔｅｘ ｔｒｙｌｏｃｋ
（

ｃｙｇ ｍｕｔｅｘ ｔｍｕｔｅｘ／ｍｕｔｅｘｔｏａｔｔｅｍｐｔｌｏｃｋ／
）

该函数尝试对互斥体进行锁定。如果互斥体不可用，则返回ｆａｌｓｅ，否则返回ｔｒｕｅ。

ｖｏｉｄｃｙｇ ｍｕｔｅｘ ｕｎｌｏｃｋ
（

ｃｙｇ ｍｕｔｅｘ ｔｍｕｔｅｘ／ｍｕｔｅｘｔｏｕｎｌｏｃｋ／
）

该函数对互斥体进行解锁。对一个处于非锁定状态或被另一个线程锁定的互斥体进行解

锁的结果是不确定的。

ｖｏｉｄｃｙｇ ｍｕｔｅｘ ｒｅｌｅａｓｅ
（

ｃｙｇ ｍｕｔｅｘ ｔｍｕｔｅｘ／ｍｕｔｅｘｔｏｒｅｌｅａｓｅ／
）

该函数释放所有等待指定互斥体的线程。所有正在等待该互斥体的线程将收到一个错误

条件，指明没有获取该互斥体。

ｖｏｉｄｃｙｇ ｍｕｔｅｘ ｓｅｔ ｃｅｉｌｉｎｇ
（

ｃｙｇ ｍｕｔｅｘ ｔｍｕｔｅｘ， ／ｍｕｔｅｘｔｏｓｅｔｃｅｉｌｉｎｇｏｆ／

ｃｙｇ ｐｒｉｏｒｉｔｙ ｔｐｒｉｏｒｉｔｙ ／ｃｅｉｌｉｎｇｐｒｉｏｒｉｔｙ／

９１１

）

该函数设置互斥体的置顶优先级。只有在互斥体被设置为使用ＣＹＧ ＭＵＴＥＸ
ＣＥＩＬＩＮＧ协议（参考下面互斥体协议设置函数）时，该函数才有意义。优先级置顶的互斥体将
引起获得该互斥体的线程临时继承置顶优先级，可以避免死锁的发生。

ｖｏｉｄｃｙｇ ｍｕｔｅｘ ｓｅｔ ｐｒｏｔｏｃｏｌ
（

ｃｙｇ ｍｕｔｅｘ ｔｍｕｔｅｘ， ／ｍｕｔｅｘｔｏｓｅｔｐｒｏｔｏｃｏｌｏｆ／

ｅｎｕｍｃｙｇ ｍｕｔｅｘ ｐｒｏｔｏｃｏｌｐｒｏｔｏｃｏｌ ／ｐｒｏｔｏｃｏｌｔｏｕｓｅ／
）

该函数设置互斥体协议。互斥体具有下述协议：

①ＣＹＧ ＭＵＴＥＸ ＮＯＮＥ———没有优先级继承。

②ＣＹＧ ＭＵＴＥＸ ＩＮＨＥＲＩＴ———继承当前拥有互斥体的线程优先级。

③ＣＹＧ ＭＵＴＥＸ ＣＥＩＬＩＮＧ———继承互斥体的置顶优先级。
只有使拥有互斥体的线程优先级提升的优先级才被继承。

６８３ 优先级倒置

实时系统中需要解决的一个问题是优先级倒置（ＰｒｉｏｒｉｔｙＩｎｖｅｒｓｉｏｎ）问题。当一个高优先
级任务通过同步机制（如互斥体）访问共享资源时，如果该互斥体已被一低优先级任务占有，而

这个低优先级任务在访问共享资源时可能又被其他一些中等优先级的任务抢先，因此造成高

优先级任务被许多具有较低优先级的任务阻塞，实时性难以得到保证。这就是优先级倒置问

题。

互斥体的使用可能会引起优先级倒置问题的出现。假设有三个不同优先级的线程Ａ、Ｂ、

Ｃ，Ａ运行于高优先级，Ｂ运行于中优先级，Ｃ运行于低优先级。线程Ａ和线程Ｂ由于等待事件
的发生而处于阻塞等待状态，因此线程Ｃ有机会运行。线程Ｃ在进入临界区时锁定了一个互
斥体。此时线程Ａ和线程Ｂ被唤醒（唤醒顺序无关紧要），线程Ａ需要对同一个互斥体进行声
称，但它在线程Ｃ离开临界区并释放该互斥体之前不得不处于等待状态。与此同时，线程Ｂ
可以毫无问题地正常运行。由于线程Ｃ的优先级要比线程Ｂ的优先级低，它在线程Ｂ由于某
些原因被阻塞之前将没有机会运行。这样，线程Ａ将不能运行，其结果是具有高优先级的线
程Ａ由于优先级比它低的线程Ｂ的原因而不能继续运行，这就发生了优先级倒置。
有几种方法用于解决优先级倒置问题。

在简单的应用程序中，将程序代码进行适当的组织安排就有可能避免优先级倒置的发生。

例如，确保互斥体不被处于不同优先级的线程所共享。但这种方法即使是在应用程序级也可

能难以实现，它的底层程序可能还使用了其他的一些互斥体。因此，必须对整个系统进行仔细

分析，确保不会发生优先级倒置现象。

解决优先级倒置问题普遍使用的技术是采用优先级置顶协议（ＰｒｉｏｒｉｔｙＣｅｉｌｉｎｇＰｒｏｔｏｃｏｌ）和
优先级继承协议（ＰｒｉｏｒｉｔｙＩｎｈｅｒｉｔａｎｃｅＰｒｏｔｏｃｏｌ）。较简单的解决方法是采用优先级置顶协议。
优先级置顶意味着占有互斥体的线程在运行时的优先级比任何其他可以获取该互斥体的线程

的优先级都要高。使用优先级置顶协议时，每个互斥体都被分配一个优先级，该优先级通常与

０２１

所有可以拥有该互斥体的线程中的最高优先级相对应。当优先级较低的线程调用函数ｃｙｇ
ｍｕｔｅｘ ｌｏｃｋ或ｃｙｇ ｍｕｔｅｘ ｔｒｙｌｏｃｋ占有互斥体后，该线程的优先级被提升到该互斥体的优先
级。在上面的例子中，分配给互斥体的优先级将是线程Ａ的优先级，线程Ｃ只要拥有该互斥
体，它的优先级就会被提高，并且将优先于线程Ｂ得到运行。当线程Ｃ释放该互斥体后时，它
的优先级又将回到原来的正常值，允许线程Ａ开始运行并声称该互斥体。对互斥体进行优先
级设置的函数是ｃｙｇ ｍｕｔｅｘ ｓｅｔ ｃｅｉｌｉｎｇ，它通常在初始化时被调用。置顶优先级可以被动
态改变，但这种变化只对后面的锁定操作起作用，不会影响互斥体的当前拥有者。优先级置顶

非常适合于简单应用，在这种情况下，系统中的每个线程完全有可能得知哪些互斥体将被访

问。对于更复杂的应用要得知哪些互斥体可能被访问较为困难，尤其是在线程优先级被实时

改变的情况下。优先级置顶有许多不足之处。它需要事先知道使用该互斥体的所有线程的最

大优先级，而ｅＣｏｓ的组件包通常无法知道系统中各种线程的详细信息，因此无法对组件包内
部使用的互斥体设置合适的置顶优先级。如果置顶优先级太高，它就如同一个全局锁从而禁

止所有的调度操作。如果内部使用的互斥体不能导出到应用程序，那么优先级置顶是不可行

的。内核具有一个配置选项，该选项提供一个默认的置顶优先级，该配置选项是ＣＹＧＳＥＭ
ＫＥＲＮＥＬ ＳＹＮＣＨ ＭＵＴＥＸ ＰＲＩＯＲＩＴＹ ＩＮＶＥＲＳＩＯＮ ＰＲＯＴＯＣＯＬ ＤＥＦＡＵＬＴ
ＰＲＩＯＲＩＴＹ。
另一种更好的解决优先级倒置问题的方法就是采用优先级继承协议，它将占有互斥体的

线程优先级提升到所有正在等待该互斥体的线程优先级的最高值。当一个线程等待正被另一

优先级较低的线程占有的互斥体时，拥有该互斥体的线程优先级被提升到正在等待该互斥体

的线程优先级。这种方法不需要事先知道即将使用该互斥体的所有线程的优先级，拥有互斥

体的线程只在有更高优先级的线程等待该互斥体时才提升其优先级。它减少了对其他线程进

行调度的影响。它只在需要的时候才提升线程的优先级，并且这个优先级是实时而不是静态

决定的，因此它比优先级置顶协议的效率要高。优先级继承协议也存在一些缺点，由于每一次

同步调用都要使用该协议，从而增加了同步调用的开销。另外，当运行在不同优先级的多个线

程试图锁定单个互斥体、或者在互斥体的当前拥有者试图锁定其他的互斥体时，优先级继承协

议的实现要比优先级置顶要复杂得多。

ｅＣｏｓ具有许多与优先级倒置相关的配置选项。如果经过仔细分析而确定系统不会出现
优先级倒置时，可以禁止 ＣＹＧＳＥＭ ＫＥＲＮＥＬ ＳＹＮＣＨ ＭＵＴＥＸ ＰＲＩＯＲＩＴＹ
ＩＮＶＥＲＳＩＯＮ ＰＲＯＴＯＣＯＬ组件。在大多数系统中，该组件一般都是使能的。此时需要使能

ＣＹＧＳＥＭ ＫＥＲＮＥＬ ＳＹＮＣＨ ＭＵＴＥＸ ＰＲＩＯＲＩＴＹ ＩＮＶＥＲＳＩＯＮ ＰＲＯＴＯＣＯＬ
ＩＮＨＥＲＩＴ和 ＣＹＧＳＥＭ ＫＥＲＮＥＬ ＳＹＮＣＨ ＭＵＴＥＸ ＰＲＩＯＲＩＴＹ ＩＮＶＥＲＳＩＯＮ
ＰＲＯＴＯＣＯＬ ＣＥＩＬＩＮＧ两个选项中的一个，以便使这两个协议中有一个协议可用于所有的
互斥体。也可以选择使用多个协议，一些互斥体采用优先级置顶，而另一些则使用优先级继

承，或者根本不使用优先级倒置保护措施。所有互斥体所使用的默认协议由配置选项

ＣＹＧＳＥＭ ＫＥＲＮＥＬ ＳＹＮＣＨ ＭＵＴＥＸ ＰＲＩＯＲＩＴＹ ＩＮＶＥＲＳＩＯＮ ＰＲＯＴＯＣＯＬ
ＤＥＦＡＵＬＴ进行控制，并且可以使用ｃｙｇ ｍｕｔｅｘ ｓｅｔ ｐｒｏｔｏｃｏｌ函数进行动态改变。

ｅＣｏｓ目前采用一种较为简单的互斥体优先级继承机制，这一机制只在采用多级队列调度
器时才被使用。虽然它还不能很好地处理不常见的互斥体嵌套情形，但它具有快速性和确定

性的特点。如果应用程序不需要使用互斥体优先级继承协议，在配置时可以将其禁止，这样可

１２１

以减少程序代码和数据占用的空间。ｅＣｏｓ将来会提供另外一些互斥体优先级继承机制，开发
人员可以对它们进行选择。

６９ 条件变量

条件变量（ｃｏｎｄｉｔｉｏｎｖａｒｉａｂｌｅ）是允许线程同时给多个线程发信号的一个同步机制。条件
变量与互斥体联合使用时可实现对某些条件的长期等待。线程在等待条件变量时，释放互斥

体，在被唤醒后又重新获取该互斥体。

６９１ 条件变量的使用

首先来看下面的一个例子。假设有一组对资源池访问进行控制的函数：

ｃｙｇ ｍｕｔｅｘ ｔｒｅｓｌｏｃｋ；

ｒｅｓ ｔｒｅｓ ｐｏｏｌ［ＲＥＳ ＭＡＸ］；

ｉｎｔｒｅｓ ｃｏｕｎｔ＝ＲＥＳ ＭＡＸ；

ｖｏｉｄｒｅｓｉｎｉｔ（ｖｏｉｄ）
｛

ｃｙｇ ｍｕｔｅｘ ｉｎｉｔ（＆ｒｅｓｌｏｃｋ）；

＜ｆｉｌｌｐｏｏｌｗｉｔｈｒｅｓｏｕｒｃｅｓ＞
｝

ｒｅｓ ｔｒｅｓ ａｌｌｏｃａｔｅ（ｖｏｉｄ）
｛

ｒｅｓ ｔｒｅｓ；

ｃｙｇ ｍｕｔｅｘ ｌｏｃｋ（＆ｒｅｓｌｏｃｋ）； ／／ｌｏｃｋｔｈｅｍｕｔｅｘ
ｉｆ（ｒｅｓ ｃｏｕｎｔ＝＝０） ／／ｃｈｅｃｋｆｏｒｆｒｅｅｒｅｓｏｕｒｃｅ

ｒｅｓ＝ＲＥＳ ＮＯＮＥ； ／／ｒｅｔｕｒｎＲＥＳ ＮＯＮＥｉｆｎｏｎｅ
ｅｌｓｅ
｛

ｒｅｓ ｃｏｕｎｔ； ／／ａｌｌｏｃａｔｅａｒｅｓｏｕｒｃｅｓ
ｒｅｓ＝ｒｅｓ ｐｏｏｌ［ｒｅｓ ｃｏｕｎｔ］；
｝

ｃｙｇ ｍｕｔｅｘ ｕｎｌｏｃｋ（＆ｒｅｓｌｏｃｋ）； ／／ｕｎｌｏｃｋｔｈｅｍｕｔｅｘ
ｒｅｔｕｒｎｒｅｓ；
｝

ｖｏｉｄｒｅｓ ｆｒｅｅ（ｒｅｓ ｔｒｅｓ）
｛

ｃｙｇ ｍｕｔｅｘ ｌｏｃｋ（＆ｒｅｓｌｏｃｋ）； ／／ｌｏｃｋｔｈｅｍｕｔｅｘ
ｒｅｓ ｐｏｏｌ［ｒｅｓ ｃｏｕｎｔ］＝ｒｅｓ； ／／ｆｒｅｅｔｈｅｒｅｓｏｕｒｃｅ
ｒｅｓ ｃｏｕｎｔ＋＋；

２２１

ｃｙｇ ｍｕｔｅｘ ｕｎｌｏｃｋ（＆ｒｅｓｌｏｃｋ）； ／／ｕｎｌｏｃｋｔｈｅｍｕｔｅｘ
｝

上面的这个例子程序使用了一个变量ｒｅｓ ｃｏｕｎｔ对可用资源进行跟踪。如果没有可用资
源，ｒｅｓ ａｌｌｏｃａｔｅ函数将返回ＲＥＳ ＮＯＮＥ，调用该函数的程序必须对该返回结果进行检查并
采取适当的处理措施。假如在没有资源的情况下不想让其返回ＲＥＳ ＮＯＮＥ，而是让它等待
其中的一个资源变为可用，这就需要使用到一个条件变量。再看修改后的程序：

ｃｙｇ ｍｕｔｅｘ ｔｒｅｓｌｏｃｋ；

ｃｙｇ ｃｏｎｄ ｔｒｅｓ ｗａｉｔ；

ｒｅｓ ｔｒｅｓ ｐｏｏｌ［ＲＥＳ ＭＡＸ］；

ｉｎｔｒｅｓ ｃｏｕｎｔ＝ＲＥＳ ＭＡＸ；

ｖｏｉｄｒｅｓｉｎｉｔ（ｖｏｉｄ）
｛

ｃｙｇ ｍｕｔｅｘ ｉｎｉｔ（＆ｒｅｓｌｏｃｋ）；

ｃｙｇ ｃｏｎｄ ｉｎｉｔ（＆ｒｅｓ ｗａｉｔ，＆ｒｅｓｌｏｃｋ）；

＜ｆｉｌｌｐｏｏｌｗｉｔｈｒｅｓｏｕｒｃｅｓ＞
｝

ｒｅｓ ｔｒｅｓ ａｌｌｏｃａｔｅ（ｖｏｉｄ）
｛

ｒｅｓ ｔｒｅｓ；

ｃｙｇ ｍｕｔｅｘ ｌｏｃｋ（＆ｒｅｓｌｏｃｋ）； ／／ｌｏｃｋｔｈｅｍｕｔｅｘ
ｗｈｉｌｅ（ｒｅｓ ｃｏｕｎｔ＝＝０） ／／ｗａｉｔｆｏｒａｒｅｓｏｕｒｃｅｓ
ｃｙｇ ｃｏｎｄ ｗａｉｔ（＆ｒｅｓ ｗａｉｔ）；

ｒｅｓ ｃｏｕｎｔ； ／／ａｌｌｏｃａｔｅａｒｅｓｏｕｒｃｅ
ｒｅｓ＝ｒｅｓ ｐｏｏｌ［ｒｅｓ ｃｏｕｎｔ］；

ｃｙｇ ｍｕｔｅｘ ｕｎｌｏｃｋ（＆ｒｅｓｌｏｃｋ）； ／／ｕｎｌｏｃｋｔｈｅｍｕｔｅｘ
ｒｅｔｕｒｎｒｅｓ；
｝

ｖｏｉｄｒｅｓ ｆｒｅｅ（ｒｅｓ ｔｒｅｓ）
｛

ｃｙｇ ｍｕｔｅｘ ｌｏｃｋ（＆ｒｅｓｌｏｃｋ）； ／／ｌｏｃｋｔｈｅｍｕｔｅｘ
ｒｅｓ ｐｏｏｌ［ｒｅｓ ｃｏｕｎｔ］＝ｒｅｓ； ／／ｆｒｅｅｔｈｅｒｅｓｏｕｒｃｅ
ｒｅｓ ｃｏｕｎｔ＋＋；

ｃｙｇ ｃｏｎｄ ｓｉｇｎａｌ（＆ｒｅｓ ｗａｉｔ）； ／／ｗａｋｅｕｐａｎｙｗａｉｔｉｎｇａｌｌｏｃａｔｏｒｓ
ｃｙｇ ｍｕｔｅｘ ｕｎｌｏｃｋ（＆ｒｅｓｌｏｃｋ）； ／／ｕｎｌｏｃｋｔｈｅｍｕｔｅｘ
｝

在这一段修改后的程序中，当ｒｅｓ ａｌｌｏｃａｔｅ函数检测到没有可用资源时，它将调用内核

ＡＰＩ函数ｃｙｇ ｃｏｎｄ ｗａｉｔ。该ＡＰＩ函数完成了两个操作：解锁互斥体、将调用线程转入睡眠
状态等待条件变量。当ｒｅｓ ｆｒｅｅ函数最后被调用时，它将资源送回资源池中，并调用另一个

３２１

ＡＰＩ函数ｃｙｇ ｃｏｎｄ ｓｉｇｎａｌ唤醒正在等待该条件变量的线程。当处于等待状态的线程又开始
运行时，在从ｃｙｇ ｃｏｎｄ ｗａｉｔ返回之前它将重新锁定互斥体。
上面例子中的这种操作过程有两个值得注意的地方。首先值得注意的是在ｃｙｇ ｃｏｎｄ

ｗａｉｔ函数内对互斥体的解锁和等待操作是一种原子操作，在解锁和等待之间不会有其他线程
运行。如果不是如此的话，线程在调用ｒｅｓ ｆｒｅｅ函数时所释放的资源可能会在调用ｃｙｇ
ｃｏｎｄ ｓｉｇｎａｌ函数的时候又被丢失，从而造成被唤醒的线程在结束等待状态时将没有可用的资
源。另一个值得注意的是对ｃｙｇ ｃｏｎｄ ｗａｉｔ函数的调用是在一个ｗｈｉｌｅ循环内而不是在简单
的一个ｉｆ语句内。这是因为在重新唤醒等待线程时，ｃｙｇ ｃｏｎｄ ｗａｉｔ函数需要重新锁定互斥
体，如果有其他线程已经进入锁定该互斥体的队列，则必须等待。根据调度器和队列顺序的实

际情况，在被唤醒的线程运行之前可能有许多其他的线程已经进入临界区，因此它所等待的条

件变量可能再次进入ｆａｌｓｅ状态。使用循环的方式等待条件变量是惟一可以保证在等待结束
时该条件变量仍为ｔｒｕｅ的方法。
在使用一个条件变量之前，必须使用ＡＰＩ函数ｃｙｇ ｃｏｎｄ ｉｎｉｔ对其进行初始化。该函数

使用了两个参数，一个是该条件变量的数据结构，另一个是一个已经存在的互斥体。互斥体的

初始化不在ｃｙｇ ｃｏｎｄ ｉｎｉｔ函数内进行，必须单独调用ｃｙｇ ｍｕｔｅｘ ｉｎｉｔ函数对其进行初始
化。如果不再需要某个条件变量，则可使用ｃｙｇ ｃｏｎｄ ｄｅｓｔｒｏｙ将其作废。
当线程需要等待某个条件被满足时，可以调用ｃｙｇ ｃｏｎｄ ｗａｉｔ函数。线程在调用该函数

时必须已经锁定在ｃｙｇ ｃｏｎｄ ｉｎｉｔ中指定的互斥体。互斥体在ｃｙｇ ｃｏｎｄ ｗａｉｔ函数内被解
锁，线程将被挂起，该操作是一种原子操作。当其他线程给该线程一个信号或广播操作时，该

线程将被唤醒，并自动再一次声称互斥体，允许它对全局状态进行检查并确定该条件是否被满

足。ｅＣｏｓ内核还提供了该函数的一个变体函数ｃｙｇ ｃｏｎｄ ｔｉｍｅｄ ｗａｉｔ，它用于等待一个条件
变量并具有超时功能。当ｃｙｇ ｃｏｎｄ ｔｉｍｅｓ ｗａｉｔ函数返回时，不管它是否是超时返回还是被
一个信号引起的返回，都将重新声称互斥体。

当一个线程改变共享状态时，可能会影响到其他被条件变量阻塞的线程。此时它应该调

用ｃｙｇ ｃｏｎｄ ｓｉｇｎａｌ或ｃｙｇ ｃｏｎｄ ｂｒｏａｄｃａｓｔ函数。这种调用不需要拥有互斥体，但在改变共
享状态之前通常要对互斥体进行声称。一个信号只能唤醒正在等待条件变量的第一个线程，

而一个广播操作则可以唤醒所有等待该条件变量的线程。如果此时没有等待条件变量的线

程，信号或者广播将不会产生任何效果，信号也不会被保存或被计数。一般来说，在所有线程

都检查同一个条件变量、并且最多只有一个线程能继续运行的时候可以使用信号；在线程只检

查条件的细微变化或者改变一个全局变量可以引起多个线程继续运行的时候，可以使用广播。

６９２ 条件变量ＡＰＩ函数

上一节已经介绍了如何使用ｅＣｏｓ内核提供的条件变量ＡＰＩ函数，这些函数的定义在头文
件＜ｃｙｇ／ｋｅｒｎｅｌ／ｋａｐｉ．ｈ＞内。下面是这些函数的简单介绍。

ｖｏｉｄｃｙｇ ｃｏｎｄ ｉｎｉｔ
（

ｃｙｇ ｃｏｎｄ ｔｃｏｎｄ， ／ｃｏｎｄｉｔｉｏｎｖａｒｉａｂｌｅｔｏｉｎｉｔｉａｌｉｚｅ／

ｃｙｇ ｍｕｔｅｘ ｔｍｕｔｅｘ／ａｓｓｏｃｉａｔｅｄｍｕｔｅｘ／
）

４２１

该函数初始化一个条件变量。使用条件变量可以让一个线程给多个线程发信号，它通常

与互斥体一起使用，该互斥体与多个线程所共享的一些数据相对应。

ｖｏｉｄｃｙｇ ｃｏｎｄ ｄｅｓｔｒｏｙ
（

ｃｙｇ ｃｏｎｄ ｔｃｏｎｄ／ｃｏｎｄｉｔｉｏｎｖａｒｉａｂｌｅｔｏｄｅｓｔｒｏｙ（ｉｎｖａｌｉｄａｔｅ）／
）

该函数作废（失效）一个条件变量。使用时应该注意没有其他线程正在等待或使用该条件

变量。如果作废一个正在使用的条件变量，将可能造成系统死锁。

ｃｙｇ ｂｏｏｌｔｃｙｇ ｃｏｎｄ ｗａｉｔ
（

ｃｙｇ ｃｏｎｄ ｔｃｏｎｄ／ｃｏｎｄｉｔｉｏｎｖａｒｉａｂｌｅｔｏｗａｉｔｆｏｒ／
）

该函数等待一个条件变量。如果没有错误则返回ｔｒｕｅ，否则返回ｆａｌｓｅ。

ｖｏｉｄｃｙｇ ｃｏｎｄ ｓｉｇｎａｌ
（

ｃｙｇ ｃｏｎｄ ｔｃｏｎｄ／ｃｏｎｄｉｔｉｏｎｖａｒｉａｂｌｅｔｏｓｉｇｎａｌ／
）

该函数唤醒一个正在等待条件变量ｃｏｎｄ的线程。它只唤醒一个等待条件变量的线程。
如果有多个线程正在等待该条件变量，将由调度器来决定首先唤醒哪一个线程。通常被唤醒

的线程是优先级最高的一个线程。

ｖｏｉｄｃｙｇ ｃｏｎｄ ｂｒｏａｄｃａｓｔ
（

ｃｙｇ ｃｏｎｄ ｔｃｏｎｄ／ｃｏｎｄｉｔｉｏｎｖａｒｉａｂｌｅｔｏｓｉｇｎａｌ／
）

该函数唤醒所有正在等待条件变量ｃｏｎｄ的线程。

ｃｙｇ ｂｏｏｌｔｃｙｇ ｃｏｎｄ ｔｉｍｅｄ ｗａｉｔ
（

ｃｙｇ ｃｏｎｄ ｔｃｏｎｄ， ／ｃｏｎｄｉｔｉｏｎｖａｒｉａｂｌｅｔｏｗａｉｔｆｏｒ／

ｃｙｇ ｔｉｃｋ ｃｏｕｎｔ ｔａｂｓｔｉｍｅ ／ａｂｓｏｌｕｔｅｔｉｍｅｏｕｔ／
）

该函数等待一个条件变量ｃｏｎｄ，并具有超时返回功能。当等待时间超过ａｂｓｔｉｍｅ个时间
滴答时，将返回ｆａｌｓｅ。如果没有超时，则返回ｔｒｕｅ。

６１０ 信号量

信号量（ｓｅｍａｐｈｏｒｅ）是一个允许线程等待直到事件发生的同步原语。事件可以由另一个
线程产生，也可以由处理硬件中断的ＤＳＲ产生。每一个信号量都有一个整数计数器，用于对

５２１

事件发生且还没有得到处理的次数进行计数。如果计数器的值为０，那么等待该信号量的线
程将被阻塞，直至其他线程或ＤＳＲ给信号量一个新的事件。如果计数器大于０，那么等待该
信号量的线程将消耗一个事件，也就是对计数器减１，并立即返回。给信号量提交一个事件将
唤醒当前正在等待该信号量的第一个线程，该线程将在等待信号量的操作内被恢复运行，并对

计数器减１。
信号量的另一个用途是对资源的管理。计数器的值与当前可用资源的数目相对应，需要

对资源进行声称的线程将等待该信号量，释放该资源时再给信号量一个事件。实际上，条件变

量更适合于这种操作。

６１０１ 信号量的使用

在使用信号量时，首先要调用内核ＡＰＩ函数ｃｙｇ ｓｅｍａｐｈｏｒｅ ｉｎｉｔ对信号量进行初始化。
它具有两个参数，一个是信号量的数据结构的指针，另一个是计数器的初始值。必须注意在对

信号量进行操作时，它不像其他内核ＡＰＩ函数那样使用句柄，而是使用数据结构的指针。这
种方式可以更易于将信号量的数据结构嵌入到其他的大的数据结构内。计数器的初始值可以

是任何数字，０、正数或负数。计数器为０时通常表示还没有事件发生。

ｃｙｇ ｓｅｍａｐｈｏｒｅ ｗａｉｔ函数由等待某个事件的线程调用。如果当前计数器的值大于０，也
就是说已经有事件发生，则计数器将被减１，并立即返回调用线程。如果不大于０，那么该线程
将被阻塞，直至ｃｙｇ ｓｅｍａｐｈｏｒｅ ｐｏｓｔ函数被调用。ｃｙｇ ｓｅｍａｐｈｏｒｅ ｐｏｓｔ函数在事件发生的
时候被调用，它使计数器加１，并唤醒等待该信号量的第一个线程。被唤醒的线程通常在ｃｙｇ
ｓｅｍａｐｈｏｒｅ ｗａｉｔ函数内被启动继续运行并对计数器减１，但也有其他的可能性。例如，假设调
用ｃｙｇ ｓｅｍａｐｈｏｒｅ ｐｏｓｔ的线程运行在高优先级，其他运行在中优先级的线程打算调用ｃｙｇ
ｓｅｍａｐｈｏｒｅ ｗａｉｔ获取下一个运行机会，一个低优先级的线程正在等待信号量。当高优先级的
线程由于某种原因被停止调度后，中优先级的线程将开始运行，它对ｃｙｇ ｓｅｍａｐｈｏｒｅ ｗａｉｔ的
调用立即成功返回。低优先级的线程在稍后一段时间将开始运行，但发现计数器的值为０时，
它将被阻塞直到另一个事件的发生。如果有多个线程阻塞于某个信号量，则可以使用配置选

项ＣＹＧＩＭＰ ＫＥＲＮＥＬ ＳＣＨＥＤ ＳＯＲＴＥＤ ＱＵＥＵＥＳ来决定哪一个线程将被事件的发生
唤醒。

ｃｙｇ ｓｅｍａｐｈｏｒｅ ｗａｉｔ函数返回一个布尔值。正常情况下，它将被阻塞直到它成功对计数
器减１（如果需要的话将进行重试），最后成功返回。但这种等待操作可以被ｃｙｇ ｔｈｒｅａｄ
ｒｅｌｅａｓｅ函数的调用所终止，此时ｃｙｇ ｓｅｍａｐｈｏｒｅ ｗａｉｔ将返回ｆａｌｓｅ。该函数的一个变体是ｃｙｇ
ｓｅｍａｐｈｏｒｅ ｔｉｍｅｄ ｗａｉｔ，它具有超时功能，在事件确实发生或者超时时该函数将返回（事件
发生时返回ｔｒｕｅ，超时返回ｆａｌｓｅ）。它被ｃｙｇ ｔｈｒｅａｄ ｒｅｌｅａｓｅ函数终止时也将返回ｆａｌｓｅ。如果
系统采取没有实时时钟的配置，那么该函数不可用。ｃｙｇ ｓｅｍａｐｈｏｒｅ ｔｒｙｗａｉｔ是它的另一个
变体函数，该函数将立即返回，不会被阻塞。

ｃｙｇ ｓｅｍａｐｈｏｒｅ ｐｅｅｋ函数可以用于获取信号量计数器的当前值。除调试阶段外，很少
使用该函数。计数器的值随时都有可能被线程或ＤＳＲ改变。

６１０２ 信号量ＡＰＩ函数

ｅＣｏｓ内核提供了一些对信号量进行操作的ＡＰＩ函数，上一节已经介绍了使用这些函数对

６２１

信号量的操作方法。这些函数的定义在头文件＜ｃｙｇ／ｋｅｒｎｅｌ／ｋａｐｉ．ｈ＞内，下面是它们的简单
介绍。

ｖｏｉｄｃｙｇ ｓｅｍａｐｈｏｒｅｉｎｉｔ
（

ｃｙｇ ｓｅｍ ｔｓｅｍ，／ｓｅｍａｐｈｏｒｅｔｏｉｎｉｔｉａｌｉｚｅ／

ｃｙｇ ｃｏｕｎｔ３２ｖａｌ ／ｉｎｉｔｉａｌｓｅｍａｐｈｏｒｅｃｏｕｎｔ／
）

该函数初始化一个信号量ｓｅｍ，其计数器的初始值为ｖａｌ。

ｖｏｉｄｃｙｇ ｓｅｍａｐｈｏｒｅ ｄｅｓｔｒｏｙ
（

ｃｙｇ ｓｅｍ ｔｓｅｍ／ｓｅｍａｐｈｏｒｅｔｏｉｎｖａｌｉｄａｔｅ／
）

该函数作废（失效）一个信号量。在作废一个信号量时应该注意此时没有任何线程正在等

待或使用该信号量，否则可能引起系统死锁。

ｃｙｇ ｂｏｏｌｔｃｙｇ ｓｅｍａｐｈｏｒｅ ｗａｉｔ
（

ｃｙｇ ｓｅｍ ｔｓｅｍ／ｓｅｍａｐｈｏｒｅｔｏｗａｉｔｏｎ／
）

该函数等待一个信号量。如果信号量的计数器为０，它将阻塞调用该函数的线程直到计
数器被加１。如果有多个线程都在等待同一个信号量，调度器将决定哪一个线程最先获取该
信号量，通常是最高优先级的线程获取。如果线程被其他同步原语唤醒，该函数将返回ｆａｌｓｅ，
不会获取该信号量。如果成功获取信号量，该函数返回ｔｒｕｅ，否则返回ｆａｌｓｅ。

ｃｙｇ ｂｏｏｌｔｃｙｇ ｓｅｍａｐｈｏｒｅ ｔｉｍｅｄ ｗａｉｔ
（

ｃｙｇ ｓｅｍ ｔｓｅｍ， ／ｓｅｍａｐｈｏｒｅｔｏｗａｉｔｏｎ／

ｃｙｇ ｔｉｃｋ ｃｏｕｎｔ ｔａｂｓｔｉｍｅ ／ａｂｓｏｌｕｔｅｔｉｍｅｏｕｔｖａｌｕｅ／
）

该函数等待一个信号量ｓｅｍ，如果等待时间超过ａｂｓｔｉｍｅ（时间滴答），将超时返回。它是

ｃｙｇ ｓｅｍａｐｈｏｒｅ ｗａｉｔ函数带有超时功能的变体。超时退出时不会获取该信号量。成功获取
信号量时返回ｔｒｕｅ，否则返回ｆａｌｓｅ。

ｉｎｔｃｙｇ ｓｅｍａｐｈｏｒｅ ｔｒｙｗａｉｔ
（

ｃｙｇ ｓｅｍ ｔｓｅｍ／ｓｅｍａｐｈｏｒｅｔｏｇｅｔ／
）

该函数尝试获取一个信号量，如果信号量的计数器不为０，则获取该信号量并返回ｔｒｕｅ，
计数器减１。如果没有获取该信号量（计数器为０时），返回ｆａｌｓｅ。它不会阻塞调用该函数的
线程。

７２１

ｖｏｉｄｃｙｇ ｓｅｍａｐｈｏｒｅ ｐｏｓｔ
（

ｃｙｇ ｓｅｍ ｔｓｅｍ／ｓｅｍａｐｈｏｒｅｔｏｉｎｃｒｅｍｅｎｔｃｏｕｎｔｏｆ／

）

该函数使指定信号量ｓｅｍ的计数器加１。当事件发生时，调用该函数使信号量计数器加

１。

ｖｏｉｄｃｙｇ ｓｅｍａｐｈｏｒｅ ｐｅｅｋ
（

ｃｙｇ ｓｅｍ ｔｓｅｍ，／ｓｅｍａｐｈｏｒｅｔｏｇｅｔｃｏｕｎｔｏｆ／

ｃｙｇ ｃｏｕｎｔ３２ｖａｌ／ｐｏｉｎｔｅｒｔｏｒｅｃｅｉｖｅｃｏｕｎｔ／

）

该函数获取信号量ｓｅｍ的当前计数器值，计数器的值由ｖａｌ带回。

６１１ 信箱

信箱（ＭａｉｌＢｏｘ）是一个类似于信号量的同步原语，线程可以使用信箱来等待某个事件的
发生。与信号量不同的是，信箱还可以在事件发生时被线程用来传递一些数据。这些被称为

消息的数据通常是数据结构的指针，保存在信箱内。产生事件并提供这些事件的线程在其他

线程准备好接收事件之前不会被阻塞。信箱只具有有限的容量，通常只有十个槽位。即使系

统为事件的生产和消耗保持一种平衡，使事件被消耗的速度至少与事件被产生的速度一致，系

列突发事件也可能将信箱填满，此时产生事件的线程将被阻塞，直到信箱空间再次可用。这种

行为与信号量非常不同，信号量只需要对计数器进行维护，因此不会产生溢出。

６１１１ 信箱的使用

在使用信箱之前，必须使用ＡＰＩ函数ｃｙｇ ｍｂｏｘ ｃｒｅａｔｅ产生一个信箱。每个信箱都有一
个惟一的句柄，由第一个参数带回，使用其他信箱操作函数对信箱进行操作时，都将使用这个

句柄。信箱的产生需要内核为其提供一个内存区，第二个参数将带回该内存区的指针。如果

不再需要某个信箱，可以使用ｃｙｇ ｍｂｏｘ ｄｅｌｅｔｅ函数将其删除，它只简单地作废没有发送的
消息。

用于等待信箱的函数是ｃｙｇ ｍｂｏｘ ｇｅｔ。如果信箱内有一个悬挂的被ｃｙｇ ｍｂｏｘ ｐｕｔ
函数发出的消息，则ｃｙｇ ｍｂｏｘ ｇｅｔ将立即返回，并带回信箱内的消息。如果信箱内没有悬
挂消息，它将被阻塞等待直到有消息可用。ｃｙｇ ｔｈｒｅａｄ ｒｅｌｅａｓｅ函数可以打破线程的这种阻
塞状态，这时ｃｙｇ ｍｂｏｘ ｇｅｔ将返回一个空指针。信箱内消息的读取顺序按照它们进入信箱
的顺序进行，也就是采用先进先出的策略，不支持带优先级的消息。

ｃｙｇ ｍｂｏｘ ｇｅｔ函数有两个变体。它的一个变体函数是ｃｙｇ ｍｂｏｘ ｔｉｍｅｄ ｇｅｔ，该函数
将等待直到有一个可用的消息或者超时发生。如果在超时时间内没有消息，它将返回空指针。

另一个变体函数是ｃｙｇ ｍｂｏｘ ｔｒｙｇｅｔ，这是一个非阻塞函数，它将返回一个消息或者一个空
指针。

８２１

如果要向信箱发送新的消息，可以调用ｃｙｇ ｍｂｏｘ ｐｕｔ函数或它的变体函数。该函数有
两个参数，一个是信箱的句柄，另一个是消息的指针。如果信箱中有空的槽位，则新消息将被

立即放置到该槽位上，如果此时有一个正在等待的线程，该线程将被唤醒以便它能够收到该消

息。如果信箱满，ｃｙｇ ｍｂｏｘ ｐｕｔ函数将被阻塞直到有可用的槽位。其变体函数ｃｙｇ ｍｂｏｘ
ｔｉｍｅｄ ｐｕｔ具有时间限制，如果在指定的时间范围内不能完成操作，它将超时退出。另一个变
体函数ｃｙｇ ｍｂｏｘ ｔｒｙｐｕｔ是一个非阻塞函数，如果没有可用的空槽位，它将立即返回ｆａｌｓｅ，该
函数不能发送消息时不会受到阻塞。

有四个ＡＰＩ函数可以用于检查信箱的当前状态。在使用它们的时候，应该注意它们返回
的结果可能已经被其他线程改变。ｃｙｇ ｍｂｏｘ ｐｅｅｋ函数返回信箱内当前的消息数，ｃｙｇ
ｍｂｏｘ ｐｅｅｋ ｉｔｅｍ函数提取信箱内的第一个消息，但消息仍然保留在信箱内。ｃｙｇ ｍｂｏｘ
ｗａｉｔｉｎｇ ｔｏ ｇｅｔ和ｃｙｇ ｍｂｏｘ ｗａｉｔｉｎｇ ｔｏ ｐｕｔ函数表明当前是否有线程被阻塞在对信箱
的读或取操作上。

每个信箱的槽位数可以通过配置选项 ＣＹＧＮＵＭ ＫＥＲＮＥＬ ＳＹＮＣＨ ＭＢＯＸ
ＱＵＥＵＥ ＳＩＺＥ进行控制，其默认值是１０。所有信箱大小是相同的。

６１１２ 信箱ＡＰＩ函数

上一节介绍了如何使用ｅＣｏｓ内核提供ＡＰＩ函数对信箱进行操作。这些ＡＰＩ函数的定义
在头文件＜ｃｙｇ／ｋｅｒｎｅｌ／ｋａｐｉ．ｈ＞内。下面是这些ＡＰＩ函数的简单介绍。

ｖｏｉｄｃｙｇ ｍｂｏｘ ｃｒｅａｔｅ
（

ｃｙｇ ｈａｎｄｌｅ ｔｈａｎｄｌｅ，／ｒｅｔｕｒｎｅｄｈａｎｄｌｅｔｏｍｂｏｘｏｂｊｅｃｔ／

ｃｙｇ ｍｂｏｘｍｂｏｘ ／ｍｂｏｘｏｂｊｅｃｔ／
）

该函数创建一个信箱。信箱类似于其他操作系统中的消息队列，但ｅＣｏｓ的所有信箱都具
有相同的大小，由配置工具的配置选项指定。对新产生的信箱的操作可以使用该函数返回的

句柄ｈａｎｄｌｅ进行。

ｖｏｉｄｃｙｇ ｍｂｏｘ ｄｅｌｅｔｅ
（

ｃｙｇ ｈａｎｄｌｅ ｔｍｂｏｘ／ｍｂｏｘｔｏｄｅｌｅｔｅ／
）

该函数删除一个信箱。调用该函数时要确认系统中没有任何线程正在等待或使用该信

箱。

ｖｏｉｄｃｙｇ ｍｂｏｘ ｇｅｔ
（

ｃｙｇ ｈａｎｄｌｅ ｔｍｂｏｘ／ｍｂｏｘｔｏｒｅａｄｄａｔａｆｒｏｍ／
）

该函数从信箱内读数据。如果信箱内没有数据，该函数将阻塞等待直到有可用的数据。

该函数返回一个指向信箱内数据的指针。

９２１

ｖｏｉｄｃｙｇ ｍｂｏｘ ｔｉｍｅｄ ｇｅｔ
（

ｃｙｇ ｈａｎｄｌｅ ｔｍｂｏｘ， ／ｍｂｏｘｔｏｒｅａｄ／

ｃｙｇ ｔｉｃｋ ｃｏｕｎｔ ｔａｂｓｔｉｍｅ ／ａｂｓｏｌｕｔｅｔｉｍｅｏｕｔ／
）

该函数在指定时间范围内读取信箱数据。如果信箱内没有可用数据，调用该函数的线程

将被阻塞，直到有可用的数据或者直到超时。超时时间单位为时钟滴答。如果超时退出，将返

回ＮＵＬＬ，如果函数读取数据成功则返回该数据的指针。

ｖｏｉｄｃｙｇ ｍｂｏｘ ｔｒｙｇｅｔ
（

ｃｙｇ ｈａｎｄｌｅ ｔｍｂｏｘ／ｍａｉｌｂｏｘｔｏｒｅａｄ／
）

该函数从信箱内读取数据，如果信箱内没有数据，它不会被阻塞并立即返回ＮＵＬＬ。它成
功读取信箱数据时返回该数据指针，如果信箱数据为空则返回ＮＵＬＬ。

ｖｏｉｄｃｙｇ ｍｂｏｘ ｐｅｅｋ ｉｔｅｍ
（

ｃｙｇ ｈａｎｄｌｅ ｔｍｂｏｘ／ｍａｉｌｂｏｘｔｏｒｅａｄ／
）

该函数从信箱内读取数据但数据仍然保留在信箱内。该函数将立即返回。如果信箱内有

数据，它将返回该数据的指针，但不会从信箱内的消息队列中删除其指针。如果信箱没有数

据，将返回ＮＵＬＬ。

ｃｙｇ ｂｏｏｌｔｃｙｇ ｍｂｏｘ ｐｕｔ
（

ｃｙｇ ｈａｎｄｌｅ ｔｍｂｏｘ，／ｍｂｏｘｔｏａｄｄｉｔｅｍｔｏ／

ｖｏｉｄｉｔｅｍ ／ｉｔｅｍｔｏａｄｄｔｏｍｂｏｘ／
）

该函数将消息送入一个信箱内。如果信箱已经满，它将阻塞直到消息可以放置到信箱内。

如果线程在等待过程中被内核唤醒，该函数将返回错误。如果消息被成功送入信箱则返回

ｔｒｕｅ，否则返回ｆａｌｓｅ。

ｃｙｇ ｂｏｏｌｔｃｙｇ ｍｂｏｘ ｔｉｍｅｄ ｐｕｔ
（

ｃｙｇ ｈａｎｄｌｅ ｔｍｂｏｘ， ／ｍｂｏｘｔｏａｄｄｉｔｅｍｔｏ／

ｖｏｉｄｉｔｅｍ， ／ｉｔｅｍｔｏａｄｄｔｏｍｂｏｘ／

ｃｙｇ ｔｉｃｋ ｃｏｕｎｔ ｔａｂｓｔｉｍｅ ／ａｂｓｏｌｕｔｅｔｉｍｅｏｕｔｖａｌｕｅ／
）

该函数在指定时间发送消息到信箱内。如果信箱满，则将阻塞等待直到消息被送入信箱

或超时返回。如果成功将消息送入信箱，则返回ｔｒｕｅ，否则返回ｆａｌｓｅ。

０３１

ｃｙｇ ｂｏｏｌｔｃｙｇ ｍｂｏｘ ｔｒｙｐｕｔ
（

ｃｙｇ ｈａｎｄｌｅ ｔｍｂｏｘ，／ｍｂｏｘｔｏａｄｄｉｔｅｍｔｏ／

ｖｏｉｄｉｔｅｍ ／ｉｔｅｍｔｏａｄｄｔｏｍｂｏｘ／

）

该函数尝试将消息送入信箱，执行后将立即返回，它不会被阻塞。如果信箱已经满，它将

立即返回ｆａｌｓｅ。如果成功将消息送入信箱，则返回ｔｒｕｅ。

ｃｙｇ ｃｏｕｎｔ３２ｃｙｇ ｍｂｏｘ ｐｅｅｋ
（

ｃｙｇ ｈａｎｄｌｅ ｔｍｂｏｘ／ｍｂｏｘｔｏｐｅｅｋｉｎｔｏ／

）

该函数返回信箱内等待处理的消息数。

ｃｙｇ ｂｏｏｌｔｃｙｇ ｍｂｏｘ ｗａｉｔｉｎｇ ｔｏ ｇｅｔ
（

ｃｙｇ ｈａｎｄｌｅ ｔｍｂｏｘ／ｍｂｏｘｔｏｃｈｅｃｋ／

）

该函数指明是否有线程正在等待信箱中的消息。如果有线程处于阻塞等待状态则返回

ｔｒｕｅ，否则返回ｆａｌｓｅ。

ｃｙｇ ｂｏｏｌｔｃｙｇ ｍｂｏｘ ｗａｉｔｉｎｇ ｔｏ ｐｕｔ
（

ｃｙｇ ｈａｎｄｌｅ ｔｍｂｏｘ／ｍｂｏｘｔｏｃｈｅｃｋ／

）

该函数指明是否有线程正在等待从信箱中删除消息以便可以送入新消息。如果有线程处

于阻塞等待状态，将返回ｔｒｕｅ，否则返回ｆａｌｓｅ。

６１２ 事件标志

事件标志（Ｅｖｅｎｔｆｌａｇｓ）也是一个同步原语，它允许线程等待一个或几个不同类型的事件
发生。它还可以用于等待某些事件组合的发生。其实现原理相对来说比较直观，每一个事件

标志是一个３２位的整数，应用程序可以将它的每一位对应于一个特殊事件。例如，事件标志
的ｂｉｔ０用于表示某个Ｉ／Ｏ事件的发生并且其数据可用，而ｂｉｔ１表示用户按下某个启动按钮，
等等。产生事件的线程或ＤＳＲ可能引起事件标志中的一位或几位被置１，而等待这些标志位
的线程可以被它们唤醒。

事件标志不像信号量那样对事件发生的次数进行计数，它不管发生了一次还是多次，与事

件对应的标志位置都只被改变一次。信号量不能像事件标志一样被用来处理多个事件源。事

件标志还通常被用来替代条件变量，但不能完全替代条件变量，它只支持相当于条件变量的广

播，不支持发送信号。

１３１

６１２１ 事件标志的使用

在使用事件标志之前，必须调用内核ＡＰＩ函数ｃｙｇ ｆｌａｇ ｉｎｉｔ对其进行初始化。它使用
了一个ｃｙｇ ｆｌａｇ ｔ的数据结构，该数据结构就是被初始化的事件标志，它可以是一个大的数
据结构中的一部分。在初始化的时候，事件标志的全部３２位被清０，表示还没有发生任何事
件。如果不再需要某个事件标志，则可用使用ｃｙｇ ｆｌａｇ ｄｅｓｔｒｏｙ函数将其废除，使得其ｃｙｇ
ｆｌａｇ ｔ结构所占用的内存可以被重新使用。
线程可以调用函数ｃｙｇ ｆｌａｇ ｗａｉｔ来等待一个或多个事件。该函数有三个参数，第一个

参数对指定事件标志进行标识；第二个参数是位的组合，表示对哪些事件感兴趣；第三个参数

是下列值中的一个：

（１）ＣＹＧ ＦＬＡＧ ＷＡＩＴＭＯＤＥ ＡＮＤ。函数的调用者将被阻塞，直到所有指定事件的
发生为止（此时事件标志中所有对应的位为１）。等待成功时，事件标志中的这些位不会被清，
将保持被设置的状态。

（２）ＣＹＧ ＦＬＡＧ ＷＡＩＴＭＯＤＥ ＯＲ。函数的调用者被阻塞，直到至少有一个指定的事
件发生（事件标志中所有与指定事件相对应的位中只要其中一位被置为１）。返回时不清事件
标志。

（３）ＣＹＧ ＦＬＡＧ ＷＡＩＴＭＯＤＥ ＡＮＤ｜ＣＹＧ ＦＬＡＧ ＷＡＩＴＭＯＤＥ ＣＬＲ。函数的调
用者将被阻塞，直到所有指定事件的发生（事件标志中所有对应的位为１），当成功返回时清整
个事件标志。使用这种方式的操作时，不能用单个事件标志来保存相互独立的多个事件。每

个独立的事件应该有自己的事件变量。

（４）ＣＹＧ ＦＬＡＧ ＷＡＩＴＭＯＤＥ ＯＲ｜ＣＹＧ ＦＬＡＧ ＷＡＩＴＭＯＤＥ ＣＬＲ。函数的调
用者被阻塞，直到至少有一个指定事件的发生（事件标志中所有与指定事件相对应的位中只要

一位被置为１），当成功返回时清整个事件标志。
线程在调用ｃｙｇ ｆｌａｇ ｗａｉｔ时通常会被阻塞直到所需的条件得到满足，操作成功时它将

返回此时事件标志的值，这个返回值所包含的事件可能不只是被请求的事件。如果使用ｃｙｇ
ｔｈｒｅａｄ ｒｅｌｅａｓｅ函数打破线程的阻塞等待状态，ｃｙｇ ｆｌａｇ ｗａｉｔ将返回０。

ｃｙｇ ｆｌａｇ ｔｉｍｅｄ ｗａｉｔ函数是ｃｙｇ ｆｌａｇ ｗａｉｔ的一个变体，它增加了超时功能。等待操
作必须在指定的时间内完成，否则将超时返回０。ｃｙｇ ｆｌａｇ ｐｏｌｌ函数是它的非阻塞变体函
数，如果操作成功则立即返回，它的行为与ｃｙｇ ｆｌａｇ ｗａｉｔ函数完全一致，如果操作不成功则
立即返回０。
线程或ＤＳＲ可以调用ｃｙｇ ｆｌａｇ ｓｅｔｂｉｔｓ函数对事件标志进行设置，该函数被用来对事件

标志进行设置的参数与事件标志原来的值进行位或操作。如果此时消耗线程正在等待的条件

得到满足，它可以唤醒这个等待线程。ｃｙｇ ｆｌａｇ ｍａｓｋｂｉｔｓ函数用于清事件标志中的一位或
多位。当某个特殊条件不再被满足时（如用户不再按下某个按钮），产生事件的线程可以调用

该函数。如果等待事件发生的消耗线程在其等待操作中不使用ＣＹＧ ＦＬＡＧ ＷＡＩＴＭＯＤＥ
ＣＬＲ，它可以使用该函数来说明它只消耗了所有活跃事件中的一部分事件。如果有多个没
有使用ＣＹＧ ＦＬＡＧ ＷＡＩＴＭＯＤＥ ＣＬＲ的消耗线程正在进行等待操作，通常需要使用其他
的同步机制（如互斥体）来防止多个线程消耗同一事件。

另外还有两个函数用于查询事件标志的当前状态。ｃｙｇ ｆｌａｇ ｐｅｅｋ函数返回事件标志

２３１

的当前值，ｃｙｇ ｆｌａｇ ｗａｉｔｉｎｇ函数可以用于发现是否有线程当前正处于等待该事件标志的
阻塞状态。由于其他线程可能正在对事件标志进行操作，因此在使用这两个函数时应加以注

意。

６１２２ 事件标志ＡＰＩ函数

ｅＣｏｓ内核提供对事件标志进行操作的ＡＰＩ函数定义于头文件＜ｃｙｇ／ｋｅｒｎｅｌ／ｋａｐｉ．ｈ＞内，
下面是这些ＡＰＩ函数的简单介绍。

ｖｏｉｄｃｙｇ ｆｌａｇ ｉｎｉｔ
（

ｃｙｇ ｆｌａｇ ｔｆｌａｇ ／ｆｌａｇｔｏｉｎｉｔｉａｌｉｚｅ／
）

该函数初始化一个事件标志。事件标志允许线程等待一个或一组条件，每个条件对应于

事件标志中的一位，对每一位的具体定义由用户实现。

ｖｏｉｄｃｙｇ ｆｌａｇ ｄｅｓｔｒｏｙ
（

ｃｙｇ ｆｌａｇ ｔｆｌａｇ ／ｆｌａｇｔｏｄｅｓｔｒｏｙ（ｉｎｖａｌｉｄａｔｅ）／
）

该函数作废或失效一个事件标志。使用该函数时应该注意没有其他线程正在等待或使用

该标志，否则将会造成线程死锁。

ｖｏｉｄｃｙｇ ｆｌａｇ ｓｅｔｂｉｔｓ
（

ｃｙｇ ｆｌａｇ ｔｆｌａｇ， ／ｆｌａｇｔｏｍｏｄｉｆｙ／

ｃｙｇ ｆｌａｇ ｖａｌｕｅ ｔｖａｌｕｅ ／ｂｉｔｓｔｏｓｅｔ／
）

该函数对事件标志位进行设置。参数ｖａｌｕｅ的值将与事件标志的原来值进行位或操作。
该函数可能会唤醒正在等待该标志的线程。

ｖｏｉｄｃｙｇ ｆｌａｇ ｍａｓｋｂｉｔｓ
（

ｃｙｇ ｆｌａｇ ｔｆｌａｇ， ／ｆｌａｇｔｏｍｏｄｉｆｙ／

ｃｙｇ ｆｌａｇ ｖａｌｕｅ ｔｖａｌｕｅ ／ｂｉｔｓｔｏｃｌｅａｒ／
）

该函数清事件标志中的某些位。事件标志与ｖａｌｕｅ进行位与操作，得到事件标志的新值。
如果ｖａｌｕｅ所有位都是０，则事件标志的所有位都清０。如果ｖａｌｕｅ的所有位为１，则不会清事
件标志中的任何一位。由于该操作只清事件标志，因此它不会唤醒任何线程。

ｃｙｇ ｆｌａｇ ｖａｌｕｅ ｔｃｙｇ ｆｌａｇ ｗａｉｔ
（

ｃｙｇ ｆｌａｇ ｔｆｌａｇ， ／ｆｌａｇｔｏｗａｉｔｏｎ／

３３１

ｃｙｇ ｆｌａｇ ｖａｌｕｅ ｔｐａｔｔｅｒｎ， ／ｐａｔｔｅｒｎｔｏｗａｉｔｆｏｒ／

ｃｙｇ ｆｌａｇ ｍｏｄｅ ｔｍｏｄｅ ／ｍｏｄｅｏｆｗａｉｔｉｎｇ／

）

该函数使线程阻塞等待一组事件的发生。ｆｌａｇ表示等待哪个事件标志。ｍｏｄｅ参数用于
如何解释ｐａｔｔｅｒｎ。上一节已经介绍了ｍｏｄｅ参数的使用，此处不再重复。如果线程被其他原
因所唤醒，则返回０。

ｃｙｇ ｆｌａｇ ｖａｌｕｅ ｔｃｙｇ ｆｌａｇ ｔｉｍｅｄ ｗａｉｔ
（

ｃｙｇ ｆｌａｇ ｔｆｌａｇ， ／ｆｌａｇｔｏｗａｉｔｏｎ／

ｃｙｇ ｆｌａｇ ｖａｌｕｅ ｔｐａｔｔｅｒｎ， ／ｐａｔｔｅｒｎｔｏｗａｉｔｆｏｒ／

ｃｙｇ ｆｌａｇ ｍｏｄｅ ｔｍｏｄｅ ／ｍｏｄｅｏｆｗａｉｔｉｎｇ／

ｃｙｇ ｔｉｃｋ ｃｏｕｎｔ ｔａｂｓｔｉｍｅ ／ａｂｓｏｌｕｔｅｔｉｍｅｏｕｔｖａｌｕｅ／

）

该函数使线程在指定时间内等待一个或多个事件的发生，如果超时则返回０。除了超时
功能外，它与ｃｙｇ ｆｌａｇ ｗａｉｔ函数功能完全一样。参数ｍｏｄｅ对ｐａｔｔｅｒｎ的解释进行说明，其意
义与ｃｙｇ ｆｌａｇ ｗａｉｔ函数中的ｍｏｄｅ参数完全一样。

ｃｙｇ ｆｌａｇ ｖａｌｕｅ ｔｃｙｇ ｆｌａｇ ｐｏｌｌ
（

ｃｙｇ ｆｌａｇ ｔｆｌａｇ， ／ｆｌａｇｔｏｗａｉｔｏｎ／

ｃｙｇ ｆｌａｇ ｖａｌｕｅ ｔｐａｔｔｅｒｎ， ／ｐａｔｔｅｒｎｔｏｗａｉｔｆｏｒ／

ｃｙｇ ｆｌａｇ ｍｏｄｅ ｔｍｏｄｅ ／ｍｏｄｅｏｆｗａｉｔｉｎｇ／

）

该函数检查事件标志中的一组事件是否已经发生。参数ｍｏｄｅ对ｐａｔｔｅｒｎ的解释进行说
明，其意义与ｃｙｇ ｆｌａｇ ｗａｉｔ函数中的ｍｏｄｅ参数完全一样。如果条件满足（相应事件已经发
生），则返回事件标志的值。如果线程被其他原因唤醒，则返回０。

ｃｙｇ ｆｌａｇ ｖａｌｕｅ ｔｃｙｇ ｆｌａｇ ｐｅｅｋ
（

ｃｙｇ ｆｌａｇ ｔｆｌａｇ ／ｆｌａｇｔｏｐｅｅｋａｔ／

）

该函数返回事件标志的当前值。

ｃｙｇ ｂｏｏｌｔｃｙｇ ｆｌａｇ ｗａｉｔｉｎｇ
（

ｃｙｇ ｆｌａｇ ｔｆｌａｇ／ｆｌａｇｔｏｃｈｅｃｋ／

）

该函数报告当前是否有线程正处于等待事件标志的阻塞状态。如果有线程处于阻塞状态

则返回ｔｒｕｅ，否则返回ｆａｌｓｅ。

４３１

６１３ Ｓｐｉｎｌｏｃｋ

Ｓｐｉｎｌｏｃｋ是为ＳＭＰ系统中的应用程序提供的一个同步原语。Ｓｐｉｎｌｏｃｋ的运行级别要低于
其他同步原语（如互斥体），在大多数情况下将优先使用级别较高的同步原语。在某些环境下，

需要使用ｓｐｉｎｌｏｃｋ，特别是在对中断进行处理以及在线程需要共享硬件资源的情况下。在

ＳＭＰ系统中，内核自身的实现也需要使用ｓｐｉｎｌｏｃｋ。

６１３１ Ｓｐｉｎｌｏｃｋ的使用

Ｓｐｉｎｌｏｃｋ实质上仅仅是一个简单的标志，当程序试图声称一个ｓｐｉｎｌｏｃｋ时，它检查该标志
是否已经被设置。如果没有被设置，则声称成功并设置该标志。Ｓｐｉｎｌｏｃｋ的具体实现与硬件
相关。例如，它可以使用ｔｅｓｔａｎｄｓｅｔ指令，即使在几个处理器同时对ｓｐｉｎｌｏｃｋ进行声称时都可
以保证它所需要的行为。如果不能对一个ｓｐｉｎｌｏｃｋ进行声称，则当前线程将进入一个小的循
环而处于自旋状态，它对标志进行重复检查直到该标志被清。这种行为与其他同步原语（如互

斥体等）有着显著的区别，使用其他同步原语时所产生的竞争将引起线程被挂起。使用

ｓｐｉｎｌｏｃｋ同步机制时，有一个假设条件，这就是对ｓｐｉｎｌｏｃｋ的拥有时间非常短。如果由于对

ｓｐｉｎｌｏｃｋ的声称而引起当前线程被挂起，那么在中断处理程序中就不能使用ｓｐｉｎｌｏｃｋ。
这种假设条件给使用ｓｐｉｎｌｏｃｋ的程序施加了一个强制性的约束条件。必须强调的是，对

ｓｐｉｎｌｏｃｋ的拥有时间必须很短，一般为几十条指令。否则，其他处理器将被该ｓｐｉｎｌｏｃｋ阻塞一
段较长时间，在这段时间内不能做任何事情。另一个值得注意的地方是拥有ｓｐｉｎｌｏｃｋ的线程
不能被抢先，因为这样会使另一个处理器在整个时间片或更长的时间内处于自旋状态。为实

现这一点，可采用的一种方法是在当前处理器上禁止中断，ｃｙｇ ｓｐｉｎｌｏｃｋ ｓｐｉｎ ｉｎｔｓａｖｅ函数
提供了这一功能。

在单处理器系统中，不应该使用ｓｐｉｎｌｏｃｋ。假设有一个高优先级的线程试图声称一个

ｓｐｉｎｌｏｃｋ，而该ｓｐｉｎｌｏｃｋ已经被一个低优先级的线程所拥有，这种情况下高优先级的线程将永
远处于循环状态而低优先级的线程将不会有任何机会运行并释放ｓｐｉｎｌｏｃｋ。即使两个线程具
有相同优先级，试图声称ｓｐｉｎｌｏｃｋ的线程将进入自旋状态直到属于它的时间片被耗尽，造成

ＣＰＵ时间的浪费。如果一个中断处理程序试图声称一个被线程拥有的ｓｐｉｎｌｏｃｋ，中断程序将
永远处于循环之中。由此可见，ｓｐｉｎｌｏｃｋ只适用于ＳＭＰ系统，在ＳＭＰ系统中ｓｐｉｎｌｏｃｋ的当前
拥有者可以在不同的处理器上运行。

在使用一个ｓｐｉｎｌｏｃｋ之前，必须使用内核ＡＰＩ函数ｃｙｇ ｓｐｉｎｌｏｃｋ ｉｎｉｔ对其进行初始化。
该函数具有两个参数，一个是ｃｙｇ ｓｐｉｎｌｏｃｋ ｔ数据结构的指针，另一个是指定ｓｐｉｎｌｏｃｋ启动
时的初始状态是锁定状态还是未锁定状态的标志。如果不再需要某个ｓｐｉｎｌｏｃｋ，则可以使用

ｃｙｇ ｓｐｉｎｌｏｃｋ ｄｅｓｔｒｏｙ函数将其作废。
有两个函数用于对ｓｐｉｎｌｏｃｋ进行声称，它们分别是ｃｙｇ ｓｐｉｎｌｏｃｋ ｓｐｉｎ函数和ｃｙｇ

ｓｐｉｎｌｏｃｋ ｓｐｉｎ ｉｎｔｓａｖｅ函数。前者可以用在已经知道当前程序不会被抢先的情形下，例如中
断处理程序或者中断被禁止的程序。后者除了声称ｓｐｉｎｌｏｃｋ外，还要进行禁止中断的操作，因
此它在任何情形下的使用都是安全的。它的第二个参数用于返回原来的中断状态，在调用

ｃｙｇ ｓｐｉｎｌｏｃｋ ｃｌｅａｒ ｉｎｔｓａｖｅ函数的时候将使用这种中断状态。

５３１

同样，有两个用于释放ｓｐｉｎｌｏｃｋ的函数，它们分别是ｃｙｇ ｓｐｉｎｌｏｃｋ ｃｌｅａｒｉｎｔ函数和ｃｙｇ
ｓｐｉｎｌｏｃｋ ｃｌｅａｒ ｉｎｔｓａｖｅ函数。前者通常用于释放被ｃｙｇ ｓｐｉｎｌｏｃｋ ｓｐｉｎ函数声称的ｓｐｉｎｌｏｃｋ，
而后者则用于释放被ｃｙｇ ｓｐｉｎｌｏｃｋ ｓｐｉｎ ｉｎｔｓａｖｅ函数声称的ｓｐｉｎｌｏｃｋ。
还有另外两个函数可用于对ｓｐｉｎｌｏｃｋ的操作。ｃｙｇ ｓｐｉｎｌｏｃｋ ｔｒｙ函数是一个非阻塞函

数，它是ｃｙｇ ｓｐｉｎｌｏｃｋ ｓｐｉｎ函数的一个变体。如果可能，该函数将对ｓｐｉｎｌｏｃｋ进行成功声称
后立即返回ｔｒｕｅ，否则将立即返回ｆａｌｓｅ。ｃｙｇ ｓｐｉｎｌｏｃｋ ｔｅｓｔ函数可以被用来检查ｓｐｉｎｌｏｃｋ目
前是否处于被锁定状态。该函数在使用时应该特别小心，因为ｓｐｉｎｌｏｃｋ的状态可能会随时改
变。

Ｓｐｉｎｌｏｃｋ的拥有时间必须非常短，对ｓｐｉｎｌｏｃｋ的声称不会引起线程被挂起。因此，ｓｐｉｎｌｏｃｋ
不会存在优先级倒置问题，也就不需要使用优先级置顶协议和优先级继承协议。

６１３２ Ｓｐｉｎｌｏｃｋ内核ＡＰＩ函数

ｅＣｏｓ内核提供了上述对ｓｐｉｎｌｏｃｋ进行操作的ＡＰＩ函数，在头文件＜ｃｙｇ／ｋｅｒｎｅｌ／ｋａｐｉ．ｈ＞
内对这些函数进行了定义。下面简单介绍这些ＡＰＩ函数。

ｖｏｉｄｃｙｇ ｓｐｉｎｌｏｃｋ ｉｎｉｔ（

ｃｙｇ ｓｐｉｎｌｏｃｋ ｔ ｌｏｃｋ， ／ｓｐｉｎｌｏｃｋｔｏｉｎｉｔｉａｌｉｚｅ／

ｃｙｇ ｂｏｏｌｔ ｌｏｃｋｅｄ ／ｉｎｉｔｌｏｃｋｅｄｏｒｕｎｌｏｃｋｅｄ／
）

该函数对ｓｐｉｎｌｏｃｋ进行初始化。参数ｌｏｃｋｅｄ为ｔｒｕｅ时，ｓｐｉｎｌｏｃｋ的初始状态是被锁定的，
为ｆａｌｓｅ时其初始状态为非锁定状态。

ｖｏｉｄｃｙｇ ｓｐｉｎｌｏｃｋ ｄｅｓｔｒｏｙ（

ｃｙｇ ｓｐｉｎｌｏｃｋ ｔｌｏｃｋ ／ｓｐｉｎｌｏｃｋｔｏｄｅｓｔｒｏｙ（ｉｎｖａｌｉｄａｔｅ）／
）

该函数作废（失效）一个ｓｐｉｎｌｏｃｋ。该函数在使用时应该特别小心，不得作废一个其他线程
正在等待或使用的ｓｐｉｎｌｏｃｋ。

ｖｏｉｄｃｙｇ ｓｐｉｎｌｏｃｋ ｓｐｉｎ（

ｃｙｇ ｓｐｉｎｌｏｃｋ ｔｌｏｃｋ ／ｓｐｉｎｌｏｃｋｔｏｂｅｃｌａｉｍｅｄ／
）

该函数用于对ｓｐｉｎｌｏｃｋ进行声称。只有在已经知道拥有该ｓｐｉｎｌｏｃｋ的程序不会被抢先的
情况下才使用。

ｖｏｉｄｃｙｇ ｓｐｉｎｌｏｃｋ ｃｌｅａｒ（

ｃｙｇ ｓｐｉｎｌｏｃｋ ｔｌｏｃｋ／ｓｐｉｎｌｏｃｋｔｏｂｅｒｅｌｅａｓｅｄ／
）

该函数释放一个ｓｐｉｎｌｏｃｋ，通常用于释放被ｃｙｇ ｓｐｉｎｌｏｃｋ ｓｐｉｎ函数声称的ｓｐｉｎｌｏｃｋ。

ｃｙｇ ｂｏｏｌｔｃｙｇ ｓｐｉｎｌｏｃｋ ｔｒｙ（

ｃｙｇ ｓｐｉｎｌｏｃｋ ｔｌｏｃｋ ／ｓｐｉｎｌｏｃｋｔｏｂｅｃｌａｉｍｅｄ／
）

６３１

该函数声称一个ｓｐｉｎｌｏｃｋ，如果声称成功，立即返回ｔｒｕｅ，如果不能声称，则立即返回ｆａｌｓｅ。
该函数是一个非阻塞函数。

ｃｙｇ ｂｏｏｌｔｃｙｇ ｓｐｉｎｌｏｃｋ ｔｅｓｔ（

ｃｙｇ ｓｐｉｎｌｏｃｋ ｔｌｏｃｋ／ｓｐｉｎｌｏｃｋｔｏｂｅｃｈｅｃｋ／
）

该函数检查当前是否有线程正在阻塞等待ｓｐｉｎｌｏｃｋ。如果有线程阻塞，则返回ｔｒｕｅ，否则
返回ｆａｌｓｅ。

ｖｏｉｄｃｙｇ ｓｐｉｎｌｏｃｋ ｓｐｉｎ ｉｎｔｓａｖｅ（

ｃｙｇ ｓｐｉｎｌｏｃｋ ｔｌｏｃｋ， ／ｓｐｉｎｌｏｃｋｔｏｂｅｃｌａｉｍｅｄ／

ｃｙｇ ａｄｄｒｗｏｒｄ ｔｉｓｔａｔｅ／ｉｎｔｅｒｒｕｐｔｓｔａｔｅ ／
）

该函数声称ｓｐｉｎｌｏｃｋ，并禁止中断。中断状态被存放在ｉｓｔａｔｅ内。该函数是安全的。

ｖｏｉｄｃｙｇ ｓｐｉｎｌｏｃｋ ｃｌｅａｒｉｎｔｓａｖｅ（

ｃｙｇ ｓｐｉｎｌｏｃｋ ｔｌｏｃｋ，／ｓｐｉｎｌｏｃｋｔｏｂｅｒｅｌｅａｓｅｄ／

ｃｙｇ ａｄｄｒｗｏｒｄ ｔｉｓｔａｔｅ ／ｉｎｔｅｒｒｕｐｔｓｔａｔｅ ／
）

该函数释放一个ｓｐｉｎｌｏｃｋ。通常用于释放被ｃｙｇ ｓｐｉｎｌｏｃｋ ｓｐｉｎ ｉｎｔｓａｖｅ函数声称的

ｓｐｉｎｌｏｃｋ。

７３１

第７章 标准Ｃ与数学库

ｅＣｏｓ提供了一个标准Ｃ库，它与ＩＳＯ９８９９：１９９０标准Ｃ库说明兼容，这一说明实质上与
众所周知的ＡＮＳＩＣ３．１５９１９８９说明（Ｃ８９）是相同的。ｅＣｏｓ的这种兼容性来自三个方面。首
先，ｅＣｏｓ提供了一个Ｃ库（ＣＬｉｂｒａｒｙＰａｃｋａｇｅ），实现了除数学函数之外的所有ＩＳＯ标准定义的
函数。其次，ｅＣｏｓ提供了一个数学库（ＭａｔｈＬｉｂｒａｒｙ），它实现了ＩＳＯＣ库内的数学函数。第三
个方面是ｅＣｏｓ提供了一个标准Ｃ库环境，在该环境下可以运行使用标准Ｃ库编写的应用程
序。这种环境是由Ｃ库启动程序建立起来的，它提供一个主入口函数ｍａｉｎ（），一个退出函数

ｅｘｉｔ（）以及一个能读取环境参数的函数ｇｅｔｅｎｖ（）。
本章的重点主要是介绍Ｃ库及数学库中与ｅＣｏｓ相关的部分，其中大部分与ｅＣｏｓ的可配

置性相关。有关标准Ｃ的介绍读者可以参阅其他Ｃ语言参考书。

７１ 标准Ｃ与数学库的配置

ｅＣｏｓ提供的标准Ｃ库和数学库都是可选的组件，可以根据实际需要选择安装相应的包。
如果选择了标准Ｃ库，应用程序可以使用入口函数ｍａｉｎ（），否则只能使用ｃｙｇ ｕｓｅｒ ｓｔａｒｔ（）
作为应用程序的入口函数。

使用图形配置工具可以对标准Ｃ库和数学库的具体配置选项进行配置，如图７１所示。

图７１ 标准Ｃ与数学库的配置

对标准Ｃ库可以进行下述几个方面的配置：

①ＩＳＯＣ库国际通用函数的配置。

②ＩＳＯＣ库长跳转函数的配置。

③ＩＳＯＣ库信号函数的配置。

８３１

④ＩＳＯＣ环境、启动函数（ｍａｉｎ）和退出函数（ｅｘｉｔ）的配置。

⑤ＩＳＯＣ库标准输入／输出函数的配置。

⑥ＩＳＯＣ库普通应用函数的配置。

⑦ＩＳＯＣ库字符串函数的配置。

⑧ＩＳＯＣ库日期与时间函数的配置。
对数学库的配置主要包括：

① 数学库兼容方式的选择，包括ＰＯＳＩＸ、ＩＥＥＥ、Ｘ／ＯＰＥＮ、ＳＶＩＤ等。

② 线程安全性选择。

③ 对调试支持的配置。

④ 数学库编译选项。

７２ 非ＩＳＯ标准函数

ｅＣｏｓ的Ｃ库包含了一些非ＩＳＯ标准的一些函数。ｅＣｏｓ支持ＰＯＳＩＸ标准，下面的这些非

ＩＳＯ标准的Ｃ函数来自ＰＯＳＩＸ标准：

①ｅｘｔｅｒｎｃｈａｒｅｎｖｉｒｏｎ变量，用于建立一种环境，使用ｇｅｔｅｎｖ（）函数可读取这种环境

② ｅｘｉｔ（）立即退出当前程序。

③ｓｔｒｔｏｋ ｒ（）可重入的ｓｔｒｔｏｋ（），在字符串中查找。

④ｒａｎｄ ｒ（）可重入的ｒａｎｄ（），产生一个随机数。

⑤ａｓｃｔｉｍｅ ｒ（）可重入的ａｓｃｔｉｍｅ（），将保存在数据结构内的时间值转换为字符串。

⑥ｃｔｉｍｅ ｒ（）可重入的ｃｔｉｍｅ（），将时间转换为字符串。

⑦ｌｏｃａｌｔｉｍｅ ｒ（）可重入的ｌｏｃａｌｔｉｍｅ（），时间函数。

⑧ｇｍｔｉｍｅ ｒ（）可重入的ｇｍｔｉｍｅ（），将时间值转换为表示时间的数据结构。
除了上述这些出自ＰＯＳＩＸ标准的非ＩＳＯ函数外，ｅＣｏｓ的标准Ｃ库还专门提供了一些函

数用于调整日期和时间的设置。这些函数如下：

ｖｏｉｄｃｙｇ ｌｉｂｃ ｔｉｍｅ ｓｅｔｄｓｔ（

ｃｙｇ ｌｉｂｃ ｔｉｍｅ ｄｓｔｓｔａｔｅ
）；

该函数对夏令时（ＤＳＴ）的状态进行设置。夏令时的状态具有下列值：

ＣＹＧ ＬＩＢＣ ＴＩＭＥ ＤＳＴＮＡ ｕｎｋｎｏｗｎ
ＣＹＧ ＬＩＢＣ ＴＩＭＥ ＤＳＴＯＦＦ ｏｆｆ
ＣＹＧ ＬＩＢＣ ＴＩＭＥ ＤＳＴＯＮ ｏｎ

ｖｏｉｄｃｙｇ ｌｉｂｃ ｔｉｍｅ ｓｅｔｚｏｎｅｏｆｆｓｅｔｓ（

ｔｉｍｅ ｔｓｔｄｏｆｆｓｅｔ，

ｔｉｍｅ ｔｄｓｔｏｆｆｓｅｔ
）；

当夏令时使能或关闭时，该函数对与ＵＴＣ（协调世界时）时间的偏差进行设置。这种偏差
使用ｔｉｍｅ ｔ类型表示，单位是秒。

９３１

ｃｙｇ ｌｉｂｃ ｔｉｍｅ ｄｓｔｃｙｇ ｌｉｂｃ ｔｉｍｅ ｇｅｔｚｏｎｅｏｆｆｓｅｔｓ（

ｔｉｍｅ ｔｓｔｄｏｆｆｓｅｔ，

ｔｉｍｅ ｔｄｓｔｏｆｆｓｅｔ
）；

该函数读取夏令时ＤＳＴ的当前设置以及标准时ＳＴＤ和夏令时ＤＳＴ的偏差。这些偏差
均使用ｔｉｍｅ ｔ类型表示，单位为秒。

ｃｙｇ ｂｏｏｌｃｙｇ ｌｉｂｃ ｔｉｍｅ ｓｅｔｔｉｍｅ（

ｔｉｍｅ ｔｕｔｃｔｉｍｅ
）；

该函数对当前系统时间进行设置。时间使用ＵＴＣ格式，用ｔｉｍｅ ｔ类型表示。如果设置
发生错误，将返回非０值。

７３ 数学库兼容方式

ｅＣｏｓ数学库具有在几种不同兼容方式下运行的能力。它支持四种兼容方式：

①ＡＮＳＩ／ＰＯＳＩＸ１００３．１。

②ＩＥＥＥ７５４。

③ＸＰＧ３（Ｘ／ＯｐｅｎＰｏｒｔａｂｉｌｉｔｙＧｕｉｄｅＩｓｓｕｅ３）。

④ＳｙｓｔｅｍＶＩｎｔｅｒｆａｃｅＤｅｆｉｎｉｔｉｏｎＥｄｉｔｉｏｎ３。
这些兼容方式有着各自对错误进行处理的方法。

在ＩＥＥＥ方式下，不调用ｍａｔｈｅｒｒ（）函数，在ｓｔｄｅｒｒ输出流中不会输出警告信息，也不会设
置错误代码ｅｒｒｎｏ。
在ＡＮＳＩ／ＰＯＳＩＸ方式下，将有错误代码ｅｒｒｏｒ产生，但不会调用ｍａｔｈｅｒｒ（）函数，在ｓｔｄｅｒｒ

输出流中不会有警告信息输出。

在Ｘ／Ｏｐｅｎ方式下，将有错误代码ｅｒｒｏｒ产生，也将调用ｍａｔｈｅｒｒ（）函数，但在ｓｔｄｅｒｒ输出流
中不会有警告信息输出。

在ＳＶＩＤ方式下，函数溢出时将返回ＨＵＧＥ值（在头文件ｍａｔｈ．ｈ中有定义），这是单精度
浮点数的最大值（ＨＵＧＥ ＶＡＬ表示无穷大）。这种方式下将有错误代码产生，ｍａｔｈｅｒｒ（）函数
也会被调用。如果ｍａｔｈｅｒｒ（）返回０，在ｓｔｄｅｒｒ输出流中将有针对某些错误的警告信息输出。
在Ｘ／Ｏｐｅｎ方式和ＳＶＩＤ方式下，可以使用ｍａｔｈｅｒｒ（）函数，该函数对数学错误进行处理，

其格式如下：

ｉｎｔｍａｔｈｅｒｒ（ｓｔｒｕｃｔｅｘｃｅｐｔｉｏｎｅ）

其参数使用了结构ｅｘｃｅｐｔｉｏｎ，定义如下：

ｓｔｒｕｃｔｅｘｃｅｐｔｉｏｎ｛

ｉｎｔｔｙｐｅ；

ｃｈａｒｎａｍｅ；

ｄｏｕｂｌｅａｒｇ１，ａｒｇ２，ｒｅｔｖａｌ；
｝；

０４１

其中：

ｔｙｐｅ是下列例外之一：

ＤＯＭＡＩＮ
ＳＩＮＧ
ＯＶＥＲＦＬＯＷ
ＵＮＤＥＲＦＬＯＷ
ＴＬＯＳＳ
ＰＬＯＳＳ

ｎａｍｅ是包含出错函数名的字符串；

ａｒｇ１、ａｒｇ２是传递给出错函数的参数；

ｒｅｔｖａｌ是出错函数返回的默认值，可以被ｍａｔｈｅｒｒ（）函数修改。
如果ｍａｔｈｅｒｒ（）函数返回０，或者用户没有自己补充ｍａｔｈｅｒｒ（）函数，那么在ＳＶＩＤ方式下

通常会出现表７１所述行为。

表７１ 数学函数例外行为

例 外 类 型 行 为

ＤＯＭＡＩＮ 返回０．０，ｅｒｒｎｏ＝ＥＤＯＭ，ｓｔｄｅｒｒ有信息输出

ＳＩＮＧ 返回带有符号的ＨＵＧＥ，ｅｒｒｎｏ＝ＥＤＯＭ，ｓｔｄｅｒｒ有信息输出

ＯＶＥＲＦＬＯＷ 返回带有符号的ＨＵＧＥ，ｅｒｒｎｏ＝ＥＲＡＮＧＥ

ＵＮＤＥＲＦＬＯＷ 返回０．０，ｅｒｒｎｏ＝ＥＲＡＮＧＥ

ＴＬＯＳＳ 返回０．０，ｅｒｒｎｏ＝ＥＲＡＮＧＥ，ｓｔｄｅｒｒ有信息输出

ＰＬＯＳＳ 当前版本不返回这种类型的例外

Ｘ／Ｏｐｅｎ方式与此相似，不同之处是ｓｔｄｅｒｒ不会输出信息，它使用ＨＵＧＥ ＶＡＬ替代

ＨＵＧＥ。
如果对配置选项进行适当的设置，数学库在下述条件下具有线程安全性：

① 对Ｃ库的ｅｒｒｏｒ变量进行设置具有线程安全性。

② 使用Ｃ库函数ｆｐｕｔ（）将错误消息输出到ｓｔｄｅｒｒ输出流具有线程安全性。

③ 用户补充的ｍａｔｈｅｒｒ（）函数具有线程安全性。
另外，如果数学库总处于ＩＥＥＥ兼容方式，除ｇａｍｍａ（）函数和ｌｇａｍｍａ（）函数之外的

函数都具有可重入性。

７４ 一些实现细节

在ｅＣｏｓ的Ｃ库中，有一些值得注意和了解的地方。

① 在对ｅＣｏｓ进行配置时，有可能包含了标准Ｃ库而没有包含内核，这样可以使用更少的
内存。如果没有包含内核，就不能使用内存分配、线程安全性以及某些ｓｔｄｉｏ函数（如输入等函
数）。其他Ｃ库函数不会受到影响。

１４１

②ｃｌｏｃｋ（）函数返回的数据类型为ｃｌｏｃｋ ｔ，它是一个６４位的整数。只有在内核被配置为
具有实时时钟支持的情况下，ｃｌｏｃｋ（）返回的值才是正确的。内核的这种配置是由ｋｅｒｎｅｌ．ｈ中
的配置选项ＣＹＧＶＡＲ ＫＥＲＮＥＬ ＣＯＵＮＴＥＲＳ ＣＬＯＣＫ来实现的。

③ＦＩＬＥ类型不是一个结构体，而是ＣＹＧ ＡＤＤＲＥＳＳ。

④ＧＮＵＣ编译器将使用编译器本身的一些内置实现来替代某些Ｃ库函数。可以使用
ｆｎｏｂｕｉｌｔｉｎ编译选项关闭这种特性。受影响的函数有：ａｂｓ（）、ｃｏｓ（）、ｆａｂｓ（）、ｌａｂｓ（）、ｍｅｍｃｍｐ（）、

ｍｅｍｃｐｙ（）、ｓｉｎ（）、ｓｑｒｔ（）、ｓｔｒｃｍｐ（）、ｓｔｒｃｐｙ（）以及ｓｔｒｌｅｎ（）。

⑤ＧＣＣ编译时使用ｆｎｏｂｕｉｌｔｉｎ编译选项将会禁止编译器使用其内置实现，如果要使程序
具有更快的执行速度，应该避免使用这种选项，让编译器使用其内置实现。

⑥ｍｅｍｏｒｙ（）函数和ｍｅｍｓｅｔ（）函数位于基础结构包内，而不是在Ｃ库包内。这是由于编
译器需要使用这两个函数，如果配置时没有包含Ｃ库，内核就必须实现这两个函数。

⑦ 错误码（如ＥＤＯＭ和ＥＲＡＮＧＥ）以及ｓｔｒｅｒｒｏｒ（）函数是在错误包内实现的。错误包与

Ｃ库和数学库是分开的，这样即使在ｅＣｏｓ配置中没有包含Ｃ库，ｅＣｏｓ的其余部分仍然可以使
用错误处理函数。

⑧ 当调用ｆｒｅｅ（）函数时，ｈｅａｐ内存通常会被合并。如果没有对配置选项ＣＹＧＳＥＭ
ＫＥＲＮＥＬ ＭＥＭＯＲＹ ＣＯＡＬＥＳＣＥ进行设置，内存就不会被合并，这种情况可能会引起程序
运行错误。

⑨ 在正常工作的程序环境中使用ｒａｉｓｅ（）发出信号时，要保证信号能正常工作。在中断服
务程序ＩＳＲ和滞后中断服务程序ＤＳＲ环境中发出的信号不一定能正常工作。另外，在对配置
选项ＣＹＧＳＥＭ ＬＩＢＣ ＳＩＧＮＡＬＳ ＨＷＥＸＣＥＰＴＩＯＮＳ进行了设置的情况下，不能保证信号
的正常工作。这种情况下，如果要处理ｓｉｇｎａｌ（）函数发出的信号，就必须以例外的形式来捕
获。虽然如此，信号的实现仍然是与ＩＳＯＣ兼容的，ＩＳＯＣ也不能提供这种保证。

⑩ 除了配置选项ＣＹＧＰＫＧ ＬＩＢＣ ＥＮＶＩＲＯＮＭＥＮＴ被关闭的情况外，都实现了ｇｅｔｅｎｖ（）
函数。但是没有提供任何ｓｈｅｌｌ函数或ｐｕｔｅｎｖ（）对环境进行动态设置。可以使用一个全局变量

ｅｎｖｉｒｏｎ对环境进行设置，其声称如下：

ｅｘｔｅｒｎｃｈａｒｅｎｖｉｒｏｎ；／／Ｓｔａｎｄａｒｄｅｎｖｉｒｏｎｍｅｎｔｄｅｆｉｎｉｔｉｏｎ

使用ＣＹＧＤＡＴ ＬＩＢＣ ＤＥＦＡＵＬＴ ＥＮＶＩＲＯＮＭＥＮＴ选项可以在系统启动时对环境进
行静态初始化。如果这样的话，环境变量数组的最后一项在初始化后应该为ＮＵＬＬ。
下面是一个使用环境的ｅＣｏｓ小程序：

ｅｘａｍｐｌｅｆｏｒｅｎｖｉｒｏｎｍｅｎｔ
＃ｉｎｃｌｕｄｅ＜ｓｔｄｉｏ．ｈ＞
＃ｉｎｃｌｕｄｅ＜ｓｔｄｌｉｂ．ｈ＞ ／／Ｍａｉｎｈｅａｄｅｒｆｏｒｓｔｄｌｉｂｆｕｎｃｔｉｏｎｓ

ｅｘｔｅｒｎｃｈａｒｅｎｖｉｒｏｎ；／／Ｓｔａｎｄａｒｄｅｎｖｉｒｏｎｍｅｎｔｄｅｆｉｎｉｔｉｏｎ

ｉｎｔ
ｍａｉｎ（ｉｎｔａｒｇｃ，ｃｈａｒａｒｇｖ［］）
｛

ｃｈａｒｓｔｒ；

２４１

ｃｈａｒｅｎｖ［］＝｛″ＰＡＴＨ＝／ｕｓｒ／ｌｏｃａｌ／ｂｉｎ：／ｕｓｒ／ｂｉｎ″，

″ＨＯＭＥ＝／ｈｏｍｅ／ｆｒｅｄ″，

″ＴＥＳＴ＝１２３４＝５６７８″，

″ｈｏｍｅ＝ｈａｔｓｔａｎｄ″，

ＮＵＬＬ
｝；

ｐｒｉｎｔｆ（″ＤｉｓｐｌａｙｔｈｅｃｕｒｒｅｎｔＰＡＴＨｅｎｖｉｒｏｎｍｅｎｔｖａｒｉａｂｌｅ＼ｎ″）；

ｅｎｖｉｒｏｎ＝（ｃｈａｒ）＆ｅｎｖ；

ｓｔｒ＝ｇｅｔｅｎｖ（″ＰＡＴＨ″）；

ｉｆ（ｓｔｒ＝＝ＮＵＬＬ）｛

ｐｒｉｎｔｆ（″ＴｈｅｃｕｒｒｅｎｔＰＡＴＨｉｓｕｎｓｅｔ＼ｎ″）；
｝ｅｌｓｅ｛

ｐｒｉｎｔｆ（″ＴｈｅｃｕｒｒｅｎｔＰＡＴＨｉｓ＼″％ｓ＼″＼ｎ″，ｓｔｒ）；
｝

ｒｅｔｕｒｎ０；
｝

７５ 线程安全性

当多线程在同一时间调用同一函数时，就存在线程安全性问题。ＩＳＯＣ库提供了一个控
制其线程安全性（ｔｈｒｅａｄｓａｆｅｔｙ）的配置选项。ｅＣｏｓ对这个选项进行设置可以保证这种安全
性。

在多线程环境下使用下面的函数时必须加以小心，这些函数的使用应该具有正确的线程

安全性配置。

①ｍｂｌｅｎ（）。

②ｍｂｔｏｗｃ（）。

③ｗｃｔｏｍｂ（）。

④ｐｒｉｎｔｆ（）（以及除ｓｐｒｉｎｔｆ（）和ｓｓｃａｎｆ（）之外的所有标准Ｉ／Ｏ函数）。

⑤ｓｔｒｔｏｋ（）。

⑥ｒａｎｄ（）和ｓｒａｎｄ（）。

⑦ｓｉｇｎａｌ（）和ｒａｉｓｅ（）。

⑧ａｓｃｔｉｍｅ（）、ｃｔｉｍｅ（）、ｇｍｔｉｍｅ（）和ｌｏｃａｌｔｉｍｅ（）。

⑨ 变量ｅｒｒｎｏ。

⑩ 变量ｅｎｖｉｒｏｎ。

瑏瑡 日期和时间的设置。
在某些情况下，ｅＣｏｓ为使开发更容易，它对某些函数提供了另外一种可替换的可重入函

数，如ｒａｎｄ ｒ（）、ｓｔｒｔｏｋ ｒ（）、ａｓｃｔｉｍｅ ｒ（）、ｃｔｉｍｅ ｒ（）、ｇｍｔｉｍｅ ｒ（）以及ｌｏｃａｌｔｉｍｅ ｒ（）等，从
而保证其线程安全性。

在另外一些情况下，ｅＣｏｓ提供了一些配置选项来实现线程安全性，这些选项对函数或者

３４１

函数的共享数据进行锁定控制。

还有其他的一些情况，如日期和时间的设置，由于这些函数相对简单，不值得对其进行安

全性处理（例如很少对日期和时间进行设置），因此对这些函数没有提供可重入的具有线程安

全性的替换函数，也没有提供相应的配置选项。

７６ Ｃ库启动函数

ｅＣｏｓ的Ｃ库包含了下面这样一个函数：

ｖｏｉｄｃｙｇ ｉｓｏ ｃ ｓｔａｒｔ（ｖｏｉｄ）

该函数着手建立一种环境，ＩＳＯＣ程序可以在该环境下以最兼容的方式运行。该函数所
做的工作是产生一个将要调用ｍａｉｎ（）主函数的线程，ｍａｉｎ（）函数通常被认为是程序的入口
点。如果使用配置选项ＣＹＧＤＡＴ ＬＩＢＣ ＡＲＧＵＭＥＮＴＳ，它还可以为ｍａｉｎ（）函数提供参数，
当程序从ｍａｉｎ（）返回或者调用ｅｘｉｔ（）函数返回时，处于挂起状态的ｓｔｄｉｏ输出文件将输出，并
且将调用通过ａｔｅｘｉｔ（）函数进行登记过的所有函数。
线程在ｅＣｏｓ调度器启动的时候开始工作。如果不使用ｅＣｏｓ内核包，也就是说没有调度

器时，ｃｙｇ ｉｓｏ ｃ ｓｔａｒｔ（）函数将直接调用ｍａｉｎ（）函数，在ｍａｉｎ（）函数返回之前，该函数不会
返回。

ｍａｉｎ（）函数的定义如下。如果在Ｃ＋＋文件中使用了这种定义就必须使用“Ｃ”链接。

ｅｘｔｅｒｎｉｎｔｍａｉｎ（ｉｎｔａｒｇｃ，ｃｈａｒａｒｇｖ［］）

如果需要的话，可以对被ｃｙｇ ｉｓｏ ｃ ｓｔａｒｔ（）函数启动的线程进行直接操作。例如，直接
对线程进行挂起操作。内核中的ＣＡＰＩ函数在进行这种操作的时候需要使用一个句柄

ｈａｎｄｌｅ，这种句柄可以在程序代码中通过包含下面的语句来获取：

ｅｘｔｅｒｎｃｙｇ ｈａｎｄｌｅ ｔｃｙｇ ｌｉｂｃ ｍａｉｎ ｔｈｒｅａｄ；

这样，可以通过下面的语句挂起一个线程：

ｃｙｇ ｔｈｒｅａｄ ｓｕｓｐｅｎｄ（ｃｙｇ ｌｉｂｃ ｍａｉｎ ｔｈｒｅａｄ）；

如果用户调用了ｃｙｇ ｉｓｏ ｃ ｓｔａｒｔ（）函数，但没有提供自己的ｍａｉｎ（）函数，那么系统将提
供一个ｍａｉｎ（）函数，这一ｍａｉｎ（）函数将简单地直接返回。
在ｅＣｏｓ的默认配置中，ｃｙｇ ｉｓｏ ｃ ｓｔａｒｔ（）函数自动被ｃｙｇ ｐａｃｋａｇｅ ｓｔａｒｔ（）函数调用。

这样，在最简单的情况下，最简单的用户程序如下：

ｉｎｔｍａｉｎ（ｉｎｔａｒｇｃ，ｃｈａｒａｒｇｖ［］）
｛

ｐｒｉｎｔｆ（″ＨｅｌｌｏｅＣｏｓ＼ｎ″）；
｝

如果不考虑使用ｃｙｇ ｐａｃｋａｇｅ ｓｔａｒｔ（）函数或ｃｙｇ ｓｔａｒｔ（）函数，或者关闭了基础结构包
的配置选项ＣＹＧＳＥＭ ＳＴＡＲＴ ＩＳＯ Ｃ ＣＯＭＰＡＴＩＢＩＬＩＴＹ，那么必须保证用户程序自己
调用函数ｃｙｇ ｉｓｏ ｃ ｍａｉｎ（），使用户程序可以自动地在程序入口点ｍａｉｎ（）处开始执行。

４４１

第８章 设备驱动程序与ＰＣＩ库

ｅＣｏｓ源码中的Ｉ／Ｏ包包含了多种设备类型的驱动程序，这些设备驱动程序以组件的形式
出现在Ｉ／Ｏ包内。设备驱动程序组件也可以像其他所有组件一样，系统可以根据实际需要对
它们进行配置。开发人员也可以设计自己的设备驱动程序，并将其加入到系统中来。

驱动程序模块支持分层结构，一个设备可以是另一个设备的上层设备。处于上层的设备

可以灵活地增加一些底层设备没有提供的一些功能和特性。例如，ＴＴＹ设备建立在简单串行
设备的上层，它提供的行缓冲和行编辑功能是简单串行设备所不具备的。

ｅＣｏｓ还提供了一个可选的ＰＣＩ库。当目标平台需要对ＰＣＩ总线及其设备进行操作时，可
以使用ＰＣＩ库提供的支持。利用ＰＣＩ库可以进行ＰＣＩ总线的初始化、查找ＰＣＩ设备、ＰＣＩ配
置空间的读写、中断处理等操作。

本章主要讲述ｅＣｏｓ设备驱动程序与系统其他部件的接口（ＡＰＩ函数），详细介绍设备驱动
程序的结构的编程方法，并举例说明设备驱动程序的设计方法。最后对ＰＣＩ库的内容和使用
方法进行介绍。

８１ 设备驱动程序用户ＡＰＩ

ｅＣｏｓ提供了一些驱动程序用户ＡＰＩ函数，应用程序使用这些函数可以对设备进行操作。
这些操作包括对设备进行配置、获取配置信息、对设备进行数据的读写等。

设备驱动程序必须采用设备句柄（ｈａｎｄｌｅ）对其进行访问。系统中的每一个设备都有一个
惟一的名字，ｃｙｇ ｉｏ ｌｏｏｋｕｐ（）函数用于将该名字映射到设备句柄。该函数还可以在启动初
期用于对设备进行初始化操作。设备标准名字采用诸如“／ｄｅｖ／ｃｏｎｓｏｌｅ”、“／ｄｅｖ／ｓｅｒｉａｌ０”等这样
的格式，其前缀“／ｄｅｖ／”表示这是一个设备的名字。设备驱动程序所提供的基本功能包括对设
备进行数据读写操作，此外它还提供了其他一些函数对具体设备以及驱动程序的状态进行控

制和处理。

驱动程序用户ＡＰＩ函数的参数均采用指针的形式，可以有效地实现与驱动程序之间的信
息传递。最明显的例子是它的读写函数中对数据长度参数ｌｅｎｇｔｈ的传递，在调用读函数和写
函数时，ｌｅｎｇｔｈ包含了将要传送的数据长度，函数返回时ｌｅｎｇｔｈ包含了实际传送的数据长度。
除了ｃｙｇ ｉｏ ｌｏｏｋｕｐ（）函数外，所有的驱动程序用户ＡＰＩ函数都要使用设备句柄ｈａｎｄｌｅ。

所有函数都将返回一个具有Ｃｙｇ ＥｒｒＮｏ类型的值。如果有错误发生，返回的值将是负值，并
具体指明错误代码。根据错误代码可以在头文件ｃｙｇ／ｅｒｒｏｒ／ｃｏｄｅ．ｈ中查看相应的错误。如果
函数执行正常，返回值为ＥＮＯＥＲＲ，表示没有错误。
下面是设备驱动程序的一些最基本的用户ＡＰＩ函数，应用程序可以直接调用这些函数对

设备进行控制和访问。

５４１

８１１ 设备的查找

Ｃｙｇ ＥｒｒＮｏｃｙｇ ｉｏ ｌｏｏｋｕｐ（

ｃｏｎｓｔｃｈａｒｎａｍｅ，

ｃｙｇ ｉｏ ｈａｎｄｌｅ ｔｈａｎｄｌｅ
）

该函数用于查找某个设备，将该设备名字映射到适当的设备句柄并返回。如果参数
ｎａｍｅ所指定名字的设备在系统中不存在，则返回错误码ＥＮＯＥＮＴ。如果该设备存在，则通
过句柄指针参数ｈａｎｄｌｅ返回相应的设备句柄ｈａｎｄｌｅ。

８１２ 向设备传送数据

Ｃｙｇ ＥｒｒＮｏｃｙｇ ｉｏ ｗｒｉｔｅ（

ｃｙｇ ｉｏ ｈａｎｄｌｅ ｔｈａｎｄｌｅ，

ｃｏｎｓｔｖｏｉｄｂｕｆ，

ｃｙｇ ｕｉｎｔ３２ｌｅｎ
）

该函数向指定的设备传送数据。数据传送的大小由参数ｌｅｎ指定，函数返回时ｌｅｎ为
实际被传送的数据大小。

８１３ 读取设备数据

Ｃｙｇ ＥｒｒＮｏｃｙｇ ｉｏ ｒｅａｄ（

ｃｙｇ ｉｏ ｈａｎｄｌｅ ｔｈａｎｄｌｅ，

ｖｏｉｄｂｕｆ，

ｃｙｇ ｕｉｎｔ３２ｌｅｎ
）

该函数从指定的设备读取数据。读取数据的大小由参数ｌｅｎ指定，函数返回时ｌｅｎ为
实际读取的数据大小。

８１４ 读取设备配置信息

Ｃｙｇ ＥｒｒＮｏｃｙｇ ｉｏ ｇｅｔ ｃｏｎｆｉｇ（

ｃｙｇ ｉｏ ｈａｎｄｌｅ ｔｈａｎｄｌｅ，

ｃｙｇ ｕｉｎｔ３２ｋｅｙ，

ｖｏｉｄｂｕｆ，

ｃｙｇ ｕｉｎｔ３２ｌｅｎ
）

该函数读取指定设备的实时配置信息。参数ｋｅｙ指定所需读取的信息类型，返回的信息
存放在参数ｂｕｆ指定的位置。参数ｌｅｎ指定所需读取配置信息的大小，其值必须至少与

ｋｅｙ所选择的信息类型的大小相同。函数返回时ｌｅｎ的值为实际读取的信息大小。每一个
驱动程序都有不同的ｋｅｙ值，在头文件ｃｙｇ／ｉｏ／ｃｏｎｆｉｇ ｋｅｙｓ．ｈ中列举了所有的ｋｅｙ值，不同的

６４１

设备类型具有不同的ｋｅｙ值定义。

８１５ 对设备的配置

Ｃｙｇ ＥｒｒＮｏｃｙｇ ｉｏ ｓｅｔ ｃｏｎｆｉｇ（

ｃｙｇ ｉｏ ｈａｎｄｌｅ ｔｈａｎｄｌｅ，

ｃｙｇ ｕｉｎｔ３２ｋｅｙ，

ｃｏｎｓｔｖｏｉｄｂｕｆ，

ｃｙｇ ｕｉｎｔ３２ｌｅｎ
）

该函数用于处理和改变设备的运行时配置。配置信息的类型由参数ｋｅｙ指定，所需的配
置数据从参数ｂｕｆ指定的位置获取。参数ｌｅｎ包含了所提供的配置数据的大小，其值应该
与所选择的ｋｅｙ所对应的配置信息类型相匹配。

８２ 驱动程序与内核及ＨＡＬ的接口

这一节介绍设备驱动程序与内核和硬件抽象层ＨＡＬ之间的ＡＰＩ接口。这些ＡＰＩ接口函
数主要对中断以及中断处理程序的ＩＳＲ、ＤＳＲ和线程的同步进行控制和管理。在没有内核

ｋｅｒｎｅｌ的配置中这些ＡＰＩ也必须存在，此时由ＨＡＬ直接提供这些ＡＰＩ函数。

８２１ ｅＣｏｓ中断模块

ｅＣｏｓ设备驱动程序的中断模块分为三个层次，分别是中断服务程序ＩＳＲ、中断滞后服务程
序ＤＳＲ和中断线程。中断服务程序ＩＳＲ在响应中断时立即调用，中断滞后服务程序ＤＳＲ由

ＩＳＲ发出调用请求后调用，而中断线程为驱动程序的客户程序。图８１说明了中断模块的组
成以及它们的执行过程。

图８１ 中断模块的组成与处理过程

硬件中断在最短的时间内交付给ＩＳＲ处理。硬件抽象层ＨＡＬ对硬件中断源进行译码并
调用对应的中断服务程序ＩＳＲ。ＩＳＲ可以对硬件进行操作，但它能够使用的驱动程序ＡＰＩ函
数具有一定的限制。当ＩＳＲ返回时，它可以请求与其相对应的中断滞后服务程序ＤＳＲ进入调

７４１

度运行。

中断滞后服务程序ＤＳＲ可以在不会防碍调度器正常工作的时候安全运行。在大多数情
况下，ＤＳＲ将在ＩＳＲ执行完成后立即运行。但如果当前线程正处于调度运行中，那么ＤＳＲ将
被推迟到当前线程完成后才开始运行。与ＩＳＲ相比，中断滞后服务程序ＤＳＲ能够使用更多的
驱动程序ＡＰＩ函数，特别是它可以调用ｃｙｇ ｄｒｖ ｃｏｎｄ ｓｉｇｎａｌ（）函数来唤醒正在等待的线程。
中断线程可以使用所有的驱动程序ＡＰＩ函数，它可以对互斥体和条件变量进行等待。
对于一个具有中断的设备驱动程序，它首先必须提供ＩＳＲ和ＤＳＲ，然后再调用ｃｙｇ ｄｒｖ

ｉｎｔｅｒｒｅｐｔ ｃｒｅａｔｅ（）函数产生一个中断对象（ｉｎｔｅｒｒｕｐｔｏｂｊｅｃｔ）。驱动程序将使用该函数返回的
句柄ｈａｎｄｌｅ调用ｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ（）函数，完成中断与硬件向量的连接。

８２２ 同步

ｅＣｏｓ对中断处理提供了三个层次的同步支持：

１中断服务程序ＩＳＲ的同步
在临界时期通常使用禁止中断的形式来防止ＩＳＲ的运行。在ＳＭＰ环境中，还需要使用

ｓｐｉｎｌｏｃｋ来实现运行在其他处理器的ＩＳＲ、ＤＳＲ和中断线程的同步。ｃｙｇ ｄｒｖ ｉｓｒ ｌｏｃｋ（）函
数和ｃｙｇ ｄｒｖ ｉｓｒ ｕｎｌｏｃｋ函数用于实现这种同步操作。这种同步机制的使用应尽量少，并
且只能在短时间内使用。如果要实现更好的同步，还必须使用专用ｓｐｉｎｌｏｃｋ。

２中断滞后服务程序ＤＳＲ的同步
这种同步的实现机制是在内核中锁定（ｌｏｃｋ）调度器，以防止ＤＳＲ在临界时期的运行。在

无内核的配置中，这种同步必须使用非内核的形式加以实现。函数ｃｙｇ ｄｒｖ ｄｓｒ ｌｏｃｋ（）和

ｃｙｇ ｄｒｖ ｄｓｒ ｕｎｌｏｃｋ（）用于实现ＤＳＲ的同步。与ＩＳＲ的同步一样，也应该尽量少地使用这
种同步机制。只有ＤＳＲ和中断线程可以使用这种同步机制，而ＩＳＲ不允许使用。

３中断线程的同步
中断线程的同步是通过使用互斥体和条件变量来实现的。只有中断线程可以锁定互斥体

和等待条件变量，ＤＳＲ可以对条件变量发信号。
中断处理的三个不同层次（ＩＳＲ、ＤＳＲ和中断线程）对数据的访问应该受到保护，以避免对

这些数据的并发访问。中断服务程序ＩＳＲ所访问的数据必须使用ＩＳＲｌｏｃｋ或ｓｐｉｎｌｏｃｋ来加以
保护，中断滞后服务程序ＤＳＲ和中断线程共享的数据应该使用ＤＳＲｌｏｃｋ来加以保护。只有
中断线程才可以访问的数据必须使用互斥体来加以保护。

中断服务程序ＩＳＲ和中断滞后服务程序ＤＳＲ中的一些ＡＰＩ调用有可能会引起当前线程
进入重新调度的危险状态。为避免这种状态的发生，对这些ＡＰＩ函数都指定了相应的同步级
别。这些同步级别分别为：

① 中断线程（ｔｈｒｅａｄ）级。具有该同步级别的函数只能在中断线程内被调用。通常是中断
客户端程序对设备驱动程序的调用。在无内核的配置中，进行这种调用的程序应该在默认的

非中断级别运行。

②ＤＳＲ级。具有ＤＳＲ同步级别的函数可以被中断滞后服务程序ＤＳＲ和中断线程调用。

③ＩＳＲ级。具有ＩＳＲ同步级别的函数可以被ＩＳＲ、ＤＳＲ和中断线程调用。
表８１列举了每一个ＡＰＩ函数的可调用级别。

８４１

表８１ 驱动程序与内核接口ＡＰＩ函数调用级别

函 数
可调用级别

ＩＳＲ ＤＳＲ Ｔｈｒｅａｄ

ｃｙｇ ｄｒｖ ｉｓｒｌｏｃｋ Ｘ Ｘ Ｘ

ｃｙｇ ｄｒｖ ｉｓｒ ｕｎｌｏｃｋ Ｘ Ｘ Ｘ

ｃｙｇ ｄｒｖ ｓｐｉｎｌｏｃｋ ｉｎｉｔ Ｘ

ｃｙｇ ｄｒｖ ｓｐｉｎｌｏｃｋ ｄｅｓｔｒｏｙ Ｘ

ｃｙｇ ｄｒｖ ｓｐｉｎｌｏｃｋ ｓｐｉｎ Ｘ Ｘ Ｘ

ｃｙｇ ｄｒｖ ｓｐｉｎｌｏｃｋ ｃｌｅａｒ Ｘ Ｘ Ｘ

ｃｙｇ ｄｒｖ ｓｐｉｎｌｏｃｋ ｔｒｙ Ｘ Ｘ Ｘ

ｃｙｇ ｄｒｖ ｓｐｉｎｌｏｃｋ ｔｅｓｔ Ｘ Ｘ Ｘ

ｃｙｇ ｄｒｖ ｓｐｉｎｌｏｃｋ ｓｐｉｎ ｉｎｔｓａｖｅ Ｘ Ｘ Ｘ

ｃｙｇ ｄｒｖ ｓｐｉｎｌｏｃｋ ｃｌｅａｒｉｎｔｓａｖｅ Ｘ Ｘ Ｘ

ｃｙｇ ｄｒｖ ｄｓｒｌｏｃｋ Ｘ Ｘ

ｃｙｇ ｄｒｖ ｄｓｒ ｕｎｌｏｃｋ Ｘ Ｘ

ｃｙｇ ｄｒｖ ｍｕｔｅｘ ｉｎｉｔ Ｘ

ｃｙｇ ｄｒｖ ｍｕｔｅｘ ｄｅｓｔｒｏｙ Ｘ

ｃｙｇ ｄｒｖ ｍｕｔｅｘ ｌｏｃｋ Ｘ

ｃｙｇ ｄｒｖ ｍｕｔｅｘ ｔｒｙｌｏｃｋ Ｘ

ｃｙｇ ｄｒｖ ｍｕｔｅｘ ｕｎｌｏｃｋ Ｘ

ｃｙｇ ｄｒｖ ｍｕｔｅｘ ｒｅｌｅａｓｅ Ｘ

ｃｙｇ ｄｒｖ ｃｏｎｄ ｉｎｉｔ Ｘ

ｃｙｇ ｄｒｖ ｃｏｎｄ ｄｅｓｔｒｏｙ Ｘ

ｃｙｇ ｄｒｖ ｃｏｎｄ ｗａｉｔ Ｘ

ｃｙｇ ｄｒｖ ｃｏｎｄ ｓｉｇｎａｌ Ｘ Ｘ

ｃｙｇ ｄｒｖ ｃｏｎｄ ｂｒｏａｄｃａｓｔ Ｘ Ｘ

ｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ ｃｒｅａｔｅ Ｘ

ｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ ｄｅｌｅｔｅ Ｘ

ｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ ａｔｔａｃｈ Ｘ Ｘ Ｘ

ｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ ｄｅｔａｃｈ Ｘ Ｘ Ｘ

ｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ ｍａｓｋ Ｘ Ｘ Ｘ

ｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ ｕｎｍａｓｋ Ｘ Ｘ Ｘ

ｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ ａｃｋｎｏｗｌｅｄｇｅ Ｘ Ｘ Ｘ

ｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ ｃｏｎｆｉｇｕｒｅ Ｘ Ｘ Ｘ

ｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔｌｅｖｅｌ Ｘ Ｘ Ｘ

ｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ ｓｅｔ ｃｐｕ Ｘ Ｘ Ｘ

ｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ ｇｅｔ ｃｐｕ Ｘ Ｘ Ｘ

９４１

８２３ ＳＭＰ支持

某些目标系统可能包含多个ＣＰＵ，ｅＣｏｓ必须为其提供ＳＭＰ支持。设备驱动程序有许多
方法可以用来支持ＳＭＰ目标系统。由于中断处理的三个模块ＩＳＲ、ＤＳＲ和中断线程有可能运
行在不同的ＣＰＵ上，因此，对于支持ＳＭＰ系统的驱动程序必须正确使用驱动程序ＡＰＩ函数。
为满足中断线程和中断滞后服务程序ＤＳＲ之间的同步要求，中断线程应该使用ｃｙｇ ｄｒｖ

ｄｓｒ ｌｏｃｋ（）函数和ｃｙｇ ｄｒｖ ｄｓｒ ｕｎｌｏｃｋ（）函数对共享数据的访问进行保护。而对于中断
服务程序ＩＳＲ和中断滞后服务程序ＤＳＲ或中断线程之间的同步要求，应该使用ｃｙｇ ｄｒｖ ｉｓｒ
ｌｏｃｋ（）函数和ｃｙｇ ｄｒｖ ｉｓｒ ｕｎｌｏｃｋ（）函数对所有关键数据的访问进行保护。由于中断线程
和中断滞后服务程序ＤＳＲ有可能运行在不同的ＣＰＵ上，而中断的使能和禁止只对当前ＣＰＵ
有效，因此仅仅只对中断进行禁止或屏蔽是不够的。

对于ＳＭＰ系统来说，ＩＳＲｌｏｃｋ不仅能禁止当前ＣＰＵ的中断，而且还得到一个ｓｐｉｎｌｏｃｋ对
数据进行保护，使这些数据不会受到其他ＣＰＵ的并发访问。由于ＩＳＲ的运行不会请求调度
器锁，因此这种保护是必要的，这样ＩＳＲ可以与设备驱动程序的其他组件并行运行。
驱动程序ＡＰＩ提供的ＩＳＲｌｏｃｋ是一种共享的ｓｐｉｎｌｏｃｋ，所有的驱动程序都可以使用这个

共享ｓｐｉｎｌｏｃｋ。驱动程序如果需要更精细的锁定，它可以使用私有ｓｐｉｎｌｏｃｋ，利用ｃｙｇ ｄｒｖ
ｓｐｉｎｌｏｃｋ （）之类的函数对这些ｓｐｉｎｌｏｃｋ进行访问。

８２４ 驱动程序模式

有许多构建ｅＣｏｓ设备驱动程序的方法，具体使用哪种驱动程序模式要根据设备的具体属
性以及所要求实现的功能来决定。具体来说，有三种可以采用的驱动程序模式。

第一种模式是在中断服务程序ＩＳＲ内完成所有的设备处理工作。当调用ＩＳＲ时，ＩＳＲ直
接对设备硬件进行操作，在内存里直接对被传送的数据进行访问。ＩＳＲ应该调用ｃｙｇ ｄｒｖ
ｉｎｔｅｒｒｕｐｔ ａｃｋｎｏｗｌｅｄｇｅ（）函数进行相应的处理。ＩＳＲ执行完成后，它可能会请求调用中断滞
后服务程序ＤＳＲ。ＤＳＲ除了调用ｃｙｇ ｄｒｖ ｃｏｎｄ ｓｉｇｎａｌ（）函数唤醒一个中断线程外，不会进
行其他操作。中断线程在对共享内存进行操作时必须调用ｃｙｇ ｄｒｖ ｉｓｒ ｌｏｃｋ（）函数或ｃｙｇ
ｄｒｖ ｉｎｔｅｒｒｕｐｔ ｍａｓｋ（）函数对ＩＳＲ的运行进行保护。
第二种模式是将设备处理工作推迟到中断滞后服务程序ＤＳＲ内进行。中断服务程序

ＩＳＲ只是简单地通过对设备进行编程或调用ｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ ｍａｓｋ（）函数来防止新中断
的产生。ＩＳＲ然后通过调用ｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ ａｃｋｎｏｗｌｅｄｇｅ（）函数允许响应其他中断，它最
后将调用ＤＳＲ进行进一步的处理。在ＤＳＲ运行的时候，它完成了大部分的设备处理工作，并
有可能对某个条件变量产生一个信号来唤醒中断线程。ＤＳＲ在结束的时候将调用ｃｙｇ ｄｒｖ
ｉｎｔｅｒｒｕｐｔ ｕｎｍａｓｋ（）函数，使能新的中断。中断线程在对共享内存进行操作时，使用ｃｙｇ ｄｒｖ
ｄｓｒ ｌｏｃｋ（）函数保护ＤＳＲ的运行。ｅＣｏｓ的串口驱动程序采用的就是这种方法。
第三种模式是将设备处理工作推迟到中断线程进行。中断服务程序ＩＳＲ在这种模式中

的行为与第二种模式相同，在它请求ＤＳＲ运行前简单地阻塞中断和应答中断。中断滞后服务
程序ＤＳＲ只调用ｃｙｇ ｄｒｖ ｃｏｎｄ ｓｉｇｎａｌ（）函数唤醒中断线程。被唤醒的中断线程完成全部
的设备处理工作，它具有对所有内核功能进行完全访问的能力。中断线程在结束时将调用

ｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ ｕｎｍａｓｋ（）函数，重新使能设备中断。ｅＣｏｓ的网络驱动程序使用的就是这

０５１

种模式。

对于需要立即进行处理并且与中断线程交互相对较少的设备，最好采用第一种模式。第

二种模式对设备的处理有一定的延迟，它受同步机制的干预较少。最后一种模式允许设备的

处理工作可以与其他线程一起进行调度，设备处理具有更多的灵活性。

８２５ 驱动程序与内核及ＨＡＬ的接口ＡＰＩ函数

这一节主要介绍设备驱动程序与内核的接口ＡＰＩ函数。在无内核的配置中，硬件抽象层
应该直接支持这些函数。这些ＡＰＩ函数的定义在头文件ｃｙｇ／ｈａｌ／ｄｒｖ ａｐｉ．ｈ中可以找到。

ｃｙｇ ｄｒｖ ｉｓｒ ｌｏｃｋ
函数原型：

ｖｏｉｄｃｙｇ ｄｒｖ ｉｓｒｌｏｃｋ（ｖｏｉｄ）

参数：

无。

返回结果：

无。

描述：

该函数禁止响应中断，防止所有的中断服务程序ＩＳＲ的运行。该函数对一个计数器进行
维护，记录其被调用的次数。

ｃｙｇ ｄｒｖ ｉｓｒ ｕｎｌｏｃｋ
函数原型：

ｖｏｉｄｃｙｇ ｄｒｖ ｉｓｒ ｕｎｌｏｃｋ（ｖｏｉｄ）

参数：

无。

返回结果：

无。

描述：

该函数重新使能响应中断，允许中断服务程序ＩＳＲ运行。该函数对ｃｙｇ ｄｒｖ ｉｓｒｌｏｃｋ（）
所维护的计数器进行减一操作，只有在计数器为０时才允许中断的发生。

ｃｙｇ ｄｒｖ ｓｐｉｎｌｏｃｋ ｉｎｉｔ
函数原型：

ｖｏｉｄｃｙｇ ｄｒｖ ｓｐｉｎｌｏｃｋ ｉｎｉｔ（ｃｙｇ ｓｐｉｎｌｏｃｋ ｔｌｏｃｋ，

ｃｙｇ ｂｏｏｌｔｌｏｃｋｅｄ
）

参数：

ｌｏｃｋ— 被初始化的ｓｐｉｎｌｏｃｋ的指针。

ｌｏｃｋｅｄ—ｌｏｃｋ的初始状态。
返回结果：

１５１

无。

描述：

初始化一个ｓｐｉｎｌｏｃｋ。参数ｌｏｃｋｅｄ说明如何对ｓｐｉｎｌｏｃｋ进行初始化：ｌｏｃｋｅｄ为ＴＲＵＥ时初
始状态为ｌｏｃｋｅｄ，ｌｏｃｋｅｄ为ＦＡＬＳＥ时初始状态为ｕｎｌｏｃｋｅｄ。

ｃｙｇ ｄｒｖ ｓｐｉｎｌｏｃｋ ｄｅｓｔｒｏｙ
函数原型：

ｖｏｉｄｃｙｇ ｄｒｖ ｓｐｉｎｌｏｃｋ ｄｅｓｔｒｏｙ（ｃｙｇ ｓｐｉｎｌｏｃｋ ｔｌｏｃｋ）

参数：

ｌｏｃｋ— 指向被删除的ｓｐｉｎｌｏｃｋ指针。
返回结果：

无。

描述：

删除一个不再使用的ｓｐｉｎｌｏｃｋ。调用该函数时，不应该有任何ＣＰＵ对该锁进行声称，否则
将会出现无法预料的结果。

ｃｙｇ ｄｒｖ ｓｐｉｎｌｏｃｋ ｓｐｉｎ
函数原型：

ｖｏｉｄｃｙｇ ｄｒｖ ｓｐｉｎｌｏｃｋ ｓｐｉｎ（ｃｙｇ ｓｐｉｎｌｏｃｋ ｔｌｏｃｋ）

参数：

ｌｏｃｋ— 指向所要声称的ｓｐｉｎｌｏｃｋ的指针。
返回结果：

无。

描述：

对一个ｓｐｉｎｌｏｃｋ进行声称，它将循环等待直至获取该ｓｐｉｎｌｏｃｋ。不管从何处调用该函数，
这种操作都将使ＣＰＵ等待直至操作成功。这种操作的使用应该尽量少，并且只能用在不会发
生死锁／活锁的情形下。参阅ｃｙｇ ｄｒｖ ｓｐｉｎｌｏｃｋ ｓｐｉｎ ｉｎｔｓａｖｅ（）函数。

ｃｙｇ ｄｒｖ ｓｐｉｎｌｏｃｋ ｃｌｅａｒ
函数原型：

ｖｏｉｄｃｙｇ ｄｒｖ ｓｐｉｎｌｏｃｋ ｃｌｅａｒ（ｃｙｇ ｓｐｉｎｌｏｃｋ ｔｌｏｃｋ）

参数：

ｌｏｃｋ— 指向被清的ｓｐｉｎｌｏｃｋ的指针。
返回结果：

无。

描述：

清ｓｐｉｎｌｏｃｋ。该函数对指定的ｓｐｉｎｌｏｃｋ进行清操作，允许其他ＣＰＵ对其进行声称。如果
有多个ＣＰＵ在ｃｙｇ ｄｒｖ ｓｐｉｎｌｏｃｋ ｓｐｉｎ（）中等待，则只能允许其中的一个ＣＰＵ获取该ｓｐｉｎ
ｌｏｃｋ。

２５１

ｃｙｇ ｄｒｖ ｓｐｉｎｌｏｃｋ ｔｒｙ
函数原型：

ｃｙｇ ｂｏｏｌｔｃｙｇ ｄｒｖ ｓｐｉｎｌｏｃｋ ｔｒｙ（ｃｙｇ ｓｐｉｎｌｏｃｋ ｔｌｏｃｋ）

参数：

ｌｏｃｋ— 指向被声称的ｓｐｉｎｌｏｃｋ的指针。
返回结果：

如果可以声称ｓｐｉｎｌｏｃｋ，则返回ＴＲＵＥ，否则返回ＦＡＬＳＥ。
描述：

该函数尝试对一个ｓｐｉｎｌｏｃｋ进行声称，它没有等待过程。如果可以立即声称ｓｐｉｎｌｏｃｋ，则
返回ＴＲＵＥ。如果ｓｐｉｎｌｏｃｋ已经被声称，则返回ＦＡＬＳＥ。

ｃｙｇ ｄｒｖ ｓｐｉｎｌｏｃｋ ｔｅｓｔ
函数原型：

ｃｙｇ ｂｏｏｌｔｃｙｇ ｄｒｖ ｓｐｉｎｌｏｃｋ ｔｅｓｔ（ｃｙｇ ｓｐｉｎｌｏｃｋ ｔｌｏｃｋ）

参数：

ｌｏｃｋ— 指向被测试的ｓｐｉｎｌｏｃｋ的指针。
返回结果：

如果ｓｐｉｎｌｏｃｋ可用，则返回ＴＲＵＥ，否则返回ＦＡＬＳＥ。
描述：

检查指定ｓｐｉｎｌｏｃｋ的状态。如果ｓｐｉｎｌｏｃｋ没有被锁定，则返回结果ＴＲＵＥ，如果该ｓｐｉｎｌｏｃｋ
已被锁定则返回ＦＡＬＳＥ。

ｃｙｇ ｄｒｖ ｓｐｉｎｌｏｃｋ ｓｐｉｎ ｉｎｔｓａｖｅ
函数原型：

ｖｏｉｄｃｙｇ ｄｒｖ ｓｐｉｎｌｏｃｋ ｓｐｉｎ ｉｎｔｓａｖｅ（ｃｙｇ ｓｐｉｎｌｏｃｋ ｔｌｏｃｋ，

ｃｙｇ ａｄｄｒｗｏｒｄ ｔｉｓｔａｔｅ
）

参数：

ｌｏｃｋ— 指向所要声称的ｓｐｉｎｌｏｃｋ的指针。

ｉｓｔａｔｅ— 指向中断状态保存位置的指针。
返回结果：

无。

描述：

该函数非常类似于ｃｙｇ ｄｒｖ ｓｐｉｎｌｏｃｋ ｓｐｉｎ（）函数，不同之处是该函数在试图声称该锁
之前还将禁止中断。当前中断的使能状态被保存在参数ｉｓｔａｔｅ所指定的位置。一旦ｓｐｉｎｌｏｃｋ
被声称，中断将保持禁止状态，必须通过调用ｃｙｇ ｄｒｖ ｓｐｉｎｌｏｃｋ ｃｌｅａｒ ｉｎｔｓａｖｅ（）函数来恢
复。一般来说，设备驱动程序应该使用该函数对ｓｐｉｎｌｏｃｋ进行声称和释放操作，以确保运行在
本ＣＰＵ和其他ＣＰＵ上的程序的隔离。

３５１

ｃｙｇ ｄｒｖ ｓｐｉｎｌｏｃｋ ｃｌｅａｒ ｉｎｔｓａｖｅ
函数原型：

ｖｏｉｄｃｙｇ ｄｒｖ ｓｐｉｎｌｏｃｋ ｃｌｅａｒｉｎｔｓａｖｅ（

ｃｙｇ ｓｐｉｎｌｏｃｋ ｔｌｏｃｋ，

ｃｙｇ ａｄｄｒｗｏｒｄ ｔｉｓｔａｔｅ
）

参数：

ｌｏｃｋ— 指向被清ｓｐｉｎｌｏｃｋ的指针。

ｉｓｔａｔｅ— 所要恢复的中断状态。
返回结果：

无。

描述：

该函数与ｃｙｇ ｄｒｖ ｓｐｉｎｌｏｃｋ ｃｌｅａｒ（）函数十分相似，不同之处是该函数还将恢复被函数

ｃｙｇ ｄｒｖ ｓｐｉｎｌｏｃｋ ｓｐｉｎ ｉｎｔｓａｖｅ（）保存的中断状态。参数ｉｓｔａｔｅ必须已经被先前调用的ｃｙｇ
ｄｒｖ ｓｐｉｎｌｏｃｋ ｓｐｉｎ ｉｎｔｓａｖｅ（）函数所初始化。

ｃｙｇ ｄｒｖ ｄｓｒ ｌｏｃｋ
函数原型：

ｖｏｉｄｃｙｇ ｄｒｖ ｄｓｒｌｏｃｋ（ｖｏｉｄ）

参数：

无。

返回结果：

无。

描述：

禁止对中断滞后服务程序ＤＳＲ的调度。该函数对一个计数器进行维护，该计数器记录该
函数被调用的次数。

ｃｙｇ ｄｒｖ ｄｓｒ ｕｎｌｏｃｋ
函数原型：

ｖｏｉｄｃｙｇ ｄｒｖ ｄｓｒ ｕｎｌｏｃｋ（ｖｏｉｄ）

参数：

无。

返回结果：

无。

描述：

重新使能对中断滞后服务程序ＤＳＲ的调度。该函数对ｃｙｇ ｄｒｖ ｄｓｒｌｏｃｋ（）所维护的计
数器进行减一操作，只有当计数器为０时才允许ＤＳＲ运行。

ｃｙｇ ｄｒｖ ｍｕｔｅｘ ｉｎｉｔ
函数原型：

４５１

ｖｏｉｄｃｙｇ ｄｒｖ ｍｕｔｅｘ ｉｎｉｔ（ｃｙｇ ｄｒｖ ｍｕｔｅｘｍｕｔｅｘ）

参数：

ｍｕｔｅｘ— 指向被初始化的互斥体。
返回结果：

无。

描述：

该函数用于对参数ｍｕｔｅｘ指定的互斥体进行初始化。

ｃｙｇ ｄｒｖ ｍｕｔｅｘ ｄｅｓｔｒｏｙ
函数原型：

ｖｏｉｄｃｙｇ ｄｒｖ ｍｕｔｅｘ ｄｅｓｔｒｏｙ（ｃｙｇ ｄｒｖ ｍｕｔｅｘｍｕｔｅｘ）

参数：

ｍｕｔｅｘ— 指向要取消的互斥体。
结果：

无。

描述：

取消参数ｍｕｔｅｘ指定的互斥体。调用该函数时，该互斥体应该处于非锁定状态，并且没有
线程等待对该互斥体的锁定。

ｃｙｇ ｄｒｖ ｍｕｔｅｘ ｌｏｃｋ
函数原型：

ｃｙｇ ｂｏｏｌｃｙｇ ｄｒｖ ｍｕｔｅｘ ｌｏｃｋ（ｃｙｇ ｄｒｖ ｍｕｔｅｘｍｕｔｅｘ）

参数：

ｍｕｔｅｘ— 指向被锁定的互斥体。
返回结果：

如果成功锁定该互斥体，则返回ＴＲＵＥ，否则返回ＦＡＬＳＥ。
描述：

对参数ｍｕｔｅｘ指定的互斥体进行锁定操作。如果该互斥体已经被另一个线程锁定，则调
用该函数的线程将处于等待状态，直至锁定该互斥体的线程释放。如果该函数返回结果为

ＦＡＬＳＥ，则该线程的等待状态被其他线程所打破，互斥体在这种情况下将不会被锁定。

ｃｙｇ ｄｒｖ ｍｕｔｅｘ ｔｒｙｌｏｃｋ
函数原型：

ｃｙｇ ｂｏｏｌｃｙｇ ｄｒｖ ｍｕｔｅｘ ｔｒｙｌｏｃｋ（ｃｙｇ ｄｒｖ ｍｕｔｅｘｍｕｔｅｘ）

参数：

ｍｕｔｅｘ— 指向被锁定的互斥体。
返回结果：

如果互斥体被成功锁定，则返回ＴＲＵＥ，否则返回ＦＡＬＳＥ。
描述：

对参数ｍｕｔｅｘ指定的互斥体进行锁定操作，该函数没有等待过程。如果互斥体已经被其

５５１

他线程锁定则该函数返回ＦＡＬＳＥ。如果可以锁定互斥体而且不需要等待，则返回ＴＲＵＥ。

ｃｙｇ ｄｒｖ ｍｕｔｅｘ ｕｎｌｏｃｋ
函数原型：

ｖｏｉｄｃｙｇ ｄｒｖ ｍｕｔｅｘ ｕｎｌｏｃｋ（ｃｙｇ ｄｒｖ ｍｕｔｅｘｍｕｔｅｘ）

参数：

ｍｕｔｅｘ— 指向被解锁的互斥体的指针。
返回结果：

无。

描述：

对ｍｕｔｅｘ指定的互斥体进行解锁操作。如果有线程正在等待对该互斥体的声称，其中的
一个线程将被唤醒并获取对该互斥体的声称。

ｃｙｇ ｄｒｖ ｍｕｔｅｘ ｒｅｌｅａｓｅ
函数原型：

ｖｏｉｄｃｙｇ ｄｒｖ ｍｕｔｅｘ ｒｅｌｅａｓｅ（ｃｙｇ ｄｒｖ ｍｕｔｅｘｍｕｔｅｘ）

参数：

ｍｕｔｅｘ— 指向被释放的互斥体的指针。
返回结果：

无。

描述：

释放正在等待参数ｍｕｔｅｘ所指定互斥体的所有线程。这些线程将从ｃｙｇ ｄｒｖ ｍｕｔｅｘ
ｌｏｃｋ（）函数返回，结果为ＦＡＬＳＥ，并且不会获取对该互斥体的声称。该函数不会对已经声称该
互斥体的线程有任何影响。

ｃｙｇ ｄｒｖ ｃｏｎｄ ｉｎｉｔ
函数原型：

ｖｏｉｄｃｙｇ ｄｒｖ ｃｏｎｄ ｉｎｉｔ（ｃｙｇ ｄｒｖ ｃｏｎｄｃｏｎｄ，

ｃｙｇ ｄｒｖ ｍｕｔｅｘｍｕｔｅｘ
）

参数：

ｃｏｎｄ— 被初始化的条件变量。

ｍｕｔｅｘ— 与该条件变量相对应的互斥体。
返回结果：

无。

描述：

对参数ｃｏｎｄ指定的条件变量进行初始化。参数ｍｕｔｅｘ必须指向该条件变量所对应的互
斥体。线程在已经锁定对应的互斥体时，可以等待该条件变量。这种等待将引起互斥体的解

锁，当该线程被重新唤醒时，它将自动声称该互斥体。

６５１

ｃｙｇ ｄｒｖ ｃｏｎｄ ｄｅｓｔｒｏｙ
函数原型：

ｖｏｉｄｃｙｇ ｄｒｖ ｃｏｎｄ ｄｅｓｔｒｏｙ（ｃｙｇ ｄｒｖ ｃｏｎｄｃｏｎｄ）

参数：

ｃｏｎｄ— 被取消的条件变量。
返回结果：

无。

描述：

取消参数ｃｏｎｄ指定的条件变量。

ｃｙｇ ｄｒｖ ｃｏｎｄ ｗａｉｔ
函数原型：

ｖｏｉｄｃｙｇ ｄｒｖ ｃｏｎｄ ｗａｉｔ（ｃｙｇ ｄｒｖ ｃｏｎｄｃｏｎｄ）

参数：

ｃｏｎｄ— 将要等待的条件变量。
返回结果：

无。

描述：

等待参数ｃｏｎｄ所指定条件变量的一个信号。进行这种操作的线程在等待该条件变量之
前必须已经锁定对应的互斥体（参阅ｃｙｇ ｄｒｖ ｃｏｎｄ ｉｎｉｔ（）函数），互斥体在线程等待条件变
量时将被解锁，该函数返回前将重新锁定互斥体。在线程等待条件变量的过程中有可能偶尔

被虚假唤醒，因此在使用该函数时最好将它放在一个对测试条件进行查询的循环体中。值得

注意的是，该函数隐含了一个调度器的解锁／重锁（ｕｎｌｏｃｋ／ｒｅｌｏｃｋ）过程，所以它可以用在ｃｙｇ
ｄｒｖ ｄｓｒ ｌｏｃｋ（）⋯ｃｙｇ ｄｒｖ ｄｓｒ ｕｎｌｏｃｋ（）结构中。

ｃｙｇ ｄｒｖ ｃｏｎｄ ｓｉｇｎａｌ
函数原型：

ｖｏｉｄｃｙｇ ｄｒｖ ｃｏｎｄ ｓｉｇｎａｌ（ｃｙｇ ｄｒｖ ｃｏｎｄｃｏｎｄ）

参数：

ｃｏｎｄ— 接收信号的条件变量。
返回结果：

无。

描述：

发信号给参数ｃｏｎｄ指定的条件变量。如果有其他正在等待该条件变量的线程，则至少有
一个线程将被唤醒。值得注意的是，在某些配置中该函数与ｃｙｇ ｄｒｖ ｃｏｎｄ ｂｒｏａｄｃａｓｔ（）函数
没有任何区别。

ｃｙｇ ｄｒｖ ｃｏｎｄ ｂｒｏａｄｃａｓｔ
函数原型：

ｖｏｉｄｃｙｇ ｄｒｖ ｃｏｎｄ ｂｒｏａｄｃａｓｔ（ｃｙｇ ｄｒｖ ｃｏｎｄｃｏｎｄ）

７５１

参数：

ｃｏｎｄ— 被广播的条件变量。
返回结果：

无。

描述：

给参数ｃｏｎｄ指定的条件变量发信号。如果有线程正在等待该条件变量，则这些线程将被
唤醒。

ｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ ｃｒｅａｔｅ
函数原型：

ｖｏｉｄｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ ｃｒｅａｔｅ（ｃｙｇ ｖｅｃｔｏｒ ｔｖｅｃｔｏｒ，

ｃｙｇ ｐｒｉｏｒｉｔｙ ｔｐｒｉｏｒｉｔｙ，

ｃｙｇ ａｄｄｒｗｏｒｄ ｔｄａｔａ，

ｃｙｇ ＩＳＲ ｔｉｓｒ，

ｃｙｇ ＤＳＲ ｔｄｓｒ，

ｃｙｇ ｈａｎｄｌｅ ｔｈａｎｄｌｅ，

ｃｙｇ ｉｎｔｅｒｒｕｐｔｉｎｔｒ
）

参数：

ｖｅｃｔｏｒ— 中断向量。

ｐｒｉｏｒｉｔｙ— 队列优先级。

ｄａｔａ— 数据指针。

ｉｓｒ— 中断服务程序ＩＳＲ。

ｄｓｒ— 中断滞后服务程序ＤＳＲ。

ｈａｎｄｌｅ— 返回句柄。

ｉｎｔｒ— 中断对象存放位置。
返回结果：

无。

描述：

产生一个中断对象（ｉｎｔｅｒｒｕｐｔｏｂｊｅｃｔ）并返回其句柄ｈａｎｄｌｅ。中断对象包含的信息有：分配
给中断对象的中断向量、将要调用的中断服务程序ＩＳＲ和中断滞后服务程序ＤＳＲ。中断对象
位于参数ｉｎｔｒ所指定的内存位置。中断对象的分配必须调用ｃｙｇ ｉｎｔｅｒｒｕｐｔ ａｔｔａｃｈ（）函数来
完成。

ｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ ｄｅｌｅｔｅ
函数原型：

ｖｏｉｄｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ ｄｅｌｅｔｅ（ｃｙｇ ｈａｎｄｌｅ ｔｉｎｔｅｒｒｕｐｔ）

参数：

ｉｎｔｅｒｒｕｐｔ— 将要删除的中断。
返回结果：

８５１

无。

描述：

将中断与中断向量分离，释放由ｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ ｃｒｅａｔｅ（）函数的参数ｉｎｔｒ所分配的
内存。

ｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ ａｔｔａｃｈ
函数原型：

ｖｏｉｄｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ ａｔｔａｃｈ（ｃｙｇ ｈａｎｄｌｅ ｔｉｎｔｅｒｒｕｐｔ）

参数：

ｉｎｔｅｒｒｕｐｔ— 将要连接的中断。
返回结果：

无。

描述：

将中断连接到中断向量，使得当中断发生时可以将中断交付给相应的中断服务程序ＩＳＲ
进行处理。

ｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ ｄｅｔａｃｈ
函数原型：

ｖｏｉｄｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ ｄｅｔａｃｈ（ｃｙｇ ｈａｎｄｌｅ ｔｉｎｔｅｒｒｕｐｔ）

参数：

ｉｎｔｅｒｒｕｐｔ— 将要分离的中断。
返回结果：

无。

描述：

将中断与中断向量分离，使得中断不会再交付给中断服务程序ＩＳＲ处理。

ｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ ｍａｓｋ
函数原型：

ｖｏｉｄｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ ｍａｓｋ（ｃｙｇ ｖｅｃｔｏｒ ｔｖｅｃｔｏｒ）

参数：

ｖｅｃｔｏｒ— 将要屏蔽的中断向量。
返回结果：

无。

描述：

对中断控制器进行编程，中断向量ｖｅｃｔｏｒ所对应的中断停止交付处理。在实现了中断优
先级的系统中，该函数还将禁止比该中断优先级低的所有中断。

ｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ ｍａｓｋ ｉｎｔｕｎｓａｆｅ
函数原型：

ｖｏｉｄｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ ｍａｓｋ ｉｎｔｕｎｓａｆｅ（ｃｙｇ ｖｅｃｔｏｒ ｔｖｅｃｔｏｒ）

９５１

参数：

ｖｅｃｔｏｒ— 将要屏蔽的中断向量。
返回结果：

无。

描述：

对中断控制器进行编程，中断向量ｖｅｃｔｏｒ所对应的中断停止交付处理。在实现了中断优
先级的系统中，该函数还将禁止比该中断优先级低的所有中断。该函数与ｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ
ｍａｓｋ（）的区别在于它不具有中断安全性。在已经知道中断被禁止的情况下，可以调用该函
数来避免额外的系统开销。

ｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ ｕｎｍａｓｋ
函数原型：

ｖｏｉｄｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ ｕｎｍａｓｋ（ｃｙｇ ｖｅｃｔｏｒ ｔｖｅｃｔｏｒ）

参数：

ｖｅｃｔｏｒ— 将被解除屏蔽的中断向量。
返回参数：

无。

描述：

对中断控制器进行编程，重新允许中断向量ｖｅｃｔｏｒ对应的中断交付处理。

ｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ ｕｎｍａｓｋ ｉｎｔｕｎｓａｆｅ
函数原型：

ｖｏｉｄｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ ｕｎｍａｓｋ ｉｎｔｕｎｓａｆｅ（ｃｙｇ ｖｅｃｔｏｒ ｔｖｅｃｔｏｒ）

参数：

ｖｅｃｔｏｒ— 将要解除屏蔽的中断向量。
返回结果：

无。

描述：

对中断控制器进行编程，重新允许中断向量ｖｅｃｔｏｒ对应的中断交付处理。与ｃｙｇ ｄｒｖ
ｉｎｔｅｒｒｕｐｔ ｕｎｍａｓｋ（）函数的不同之处是它不具有中断安全性。

ｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ ａｃｋｎｏｗｌｅｄｇｅ
函数原型：

ｖｏｉｄｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ ａｃｋｎｏｗｌｅｄｇｅ（ｃｙｇ ｖｅｃｔｏｒ ｔｖｅｃｔｏｒ）

参数：

ｖｅｃｔｏｒ— 中断向量。
返回结果：

无。

描述：

中断应答。对中断控制器和ＣＰＵ进行必需的操作，用以清除基于ｖｅｃｔｏｒ的当前中断请

０６１

求。中断服务程序ＩＳＲ可能还需要对设备硬件进行操作以防止中断立即重新触发。

ｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ ｃｏｎｆｉｇｕｒｅ
函数原型：

ｖｏｉｄｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ ｃｏｎｆｉｇｕｒｅ（ｃｙｇ ｖｅｃｔｏｒ ｔｖｅｃｔｏｒ，

ｃｙｇ ｂｏｏｌｔｌｅｖｅｌ，

ｃｙｇ ｂｏｏｌｔｕｐ
）

参数：

ｖｅｃｔｏｒ— 被配置的中断向量。

ｌｅｖｅｌ— 中断的触发方式：电平触发或边沿触发。

ｕｐ— 上升沿／下降沿，高电平／低电平。
返回结果：

无。

描述：

根据中断源的特性对中断控制器进行配置。参数ｌｅｖｅｌ指定中断的触发方式———电平触
发还是边沿触发。参数ｕｐ在电平触发方式中指定是高电平触发还是低电平触发，在边沿触发
方式中指定是上升沿触发还是下降沿触发。该函数只对控制这些参数的中断控制器进行操

作。

ｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ ｌｅｖｅｌ
函数原型：

ｖｏｉｄｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔｌｅｖｅｌ（ｃｙｇ ｖｅｃｔｏｒ ｔｖｅｃｔｏｒ，

ｃｙｇ ｐｒｉｏｒｉｔｙ ｔｌｅｖｅｌ
）

参数：

ｖｅｃｔｏｒ— 被配置的中断向量。

ｌｅｖｅｌ— 中断优先级。
返回结果：

无。

描述：

对中断控制器进行编程，给中断指定一个优先级。该函数只对能够控制这种优先级参数

的中断控制器进行操作。

ｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ ｓｅｔ ｃｐｕ
函数原型：

ｖｏｉｄｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ ｓｅｔ ｃｐｕ（ｃｙｇ ｖｅｃｔｏｒ ｔｖｅｃｔｏｒ，

ｃｙｇ ｃｐｕ ｔｃｐｕ
）

参数：

１６１

ｖｅｃｔｏｒ— 中断向量。

ｃｐｕ— 目标ＣＰＵ。
返回结果：

无。

描述：

对中断进行路由设置。将ｖｅｃｔｏｒ指定的所有中断路由到指定的ＣＰＵ，由该ＣＰＵ对这些
中断进行处理。只有在提供这种路由支持能力的硬件平台上才进行这种操作，在单ＣＰＵ系统
中该函数不做任何工作。

ｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ ｇｅｔ ｃｐｕ
函数原型：

ｃｙｇ ｃｐｕ ｔｃｙｇ ｄｒｖ ｉｎｔｅｒｒｕｐｔ ｇｅｔ ｃｐｕ（ｃｙｇ ｖｅｃｔｏｒ ｔｖｅｃｔｏｒ）

参数：

ｖｅｃｔｏｒ— 中断向量。
返回结果：

中断向量ｖｅｃｔｏｒ被路由到哪一个ＣＰＵ。
描述：

在多处理器系统中，该函数返回ＣＰＵ的标识号，该ＣＰＵ处理中断向量ｖｅｃｔｏｒ对应的所有
中断。在单ＣＰＵ系统中，该函数返回０。

ｃｙｇ ＩＳＲ ｔ
原型：

ｔｙｐｅｄｅｆｃｙｇ ｕｉｎｔ３２ｃｙｇ ＩＳＲ ｔ（ｃｙｇ ｖｅｃｔｏｒ ｔｖｅｃｔｏｒ，

ｃｙｇ ａｄｄｒｗｏｒｄ ｔｄａｔａ
）

参数：

ｖｅｃｔｏｒ— 中断向量。

ｄａｔａ— 由客户程序提供的数据值。
返回结果：

表明中断是否被处理以及是否应该调用中断滞后服务程序ＤＳＲ的位表征码。
描述：

中断服务程序ＩＳＲ。在产生一个中断对象时，具有该函数原型的中断服务程序ＩＳＲ的指
针被传递给ｃｙｇ ｉｎｔｅｒｒｕｐｔ ｃｒｅａｔｅ（）函数。当一个中断交付处理时将调用该函数，并使用传递
到ｃｙｇ ｉｎｔｅｒｒｕｐｔ ｃｒｅａｔｅ（）函数的中断向量ｖｅｃｔｏｒ和数据值ｄａｔａ。
中断服务程序ＩＳＲ的返回值是一个位表征码，包含一个或两个下面的值：

①ＣＹＧ ＩＳＲ ＨＡＮＤＬＥＤ。表示中断被该ＩＳＲ处理。这是一个决定是否阻止更多ＩＳＲ
运行的配置选项。

②ＣＹＧ ＩＳＲ ＣＡＬＬ ＤＳＲ。引起传递给ｃｙｇ ｉｎｔｅｒｒｕｐｔ ｃｒｅａｔｅ（）函数的中断滞后服务
程序ＤＳＲ调度运行。

２６１

ｃｙｇ ＤＳＲ ｔ
原型：

ｔｙｐｅｄｅｆｖｏｉｄｃｙｇ ＤＳＲ ｔ（ｃｙｇ ｖｅｃｔｏｒ ｔｖｅｃｔｏｒ，

ｃｙｇ ｕｃｏｕｎｔ３２ｃｏｕｎｔ，

ｃｙｇ ａｄｄｒｗｏｒｄ ｔｄａｔａ
）

参数：

ｖｅｃｔｏｒ— 中断向量。

ｃｏｕｎｔ—ＤＳＲ被调度的次数。

ｄａｔａ— 由客户程序提供的数据值。
返回结果：

无。

描述：

中断滞后服务程序ＤＳＲ。在产生一个中断对象时，具有该函数原型的中断滞后服务程序

ＤＳＲ的指针被传递给ｃｙｇ ｉｎｔｅｒｒｕｐｔ ｃｒｅａｔｅ（）函数。当ＩＳＲ请求调度该中断的ＤＳＲ时，该

ＤＳＲ函数将在稍后的某个时刻开始运行。其参数ｖｅｃｔｏｒ和ｄａｔａ必须与传递给ＩＳＲ的参数相
同。该函数还有一个参数ｃｏｕｎｔ用于记录ＩＳＲ请求ＤＳＲ被调度运行的次数，在ＤＳＲ的每一次
实际运行时该计数器将置０，因此计数器的值表明了自从ＤＳＲ上次运行以来共发生了多少次
中断。

８３ ｅＣｏｓ驱动程序设计

设备驱动程序主要用于对设备进行数据的读写操作以及对设备进行配置和读取配置信息

的操作，它还可以使用和管理来自设备的中断。所有设备的驱动程序接口都具有普遍性，这种

接口形式独立于具体的设备驱动程序。使用驱动程序对设备进行访问时，应该使用这种通用

的接口形式。在设计一个具体的设备驱动程序时，必须考虑如何使设备的访问尽可能简单、有

效。

设备驱动程序所涉及的是信息的传送，如串行接口中的字节数据、网络设备中的数据包等

等。在大多数设备中，为了提高系统的效率，通常使用了中断。设备的数据传送过程通常需要

花费很长的一段时间，如果让ＣＰＵ在整个设备数据传送过程中处于等待状态，将会造成极大
的资源浪费。中断的使用可以实现在设备数据传送过程的同时让ＣＰＵ处理其他应用程序。
系统在处理正常应用程序时，中断的发生表示出现了一些需要处理的事件。以串口的数据传

送过程为例，串口在一个字符被发送之后将产生一个中断，此时串行接口已为下一次传送作好

了准备。通过中断的使用，一旦当前数据传送完成，驱动程序就可以立即启动下一次数据传

送，而不需要任何应用程序的参与。

８３１ 设备驱动程序的基本结构

图８２为ｅＣｏｓ设备驱动程序在系统中的位置及其组成结构示意图。应用程序在使用设

３６１

备的时候，它通过驱动程序的用户ＡＰＩ访问设备驱动程序，而设备驱动程序通过设备内核ＡＰＩ
与内核和硬件抽象层ＨＡＬ进行交互，设备驱动程序和内核再通过ＨＡＬ对硬件平台进行操
作，从而实现对设备的访问。

图８２ 设备驱动程序结构

设备驱动程序一般可分为三个部分，分别为设备表入口ＤＥＶＴＡＢ ＥＮＴＲＹ、设备Ｉ／Ｏ函
数表ＤＥＶＩＯ ＴＡＢ和设备Ｉ／Ｏ函数。设备驱动程序的主要组成模块全部定义在头文件ｃｙｇ／

ｉｏ／ｄｅｖｔａｂ．ｈ中。

ｅＣｏｓ中的所有设备驱动程序都使用设备表入口来进行描述。设备表入口是一个具有ｃｙｇ
ｄｅｖｔａｂ ｅｂｔｒｙ ｔ类型的数据结构，使用宏ＤＥＶＴＡＢ ＥＮＴＲＹ（）可以生成一个设备表入口，
其格式为：

ＤＥＶＴＡＢ ＥＮＴＲＹ（ｌ，ｎａｍｅ，ｄｅｐ ｎａｍｅ，ｈａｎｄｌｅｒｓ，ｉｎｉｔ，ｌｏｏｋｕｐ，ｐｒｉｖ）

其中：

ｌ— 该设备表入口的“Ｃ”标识符。

ｎａｍｅ— 该设备的“Ｃ”字符串名字。

ｄｅｐ ｎａｍｅ— 对于一个层次设备，此参数是该设备的下层设备的“Ｃ”字符串名字。

ｈａｎｄｌｅｓ—Ｉ／Ｏ函数句柄指针（见下面的设备Ｉ／Ｏ函数表ＤＥＶＩＯ ＴＡＢ的详细说明）。

ｉｎｉｔ— 当ｅＣｏｓ处于初始化阶段时被调用的函数，该函数可以进行查找设备、对硬件进行
设置等操作。

ｌｏｏｋｕｐ— 当调用ｃｙｇ ｉｏ ｌｏｏｋｕｐ（）函数对该设备进行操作时所调用的一个函数。

ｐｒｉｖ— 该设备驱动程序所需的专用数据存放位置。
上面所定义的设备表入口只适用于字符设备。对于块设备，要使用宏ＢＬＯＣＫ ＤＥＶＴＡＢ

ＥＮＴＲＹ进行定义。其格式为：

ＢＬＯＣＫ ＤＥＶＴＡＢ ＥＮＴＲＹ（ｌ，ｎａｍｅ，ｄｅｐ ｎａｍｅ，ｈａｎｄｌｅｒｓ，ｉｎｉｔ，ｌｏｏｋｕｐ，ｐｒｉｖ）

设备表入口中的句柄ｈａｎｄｌｅｓ提供了一组设备驱动程序接口函数。ｈａｎｄｌｅｒｓ是设备Ｉ／Ｏ
函数表ＤＥＶＩＯ ＴＡＢ的指针，ＤＥＶＩＯ ＴＡＢ包含了一组函数的指针，这些函数是各种接口函
数ｃｙｇ ｉｏ ＸＸＸ（）的具体实现。
设备Ｉ／Ｏ函数表通过ＤＥＶＩＯ ＴＡＢ宏来定义，其格式如下：

４６１

ＤＥＶＩＯ ＴＡＢＬＥ（ｌ，ｗｒｉｔｅ，ｒｅａｄ，ｇｅｔ ｃｏｎｆｉｇ，ｓｅｔ ｃｏｎｆｉｇ）

其中：

ｌ— 该表的“Ｃ”标识符。

ｗｒｉｔｅ—ｃｙｇ ｉｏ ｗｒｉｔｅ（）函数所调用的函数，实现向设备传送数据。

ｒｅａｄ—ｃｙｇ ｉｏ ｒｅａｄ（）函数所调用的函数，实现从设备读取数据。

ｇｅｔ ｃｏｎｆｉｇ—ｃｙｇ ｉｏ ｇｅｔ ｃｏｎｆｉｇ（）函数所调用的函数，实现对设备配置信息的读取操
作。

ｓｅｔ ｃｏｎｆｉｇ—ｃｙｇ ｉｏ ｓｅｔ ｃｏｎｆｉｇ（）函数所调用的函数，完成对设备的配置操作
在ｅＣｏｓ的初始化引导过程中，对系统中的所有设备都要调用其相应的ｉｎｉｔ（）函数。ｉｎｉｔ（）

函数有可能返回错误，出现这种情况时，设备将处于“离线”状态，所有针对离线设备的Ｉ／Ｏ请
求都将返回错误。

当使用某个设备的名字调用ｃｙｇ ｉｏ ｌｏｏｋｕｐ（）函数时，该设备的设备表入口中指定的

ｌｏｏｋｕｐ（）将被调用。ｌｏｏｋｕｐ（）函数将使设备处于“在线”状态，处于在线状态下的设备对所有针
对该设备的Ｉ／Ｏ请求进行处理。
后面的章节将通过举例来说明如何进行设备驱动程序的设计。

８３２ 串口驱动程序设计

ｅＣｏｓ提供的标准串口驱动程序由与硬件无关的部分以及与硬件相关的接口模块两部分
组成。如果要增加并支持一个新的串口，可以使用已有的与硬件无关的部分，只需增加对实际

设备进行具体操作处理的接口模块，与硬件无关的部分不需要修改。这种串口驱动程序与串

口设备模块之间的接口定义包含在头文件ｃｙｇ／ｉｏ／ｓｅｒｉａｌ．ｈ内。这一节主要描述如何设计一个
串口硬件接口驱动程序。

１ＤｅｖＴａｂ入口
与串口硬件相关的接口模块包含了一个设备表入口（ＤＥＶＴＡＢ ＥＮＴＲＹ），该表具有如下

格式：

ＤＥＶＴＡＢ ＥＮＴＲＹ（＜＜ｍｏｄｕｌｅ ｎａｍｅ＞＞，

＜＜ｄｅｖｉｃｅ ｎａｍｅ＞＞，

０，

＆ｓｅｒｉａｌ ｄｅｖｉｏ，

＜＜ｍｏｄｕｌｅｉｎｉｔ＞＞，

＜＜ｍｏｄｕｌｅｌｏｏｋｕｐ＞＞，

＆＜＜ｓｅｒｉａｌｃｈａｎｎｅｌ＞＞
）；

其参数说明如下：

ｍｏｄｕｌｅ ｎａｍｅ—设备表入口ＤＥＶＴＡＢ ＥＮＴＲＹ的Ｃ语言标识符。

ｄｅｖｉｃｅ ｎａｍｅ—设备名字的Ｃ语言字符串描述，如：／ｄｅｖ／ｓｅｒｉａｌ０。

ｓｅｒｉａｌ ｄｅｖｉｏ—Ｉ／Ｏ函数表，这是一组在串口驱动程序与硬件无关部分中定义的函数。

ｍｏｄｕｌｅ ｉｎｉｔ—模块初始化函数。

５６１

ｍｏｄｕｌｅ ｌｏｏｋｕｐ—设备查找函数，该函数通常对设备进行设置、使能中断、配置端口等
操作。

ｓｅｒｉａｌ ｃｈａｎｎｅｌ—串行通道表，包含了接口模块和串口驱动程序之间接口的表（见下一节
的说明）。

２Ｓｅｒｉａｌ Ｃｈａｎｎｅｌ结构
每一个串口设备必须有一个Ｓｅｒｉａｌ Ｃｈａｎｎｅｌ，这是一组用于描述对设备所进行的全部操

作的数据结构。如果设备具有数据缓冲能力，那么这种数据结构还包含了ｂｕｆｆｅｒ等信息。通
过使用下面的宏来产生Ｓｅｒｉａｌ Ｃｈａｎｎｅｌ结构：

ＳＥＲＩＡＬ ＣＨＡＮＮＥＬ ＵＳＩＮＧＩＮＴＥＲＲＵＰＴＳ（ｌ，ｆｕｎｓ，ｄｅｖ ｐｒｉｖ，ｂａｕｄ，ｓｔｏｐ，ｐａｒｉｔｙ，

ｗｏｒｄ ｌｅｎｇｔｈ，ｆｌａｇｓ，ｏｕｔ ｂｕｆ，ｏｕｔ ｂｕｆｌｅｎ，ｉｎ ｂｕｆ，

ｉｎ ｂｕｆｌｅｎ）

其参数说明如下：

ｌ—该数据结构的Ｃ语言标识符。

ｆｕｎｓ—接口函数组。

ｂａｕｄ—波特率初始值（ｃｙｇ ｓｅｒｉａｌ ｂａｕｄ ｔ）。

ｓｔｏｐ—停止位初始值（ｃｙｇ ｓｅｒｉａｌ ｓｔｏｐ ｂｉｔｓ ｔ）。

ｐａｒｉｔｙ—奇偶方式初始值（ｃｙｇ ｓｅｒｉａｌ ｐａｒｉｔｙ ｔ）。

ｗｏｒｄ ｌｅｎｇｔｈ—字长初始值（ｃｙｇ ｓｅｒｉａｌ ｗｏｒｄ ｌｅｎｇｔｈ ｔ）。

ｆｌａｇｓ—驱动程序初始标志值。

ｏｕｔ ｂｕｆ—输出ｂｕｆｆｅｒ指针，如果不需要ｂｕｆｆｅｒ，则为ＮＵＬＬ。

ｏｕｔ ｂｕｆｌｅｎ—输出ｂｕｆｆｅｒ长度。

ｉｎ ｂｕｆ—输入ｂｕｆｆｅｒ指针，如果不需要则为ＮＵＬＬ。

ｉｎ ｂｕｆｌｅｎ—输入ｂｕｆｆｅｒ长度。
如果输入ｂｕｆｆｅｒ或输出ｂｕｆｆｅｒ的长度为０，则不会形成输入或输出的ｂｕｆｆｅｒ操作，这种情

况下的函数只使用查询方式。

３串口函数结构

Ｓｅｒｉａｌ Ｃｈａｎｎｅｌ结构中的ｆｕｎｓ表包含了与硬件无关的驱动程序模块和硬件接口模块之间
的接口函数。ｆｕｎｓ表由下面的宏进行定义：

ＳＥＲＩＡＬ ＦＵＮＳ（ｌ，ｐｕｔｃ，ｇｅｔｃ，ｓｅｔ ｃｏｎｆｉｇ，ｓｔａｒｔ ｘｍｉｔ，ｓｔｏｐ ｘｍｉｔ）

其参数说明如下：

ｌ—该ｆｕｎｓ表的Ｃ语言标识符。

ｐｕｔｃ—函数：

ｂｏｏｌ（ｐｕｔｃ）（ｓｅｒｉａｌｃｈａｎｎｅｌｐｒｉｖ，ｕｎｓｉｇｎｅｄｃｈａｒｃ）

该函数发送一个字符到接口。如果字符已被传送，则返回ｔｒｕｅ；如果接口没有空间，则返
回ｆａｌｓｅ。

ｇｅｔｃ—函数：

ｕｎｓｉｇｎｅｄｃｈａｒ（ｇｅｔｃ）（ｓｅｒｉａｌｃｈａｎｎｅｌｐｒｉｖ）

６６１

该函数从接口读取一个字符，它只用于非中断驱动方式，通过查询设备是否处于准备

（ｒｅａｄｙ）状态来等待一个字符。

ｓｅｔ ｃｏｎｆｉｇ—函数：

ｂｏｏｌ（ｓｅｔ ｃｏｎｆｉｇ）（ｓｅｒｉａｌｃｈａｎｎｅｌｐｒｉｖ，ｃｙｇ ｓｅｒｉａｌｉｎｆｏ ｔｃｏｎｆｉｇ）

该函数用于对端口进行配置。如果对硬件配置成功，则返回ｔｒｕｅ；如果端口不支持给定的
配置参数，则返回ｆａｌｓｅ。例如，大多数串口设备不能同时支持停止位为１５和数据位为８的设
置，因此如果使用了这种配置，就会返回ｆａｌｓｅ。

ｓｔａｒｔ ｘｍｉｔ—函数：

ｖｏｉｄ（ｓｔａｒｔ ｘｍｉｔ）（ｓｅｒｉａｌｃｈａｎｎｅｌｐｒｉｖ）

在中断方式下，该函数使能发送端，允许发送中断的产生。

４回调函数
串口设备接口模块可以使用ｃｈａｎ＞ｃａｌｌｂａｃｋｓ的形式调用一些与硬件无关的驱动程序模

块内的函数。这些回调函数有：

ｖｏｉｄ（ｓｅｒｉａｌｉｎｉｔ）（ｓｅｒｉａｌｃｈａｎｎｅｌｃｈａｎ）

该函数用于串行通道的初始化操作。只有在以中断方式使用通道的情况下才需要这一函

数。

ｖｏｉｄ（ｘｍｔ ｃｈａｒ）（ｓｅｒｉａｌｃｈａｎｎｅｌｃｈａｎ）

对发送中断（表示有字符可以被发送）进行处理的中断处理程序将调用该函数。高层驱动

程序将调用ｐｕｔｃ函数向设备发送更多的数据。

ｖｏｉｄ（ｒｃｖ ｃｈａｒ）（ｓｅｒｉａｌｃｈａｎｎｅｌｃｈａｎ，ｕｎｓｉｇｎｅｄｃｈａｒｃ）

该函数用于告诉驱动程序已经有一个字符到达接口。通常由中断处理程序来调用该函

数。

此外，如果设备具有ＦＩＦＯ，那么与硬件无关的驱动程序模块应该提供块传输功能（驱动程
序ＣＤＬ描述脚本内包含了“ｉｍｐｌｅｍｅｎｔｓＣＹＧＩＮＴ ＩＯ ＳＥＲＩＡＬ ＢＬＯＣＫ ＴＲＡＮＳＦＥＲ”）。
在这种情况下，还必须提供下面的一些函数：

ｂｏｏｌ（ｄａｔａ ｘｍｔ ｒｅｑ）（ｓｅｒｉａｌｃｈａｎｎｅｌｃｈａｎ，

ｉｎｔｓｐａｃｅ，

ｉｎｔｃｈａｒｓ ａｖａｉｌ，

ｕｎｓｉｇｎｅｄｃｈａｒｃｈａｒｓ）

ｖｏｉｄ（ｄａｔａ ｘｍｔ ｄｏｎｅ）（ｓｅｒｉａｌｃｈａｎｎｅｌｃｈａｎ）

驱动程序在调用ｘｍｔ ｃｈａｒ（）函数时，一次传送操作只发送一个字符。如果驱动程序以循
环方式调用ｄａｔａ ｘｍｔ ｒｅｑ（）函数，则可以请求进行数据块的传送。调用该函数时使用参数

ｓｐａｃｅ来指明ＦＩＦＯ中的可用空间大小。
如果ｄａｔａ ｘｍｔ ｒｅｑ（）函数返回ｔｒｕｅ，驱动程序可以从ｃｂａｒｓ指定的位置读取ｃｂａｒｓ ａｖａｉｌ

个字符，并将这些字符拷贝到ＦＩＦＯ。如果返回ｆａｌｓｅ，则表示ｂｕｆｆｅｒ内没有字符，驱动程序将继

７６１

续工作，但不会对ＦＩＦＯ进行写操作。
当所有的数据传送完成后，驱动程序必须调用ｄａｔａ ｘｍｔ ｄｏｎｅ（）函数。

ｂｏｏｌ（ｄａｔａ ｒｃｖ ｒｅｑ）（ｓｅｒｉａｌｃｈａｎｎｅｌｃｈａｎ，

ｉｎｔａｖａｉｌ，

ｉｎｔｓｐａｃｅ ａｖａｉｌ，

ｕｎｓｉｇｎｅｄｃｈａｒｓｐａｃｅ）

ｖｏｉｄ（ｄａｔａ ｒｃｖ ｄｏｎｅ）（ｓｅｒｉａｌｃｈａｎｎｅｌｃｈａｎ）

驱动程序在调用ｒｃｖ ｃｈａｒ（）函数时，一次传送操作只读取一个字符。如果驱动程序以循
环方式调用ｄａｔａ ｒｃｖ ｒｅｑ（）函数，则可以请求进行数据块的传送，它请求一定的空间用于从

ＦＩＦＯ内读取数据。参数ａｖａｉｌ指明驱动程序希望从ＦＩＦＯ中读取的字符个数。
如果ｄａｔａ ｒｃｖ ｒｅｑ（）函数返回ｔｒｕｅ，则驱动程序将复制ｓｐａｃｅ ａｖａｉｌ个字符到ｓｐａｃｅ指定

的空间。如果返回ｆａｌｓｅ，则说明输入ｂｕｆｆｅｒ满，此时需要驱动程序来决定如何进行处理。
当所有数据从ＦＩＦＯ读取完成后，驱动程序必须调用ｄａｔａ ｒｃｖ ｄｏｎｅ（）函数，表示ＦＩＦＯ

数据读取操作完成。

８４ 串口驱动程序

ｅＣｏｓ提供两种标准的串口驱动程序，它们是串口（ｒａｗｓｅｒｉａｌ）驱动程序和类ＴＴＹ（ｔｔｙｌｉｋｅ）
驱动程序，分别用Ｓｅｒｉａｌ和ＴＴＹ来表示。本节介绍ｅＣｏｓ的这两种串口驱动程序的详细实现
过程。读者可以通过了解串口驱动程序的结构和具体内容来掌握ｅＣｏｓ驱动程序的设计方法。

８４１ 串口（ｒａｗｓｅｒｉａｌ）驱动程序

Ｓｅｒｉａｌ串口驱动程序实现串行设备数据块的接收或发送，它还可以对串口硬件进行配置。
该串口驱动程序使用头文件ｃｙｇ／ｉｏ／ｓｅｒｉａｌｉｏ．ｈ。
一个系统中可能有多个这种驱动程序的实例来对应每一个串行通道。每一个串行通道与

一个具体的物理设备相对应，并产生一个相应的设备模块。设备模块本身具有可配置性，这种

可配置性可以对具体的硬件特性进行配置。

１运行时（ｒｕｎｔｉｍｅ）配置

ｓｅｒｉａｌ串口驱动程序具有运行时的配置能力，可以通过调用ｃｙｇ ｉｏ ｓｅｔ ｃｏｎｆｉｇ（）函数和

ｃｙｇ ｉｏ ｇｅｔ ｃｏｎｆｉｇ（）函数将配置数据传递给驱动程序来实现这种运行时的配置。这种配置
数据的结构定义如下：

ｔｙｐｅｄｅｆｓｔｒｕｃｔ｛

ｃｙｇ ｓｅｒｉａｌ ｂａｕｄ ｒａｔｅ ｔｂａｕｄ；

ｃｙｇ ｓｅｒｉａｌｓｔｏｐ ｂｉｔｓ ｔｓｔｏｐ；

ｃｙｇ ｓｅｒｉａｌ ｐａｒｉｔｙ ｔｐａｒｉｔｙ；

ｃｙｇ ｓｅｒｉａｌ ｗｏｒｄ ｌｅｎｇｔｈ ｔｗｏｒｄ ｌｅｎｇｔｈ；

ｃｙｇ ｕｉｎｔ３２ｆｌａｇｓ；

｝ｃｙｇ ｓｅｒｉａｌｉｎｆｏ ｔ；

８６１

其中：

ｗｏｒｄ ｌｅｎｇｔｈ包含了字（字符）的长度，其值必须为下列四种值之一：

ＣＹＧＮＵＭ ＳＥＲＩＡＬ ＷＯＲＤ ＬＥＮＧＴＨ ５
ＣＹＧＮＵＭ ＳＥＲＩＡＬ ＷＯＲＤ ＬＥＮＧＴＨ ６
ＣＹＧＮＵＭ ＳＥＲＩＡＬ ＷＯＲＤ ＬＥＮＧＴＨ ７
ＣＹＧＮＵＭ ＳＥＲＩＡＬ ＷＯＲＤ ＬＥＮＧＴＨ ８

ｂａｕｄ为所选择的波特率，必须是下述值之一：

ＣＹＧＮＵＭ ＳＥＲＩＡＬ ＢＡＵＤ ５０
ＣＹＧＮＵＭ ＳＥＲＩＡＬ ＢＡＵＤ ７５
ＣＹＧＮＵＭ ＳＥＲＩＡＬ ＢＡＵＤ １１０
ＣＹＧＮＵＭ ＳＥＲＩＡＬ ＢＡＵＤ １３４ ５
ＣＹＧＮＵＭ ＳＥＲＩＡＬ ＢＡＵＤ １５０
ＣＹＧＮＵＭ ＳＥＲＩＡＬ ＢＡＵＤ ２００
ＣＹＧＮＵＭ ＳＥＲＩＡＬ ＢＡＵＤ ３００
ＣＹＧＮＵＭ ＳＥＲＩＡＬ ＢＡＵＤ ６００
ＣＹＧＮＵＭ ＳＥＲＩＡＬ ＢＡＵＤ １２００
ＣＹＧＮＵＭ ＳＥＲＩＡＬ ＢＡＵＤ １８００
ＣＹＧＮＵＭ ＳＥＲＩＡＬ ＢＡＵＤ ２４００
ＣＹＧＮＵＭ ＳＥＲＩＡＬ ＢＡＵＤ ３６００
ＣＹＧＮＵＭ ＳＥＲＩＡＬ ＢＡＵＤ ４８００
ＣＹＧＮＵＭ ＳＥＲＩＡＬ ＢＡＵＤ ７２００
ＣＹＧＮＵＭ ＳＥＲＩＡＬ ＢＡＵＤ ９６００
ＣＹＧＮＵＭ ＳＥＲＩＡＬ ＢＡＵＤ １４４００
ＣＹＧＮＵＭ ＳＥＲＩＡＬ ＢＡＵＤ １９２００
ＣＹＧＮＵＭ ＳＥＲＩＡＬ ＢＡＵＤ ３８４００
ＣＹＧＮＵＭ ＳＥＲＩＡＬ ＢＡＵＤ ５７６００
ＣＹＧＮＵＭ ＳＥＲＩＡＬ ＢＡＵＤ １１５２００
ＣＹＧＮＵＭ ＳＥＲＩＡＬ ＢＡＵＤ ２３４０００

ｓｔｏｐ为停止位，其值必须是下列值之一：

ＣＹＧＮＵＭ ＳＥＲＩＡＬ ＳＴＯＰ １
ＣＹＧＮＵＭ ＳＥＲＩＡＬ ＳＴＯＰ １ ５
ＣＹＧＮＵＭ ＳＥＲＩＡＬ ＳＴＯＰ ２

在大多数系统中，停止位１５只在字长为５时才有效。

ｐａｒｉｔｙ指定奇偶方式，其值为下列值之一：

ＣＹＧＮＵＭ ＳＥＲＩＡＬ ＰＡＲＩＴＹ ＮＯＮＥ
ＣＹＧＮＵＭ ＳＥＲＩＡＬ ＰＡＲＩＴＹ ＥＶＥＮ
ＣＹＧＮＵＭ ＳＥＲＩＡＬ ＰＡＲＩＴＹ ＯＤＤ
ＣＹＧＮＵＭ ＳＥＲＩＡＬ ＰＡＲＩＴＹ ＭＡＲＫ
ＣＹＧＮＵＭ ＳＥＲＩＡＬ ＰＡＲＩＴＹ ＳＰＡＣＥ

９６１

ｆｌａｇｓ为位屏蔽，它对串口驱动程序的行为进行控制。它的值将根据下面定义的ＣＹＧ
ＳＥＲＩＡＬ ＦＬＡＧＳ ｘｘｘ的值来产生：

＃ｄｅｆｉｎｅＣＹＧ ＳＥＲＩＡＬ ＦＬＡＧＳ ＲＴＳＣＴＳ０ｘ０００１

如果该值设为１，则串口处于“硬握手”方式。在这种方式下，ＣＴＳ和ＲＴＳ信号对串口数
据的发送和接收进行控制。如果硬件不支持这种握手，则忽略这一位。

另一个用于运行时配置的数据结构是：

ｔｙｐｅｄｅｆｓｔｒｕｃｔ｛

ｃｙｇ ｉｎｔ３２ｒｘ ｂｕｆｓｉｚｅ；

ｃｙｇ ｉｎｔ３２ｒｘ ｃｏｕｎｔ；

ｃｙｇ ｉｎｔ３２ｔｘ ｂｕｆｓｉｚｅ；

ｃｙｇ ｉｎｔ３２ｔｘ ｃｏｕｎｔ；
｝ｃｙｇ ｓｅｒｉａｌ ｂｕｆｉｎｆｏ ｔ；

其中：

ｒｘ ｂｕｆｓｉｚｅ—指定数据输入ｂｕｆｆｅｒ的大小，对于不支持缓冲的设备其值为０。

ｒｘ ｃｏｕｎｔ—指定当前数据输入ｂｕｆｆｅｒ中的字节数目。对于不支持缓冲的设备其值为０。

ｔｘ ｂｕｆｓｉｚｅ—指定数据发送ｂｕｆｆｅｒ的大小，对于不支持缓冲的设备其值为０。

ｒｘ ｃｏｕｎｔ—指定当前数据发送ｂｕｆｆｅｒ中的字节数目。对于不支持缓冲的设备其值为０。

２串口驱动程序ＡＰＩ
串口驱动程序提供了一些ＡＰＩ函数，应用程序可以使用这些函数对串口进行操作。

ｃｙｇ ｉｏ ｗｒｉｔｅ（ｈａｎｄｌｅ，ｂｕｆ，ｌｅｎ）

该函数将数据从缓冲区ｂｕｆ发送到设备。驱动程序提供一个缓冲区来保存数据，这种中
间缓冲区的大小可以使用接口模块进行配置。存放在缓冲区内的数据不会被修改。函数返回

时，ｌｅｎ包含了被实际传输的字符数目。
可以使用配置工具对该函数的调用进行配置，使其以块方式（默认方式）或者非块方式向

设备写数据。非块方式要求使能配置选项ＣＹＧＯＰＴ ＩＯ ＳＥＲＩＡＬ ＳＵＰＰＯＲＴ ＮＯＮ
ＢＬＯＣＫＩＮＧ，并且必须将指定的设备设置为以非块方式进行写操作（参阅ｃｙｇ ｉｏ ｓｅｔ ｃｏｎｆｉｇ
（）函数）。

在以块方式的调用中，在缓冲区有空闲空间并且参数ｂｕｆ指定的所有内容传送完成之前，
该函数不会返回。

在以非块方式进行的调用中，将尽可能多地从参数ｂｕｆ指定的位置传送数据。如果所有
的数据传送完成，则该函数返回ＥＮＯＥＲＲ。如果只有部分数据被传送，则返回ＥＡＧＡＩＮ，并且
必须再次调用该函数来完成余下的数据传送操作。参数ｌｅｎ包含了此次调用实际传送的字符
数目。

如果调用ｃｙｇ ｉｏ ｇｅｔ ｃｏｎｆｉｇ（）函数时参数ｋｅｙ使用了ＡＢＯＲＴ，则ｃｙｇ ｉｏ ｗｒｉｔｅ（）函数
将返回ＥＩＮＴＲ。

ｃｙｇ ｉｏ ｒｅａｄ（ｈａｎｄｌｅ，ｂｕｆ，ｌｅｎ）

该函数从设备接收数据并将数据存放到参数ｂｕｆ指定的缓冲区内。在数据传送之前不会

０７１

对数据进行操作。当没有挂起的读操作时，由中断驱动的接口模块对从设备来的数据进行处

理，将其存放到驱动程序的缓冲区内。数据的缓冲操作与写函数一样，完全具有可配置性。函

数返回时，ｌｅｎ包含了实际接收到的字符数目。
该函数的调用可以被配置工具配置为块方式（默认方式）或者非块方式从设备接收数据。

非块方式要求使能配置选项ＣＹＧＯＰＴ ＩＯ ＳＥＲＩＡＬ ＳＵＰＰＯＲＴ ＮＯＮＢＬＯＣＫＩＮＧ，并且指
定的设备必须已被设置为以非块方式进行读操作（参阅ｃｙｇ ｉｏ ｓｅｔ ｃｏｎｆｉｇ（）函数）。
在块方式调用中，该函数在所有被请求的数据传送完成之前不会返回。

在非块方式调用中，在设备缓冲区中等待的数据将被存放到参数ｂｕｆ所指定的位置，随后
该函数立即返回。如果读请求的所有数据全部传送完成，则返回ＥＮＯＥＲＲ，如果只完成了读
请求的部分数据，则返回ＥＡＧＡＩＮ，此时必须重新调用该函数来完成余下的数据传送操作。

ｌｅｎ指明了实际读取的字符数。
如果调用ｃｙｇ ｉｏ ｇｅｔ ｃｏｎｆｉｇ（）函数时参数ｋｅｙ使用了ＡＢＯＲＴ，则ｃｙｇ ｉｏ ｒｅａｄ（）函数

将返回ＥＩＮＴＲ。

ｃｙｇ ｉｏ ｇｅｔ ｃｏｎｆｉｇ（ｈａｎｄｌｅ，ｋｅｙ，ｂｕｆ，ｌｅｎ）

该函数返回设备和（或）驱动程序的当前（运行时）信息。其参数ｋｅｙ指定读取哪一类信
息。各种ｋｅｙ值及相应的ｂｕｆ类型和函数功能说明如下：

ｋｅｙ值：ＣＹＧ ＩＯ ＧＥＴ ＣＯＮＦＩＧ ＳＥＲＩＡＬ ＩＮＦＯ
ｂｕｆ类型：

ｃｙｇ ｓｅｒｉａｌｉｎｆｏ ｔ

函数功能：

该函数读取驱动程序和硬件的当前状态。ｂｕｆ返回的信息包含了硬件波特率、停止位和
奇偶方式。还包含了一组串口控制标志，如硬件流控制等。

ｋｅｙ值：ＣＹＧ ＩＯ ＧＥＴ ＣＯＮＦＩＧ ＳＥＲＩＡＬ ＢＵＦＦＥＲ ＩＮＦＯ
ｂｕｆ类型：

ｃｙｇ ｓｅｒｉａｌ ｂｕｆｉｎｆｏ ｔ

函数功能：

该函数读取串口驱动程序内部软ｂｕｆｆｅｒ的当前状态。它返回接收ｂｕｆｆｅｒ和发送ｂｕｆｆｅｒ的
大小和ｂｕｆｆｅｒ内的字节数。它不包括串行设备内部自身的ｂｕｆｆｅｒ如ＦＩＦＯ或寄存器。

ｋｅｙ值：ＣＹＧ ＩＯ ＧＥＴ ＣＯＮＦＩＧ ＳＥＲＩＡＬ ＯＵＴＰＵＴ ＤＲＡＩＮ
ｂｕｆ类型：

ｖｏｉｄ

函数功能：

该函数等待任何被缓冲的输出完成。只有在没有任何发送到设备的遗留数据才算操作完

成。

ｋｅｙ值：ＣＹＧ ＩＯ ＧＥＴ ＣＯＮＦＩＧ ＳＥＲＩＡＬ ＯＵＴＰＵＴ ＦＬＵＳＨ
ｂｕｆ类型：

１７１

ｖｏｉｄ

函数功能：

该函数作废掉所有被缓冲的输出数据。

ｋｅｙ值：ＣＹＧ ＩＯ ＧＥＴ ＣＯＮＦＩＧ ＳＥＲＩＡＬ ＩＮＰＵＴ ＤＲＡＩＮ
ｂｕｆ类型：

ｖｏｉｄ

函数功能：

该函数作废掉所有被缓冲的输入数据。

ｋｅｙ值：ＣＹＧ ＩＯ ＧＥＴ ＣＯＮＦＩＧ ＳＥＲＩＡＬ ＡＢＯＲＴ
ｂｕｆ类型：

ｖｏｉｄ

函数功能：

该函数将使所有处于挂起状态的对该设备进行读写操作的调用返回ＥＡＢＯＲＴ。

ｋｅｙ值：ＣＹＧ ＩＯ ＧＥＴ ＣＯＮＦＩＧ ＳＥＲＩＡＬ ＲＥＡＤ ＢＬＯＣＫＩＮＧ
ｂｕｆ类型：

ｃｙｇ ｕｎｉｔ３２（值为０或１）

函数功能：

该函数将读取对该设备进行读操作调用时的块方式设置信息。只有在配置选项ＣＹ
ＧＯＰＴ ＩＯ ＳＥＲＩＡＬ ＳＵＰＰＯＲＴ ＮＯＮＢＬＯＣＫＩＮＧ被使能时，该调用才可用。

ｋｅｙ值：ＣＹＧ ＩＯ ＧＥＴ ＣＯＮＦＩＧ ＳＥＲＩＡＬ ＷＲＩＴＥ ＢＬＯＣＫＩＮＧ
ｂｕｆ类型：

ｃｙｇ ｕｎｉｔ３２（值为０或１）

函数功能：

该函数将读取对该设备进行写操作调用时的块方式设置信息。只有在配置选项ＣＹ
ＧＯＰＴ ＩＯ ＳＥＲＩＡＬ ＳＵＰＰＯＲＴ ＮＯＮＢＬＯＣＫＩＮＧ被使能时，该调用才可用。

ｃｙｇ ｉｏ ｓｅｔ ｃｏｎｆｉｇ（ｈａｎｄｌｅ，ｋｅｙ，ｂｕｆ，ｌｅｎ）

该函数用于更新或改变串口的运行时配置。其参数ｋｅｙ指定对哪一类信息进行修改。各
种ｋｅｙ值及相应的ｂｕｆ类型和函数功能说明如下：

ｋｅｙ值：ＣＹＧ ＩＯ ＳＥＴ ＣＯＮＦＩＧ ＳＥＲＩＡＬ ＩＮＦＯ
ｂｕｆ类型：

ｃｙｇ ｓｅｒｉａｌｉｎｆｏ ｔ

函数功能：

该函数对驱动程序和硬件信息进行更新，ｂｕｆ包含的信息有硬件波特率、停止位和奇偶方
式。还包含了一组串口控制标志，如硬件流控制等。

ｋｅｙ值：ＣＹＧ ＩＯ ＳＥＴ ＣＯＮＦＩＧ ＳＥＲＩＡＬ ＲＥＡＤ ＢＬＯＣＫＩＮＧ
２７１

ｂｕｆ类型：

ｃｙｇ ｕｎｉｔ３２（值为０或１）

函数功能：

该函数对该设备进行读操作调用时的块方式进行设置。只有在配置选项ＣＹＧＯＰＴ ＩＯ
ＳＥＲＩＡＬ ＳＵＰＰＯＲＴ ＮＯＮＢＬＯＣＫＩＮＧ被使能时，该调用才可用。

ｋｅｙ值：ＣＹＧ ＩＯ ＳＥＴ ＣＯＮＦＩＧ ＳＥＲＩＡＬ ＷＲＩＴＥ ＢＬＯＣＫＩＮＧ
ｂｕｆ类型：

ｃｙｇ ｕｎｉｔ３２（值为０或１）

函数功能：

该函数将对该设备进行写操作调用时的块方式进行设置。只有在配置选项ＣＹＧＯＰＴ
ＩＯ ＳＥＲＩＡＬ ＳＵＰＰＯＲＴ ＮＯＮＢＬＯＣＫＩＮＧ被使能时，该调用才可用。

８４２ ＴＴＹ驱动程序

ＴＴＹ驱动程序建立在ｓｅｒｉａｌ串口驱动程序之上，通常用于人机接口设备，如终端设备。它
提供更为细化的数据输出格式，并且允许对其输入进行行编辑。

ＴＴＹ驱动程序使用头文件ｃｙｇ／ｉｏ／ｔｔｙｉｏ．ｈ。

１运行时（ｒｕｎｔｉｍｅ）配置

ＴＴＹ驱动程序具有运行时配置能力，可以通过调用函数ｃｙｇ ｉｏ ｓｅｔ ｃｏｎｆｉｇ（）和ｃｙｇ ｉｏ
ｇｅｔ ｃｏｎｆｉｇ（）将配置数据传递给驱动程序来实现这种运行时的配置。这种配置数据的结构
定义如下：

ｔｙｐｅｄｅｆｓｔｒｕｃｔ｛

ｃｙｇ ｕｉｎｔ３２ｔｔｙ ｏｕｔｆｌａｇｓ；

ｃｙｇ ｕｉｎｔ３２ｔｔｙ ｉｎ ｆｌａｇｓ；
｝ｃｙｇ ｔｔｙ ｉｎｆｏ ｔ；

其中：

ｔｔｙ ｏｕｔｆｌａｇｓ

用于当数据发送到串口时对数据的处理进行控制。它包含了一个位映像，该位映像由下

面定义的ＣＹＧ ＴＴＹ ＯＵＴ ＦＬＡＧＳ ｘｘｘ值组成：

＃ｄｅｆｉｎｅＣＹＧ ＴＴＹ ＯＵＴ ＦＬＡＧＳ ＣＲＬＦ０ｘ０００１／／Ｍａｐ′＼ｎ′＝＞′＼ｎ＼ｒ′ｏｎｏｕｔｐｕｔ

如果在ｔｔｙ ｏｕｔ ｆｌａｇｓ中该位为１，则当出现字符“＼ｎ”时将在发送到设备之前被替换为
“＼ｎ＼ｒ”。

ｔｔｙ ｉｎ ｆｌａｇｓ

用于控制如何处理从串口接收到的数据。它包含了一个位映像，该位映像由下面定义的

ＣＹＧ ＴＴＹ ＩＮ ＦＬＡＧＳ ｘｘｘ值组成：

＃ｄｅｆｉｎｅＣＹＧ ＴＴＹ ＩＮ ＦＬＡＧＳ ＣＲ０ｘ０００１／／Ｍａｐ′＼ｒ′＝＞′＼ｎ′ｏｎｉｎｐｕｔ

３７１

如果ｔｔｙ ｉｎ ｆｌａｇｓ中的该位为１，则字符“＼ｒ”（大多数键盘中的回车键）将被映像到“＼
ｎ″。

＃ｄｅｆｉｎｅＣＹＧ ＴＴＹ ＩＮ ＦＬＡＧＳ ＣＲＬＦ０ｘ０００２／／Ｍａｐ′＼ｎ＼ｒ′＝＞′＼ｎ′ｏｎｉｎｐｕｔ

如果ｔｔｙ ｉｎ ｆｌａｇｓ中的该位为１，则字符“＼ｎ＼ｒ”（通常由ＤＯＳ／Ｗｉｎｄｏｗｓ主机发出）将被
映像到“＼ｎ″。

＃ｄｅｆｉｎｅＣＹＧ ＴＴＹ ＩＮ ＦＬＡＧＳ ＢＩＮＡＲＹ０ｘ０００４／／Ｎｏｉｎｐｕｔｐｒｏｃｅｓｓｉｎｇ

如果ｔｔｙ ｉｎ ｆｌａｇｓ中该位为１，则在输入数据放置到用户ｂｕｆｆｅｒ之前不会对这些数据做
任何处理。

＃ｄｅｆｉｎｅＣＹＧ ＴＴＹ ＩＮ ＦＬＡＧＳ ＥＣＨＯ０ｘ０００８／／Ｅｃｈｏｃｈａｒａｃｔｅｒｓａｓｐｒｏｃｅｓｓｅｄ

如果ｔｔｙ ｉｎ ｆｌａｇｓ中该位为１，则字符在被处理时被回送到串口。

２ＴＴＹ驱动程序ＡＰＩ函数

ＴＴＹ驱动程序提供了一些ＡＰＩ函数，应用程序可以通过使用这些函数对ＴＴＹ设备进行
操作。

ｃｙｇ ｉｏ ｒｅａｄ（ｈａｎｄｌｅ，ｂｕｆ，ｌｅｎ）

该函数用于从设备读取数据。在默认情况下，读取数据直到出现行结束符“＼ｎ”或“＼ｒ”。
此外，输入字符被回送到终端设备。该函数还支持有限的输入编辑。

值得注意的是当使用ＧＤＢ连接目标平台时，在ＧＤＢ处于连接状态时不可能提供控制台
输入功能。ＧＤＢ远程协议不支持输入，如果需要这种输入功能，则必须使ＧＤＢ脱连。

ｃｙｇ ｉｏ ｗｒｉｔｅ（ｈａｎｄｌｅ，ｂｕｆ，ｌｅｎ）

该函数用于向设备发送数据。默认情况下，行结束符“＼ｎ”被“＼ｎ＼ｒ”替代。

ｃｙｇ ｉｏ ｇｅｔ ｃｏｎｆｉｇ（ｈａｎｄｌｅ，ｋｅｙ，ｂｕｆ，ｌｅｎ）

该函数用于读取由ｋｅｙ指定的运行时通道配置信息。参数ｋｅｙ指定信息类型，ｋｅｙ值和相
应的参数ｂｕｆ类型以及函数功能说明如下：

ｋｅｙ值：ＣＹＧ ＩＯ ＧＥＴ ＣＯＮＦＩＧ ＴＴＹ ＩＮＦＯ
ｂｕｆ类型：

ｃｙｇ ｔｔｙ ｉｎｆｏ ｔ

函数功能：

该函数读取当前驱动程序的状态。

Ｓｅｒｉａｌ串口驱动程序的ｋｅｙ值也可以在此指定。在这种情况下，这种调用被直接传递给

ｓｅｒｉａｌ串口驱动程序。

ｃｙｇ ｉｏ ｓｅｔ ｃｏｎｆｉｇ（ｈａｎｄｌｅ，ｋｅｙ，ｂｕｆ，ｌｅｎ）

该函数用于实时修改通道运行时的配置信息。其ｋｅｙ值指定将要被修改的配置信息。

ｋｅｙ值和相应的参数ｂｕｆ类型以及函数功能说明如下：

ｋｅｙ值：ＣＹＧ ＩＯ ＳＥＴ ＣＯＮＦＩＧ ＴＴＹ ＩＮＦＯ
４７１

ｂｕｆ类型：

ｃｙｇ ｔｔｙ ｉｎｆｏ ｔ

函数功能：

该函数改变ＴＴＹ驱动程序的当前状态。

Ｓｅｒｉａｌ串口驱动程序的ｋｅｙ值也可以在此指定。在这种情况下，这种调用被直接传递给

ｓｅｒｉａｌ串口驱动程序。

８５ ＰＣＩ库

ＰＣＩ库是ｅＣｏｓ的一个可选组件，只有在具有ＰＣＩ总线的平台中才可以使用ＰＣＩ库。ＰＣＩ
库提供了许多与ＰＣＩ总线相关的函数，主要实现如下功能：

① 扫描ＰＣＩ总线，查找指定的设备或某种类型的设备。

② 读取和修改普通ＰＣＩ配置信息。

③ 读取和修改设备专用ＰＣＩ配置信息。

④ 给ＰＣＩ设备分配Ｍｅｍｏｒｙ空间和Ｉ／Ｏ空间。

⑤ 将设备ＰＣＩ中断转换成等同的ＨＡＬ中断向量。

ＰＣＩ总线支持几种地址空间，即ｍｅｍｏｒｙ空间、Ｉ／Ｏ空间和配置空间。所有的ＰＣＩ设备必
须具有强制性的配置空间寄存器。一些设备可能具有Ｉ／Ｏ映像资源，也可能具有ｍｅｍｏｒｙ映
像资源，也可能同时具有这两种映像资源。总线上的设备在被使用之前，必须对它们进行配

置。这种配置过程通常是首先对ＰＣＩ设备进行ＰＣＩＩ／Ｏ空间和ｍｅｍｏｒｙ空间的分配，然后再
对该设备进行使能。所有的ＰＣＩ设备在整个配置空间中有一个惟一的地址，这种地址由总线
号、设备号以及功能号组成。ＰＣＩ桥是一种特殊的ＰＣＩ设备，它连接两条不同的ＰＣＩ总线。在

ＰＣＩ标准中，最多可支持２５５条ＰＣＩ总线，每条总线最多可支持３２个设备，每一设备最多可支
持８个功能。
在ｅＣｏｓ开发环境中，应该根据具体的目标平台特性来确定ｅＣｏｓ是否以及如何对ＰＣＩ总

线上的设备进行配置。如果平台是单条ＰＣＩ总线上的Ｈｏｓｔ，则其ＰＣＩ设备的配置工作可以独
立于相应的设备驱动程序而单独进行。如果平台不是主Ｈｏｓｔ，比如是插在ＰＣ机上的一块

ＰＣＩ卡，那么ＰＣＩ设备的配置工作可以让ＰＣＢＩＯＳ来进行。如果涉及到ＰＣＩ－ＰＣＩ桥，那么所
有ＰＣＩ设备的配置最好放在引导过程中完成，这是因为在对ＰＣＩ桥进行配置之前必须知道其
另一条ＰＣＩ总线上的所有设备所需的Ｉ／Ｏ空间和ｍｅｍｏｒｙ空间。

８５１ ＰＣＩ总线操作

ｅＣｏｓ的ＰＣＩ库提供了一些用于对ＰＣＩ总线进行操作的函数，这些操作包括对ＰＣＩ总线的
初始化操作、ＰＣＩ设备的查找、ＰＣＩ配置空间的读写、ＰＣＩ设备Ｉ／Ｏ空间和ｍｅｍｏｒｙ空间的分
配、设备中断的处理、ＰＣＩ设备的启动等。头文件ｃｙｇ／ｉｏ／ｐｃｉ．ｈ包含了对这些函数的声称和定
义，使用ＰＣＩ库函数的程序应该包含该头文件。ｅＣｏｓ提供的源码中还包含了一个ＰＣＩ测试程
序ｉｏ／ｐｃｉ／＜ｒｅｌｅａｓｅ＞／ｔｅｓｔｓ／ｐｃｉ１．ｃ，这一测试程序对上述所有的ＰＣＩ总线操作进行测试。
１ＰＣＩ总线的初始化
在使用ＰＣＩ总线之前必须对其进行初始化。系统中这种初始化操作一般只需进行一次。

５７１

在某些平台中，这种初始化包含在硬件抽象层ＨＡＬ中，在对平台进行初始化的时候完成对

ＰＣＩ的初始化操作。而另外一些平台的ＨＡＬ不对ＰＣＩ总线进行初始化，ＰＣＩ总线的初始化由
应用程序或设备驱动程序完成。

对ＰＣＩ总线的初始化可以使用下面的函数完成：

ｖｏｉｄｃｙｇ ｐｃｉｉｎｉｔ（ｖｏｉｄ）

该函数只对ＰＣＩ总线进行惟一的一次初始化，因此对于多个调用该函数的驱动程序来
讲，对该函数的多次调用都是安全的。

２查找ＰＣＩ设备
对ＰＣＩ总线的初始化操作完成之后，可能需要查找ＰＣＩ设备。这种查找操作可以通过下

面的函数来实现：

ｃｙｇ ｂｏｏｌｃｙｇ ｐｃｉｆｉｎｄｎｅｘｔ（ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｉｄｃｕｒ ｄｅｖｉｄ，

ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｉｄｎｅｘｔ ｄｅｖｉｄ）

该函数从ｃｕｒ ｄｅｖｉｄ处开始从ＰＣＩ总线上查找设备。如果发现一个设备，则将该设备ＩＤ
号ｄｅｖｉｄ保存到ｎｅｘｔ ｄｅｖｉｄ，并返回ｔｒｕｅ。
在ＰＣＩ测试程序ｐｃｉ１．ｃ中有一个ｐｃｉ ｓｃａｎ（）函数用于列举所有的ＰＣＩ设备，它使用了一

个循环体对所有ＰＣＩ设备进行查找，该段程序简单描述如下：

ｃｙｇ ｐｃｉｉｎｉｔ（）；

ｉｆ（ｃｙｇ ｐｃｉｆｉｎｄ ｎｅｘｔ（ＣＹＧ ＰＣＩ ＮＵＬＬ ＤＥＶＩＤ，＆ｄｅｖｉｄ））｛

ｄｏ｛

＜ｕｓｅｄｅｖｉｄ＞
｝ｗｈｉｌｅ（ｃｙｇ ｐｃｉｆｉｎｄ ｎｅｘｔ（ｄｅｖｉｄ，＆ｄｅｖｉｄ））；
｝

程序首先调用ｃｙｇ ｐｃｉ ｉｎｉｔ（）函数对ＰＣＩ总线进行初始化，然后使用ｃｙｇ ｐｃｉ ｆｉｎｄ
ｎｅｘｔ（ＣＹＧ ＰＣＩ ＮＵＬＬ ＤＥＶＩＤ，＆ｄｅｖｉｄ）语句开始进行ＰＣＩ设备的查找工作。ＣＹＧ ＰＣＩ
ＮＵＬＬ ＤＥＶＩＤ启动ｃｙｇ ｐｃｉｆｉｎｄ ｎｅｘｔ（）函数对ＰＣＩ设备的查找过程。如果总线上没有

ＰＣＩ设备，则返回ｆａｌｓｅ。如果返回ｔｒｕｅ，则使用所找到的ｄｅｖｉｄ进入循环体。循环体内对ｄｅｖｉｄ
的使用完成后，开始查找下一个ＰＣＩ设备。这样，当所有ＰＣＩ设备全部查找完后，程序将退出
循环体。

这是一种对ＰＣＩ设备进行查找的常用方法，它对ＰＣＩ总线上的设备进行枚举。ＰＣＩ库还
提供了其他的一些函数用于对指定设备的查找，这些函数可以根据指定的设备类型（如ＳＣＳＩ
控制器等）或指定的设备ｖｅｎｄｏｒ对ＰＣＩ设备进行查找。这些函数是：
查找指定类型的设备：

ｃｙｇ ｂｏｏｌｃｙｇ ｐｃｉｆｉｎｄ ｃｌａｓｓ（ｃｙｇ ｕｉｎｔ３２ｄｅｖ ｃｌａｓｓ，

ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｉｄｄｅｖｉｄ）

查找指定ｖｅｎｄｏｒ的设备：

ｃｙｇ ｂｏｏｌｃｙｇ ｐｃｉｆｉｎｄ ｄｅｖｉｃｅ（ｃｙｇ ｕｉｎｔ１６ｖｅｎｄｏｒ，ｃｙｇ ｕｉｎｔ１６ｄｅｖｉｃｅ，

ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｉｄｄｅｖｉｄ）

６７１

对这些函数的使用方法与ｃｙｇ ｐｃｉｆｉｎｄ ｎｅｘｔ（）函数的使用方法基本相同。不同之处在
于这些函数只有在找到满足指定条件（ｄｅｖ ｃｌａｓｓ、ｖｅｄｉｏ／ｄｅｖｉｃｅｑｕａｌｉｆｉｅｒｓ）时才返回ｔｒｕｅ。参数

ｄｅｖｉｄ既用于函数的输入参数，又用于函数的返回结果。设备的查找过程从给定的ｄｅｖｉｄ处开
始，当找到设备时，返回的ｄｅｖｉｄ为新找到的设备ｄｅｖｉｄ。
在ｅＣｏｓ源码中，头文件ｐｃｉ．ｈ包含了另一个头文件ｃｙｇ／ｉｏ／ｐｃｉ ｃｆｇ．ｈ，它包含了可用于这

些函数的ＰＣＩ设备类型（ＰＣＩｃｌａｓｓ）、厂商（ｖｅｎｄｏｒ）和设备码（ｄｅｖｉｃｅｃｏｄｅ）等信息。当然这不是
一个完整的表，在进行ｅＣｏｓ开发时可以根据实际需要增加新的内容。

３ＰＣＩ配置信息

ＰＣＩ配置信息使用了数据结构ｃｙｇ ｐｃｉ ｄｅｖｉｃｅ，头文件ｐｃｉ．ｈ对其进行了定义。在对ＰＣＩ
设备配置信息进行读写操作时，需要使用该数据结构。这一数据结构保存了ＰＣＩ的配置信
息。下面是该数据结构的具体定义：

ｔｙｐｅｄｅｆｓｔｒｕｃｔ ／／ＰＣＩｄｅｖｉｃｅｄａｔａ
｛

ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｉｄｄｅｖｉｄ； ／／ＩＤｏｆｔｈｉｓｄｅｖｉｃｅ
／／Ｔｈｅｆｏｌｌｏｗｉｎｇｆｉｅｌｄｓａｒｅｒｅａｄｏｕｔｏｆｔｈｅｃｏｎｆｉｇｓｐａｃｅ

ｆｏｒｔｈｉｓｄｅｖｉｃｅ．
Ｃｙｇ ｕｉｎｔ１６ｖｅｎｄｏｒ； ／／ｖｅｎｄｏｒＩＤ
ｃｙｇ ｕｉｎｔ１６ｄｅｖｉｃｅ； ／／ｄｅｖｉｃｅＩＤ
ｃｙｇ ｕｉｎｔ１６ｃｏｍｍａｎｄ； ／／ｃｏｍｍａｎｄｒｅｇｉｓｔｅｒ
ｃｙｇ ｕｉｎｔ１６ｓｔａｔｕｓ； ／／ｓｔａｔｕｓｒｅｇｉｓｔｅｒ
ｃｙｇ ｕｉｎｔ３２ｃｌａｓｓ ｒｅｖ； ／／ｃｌａｓｓ＋ｒｅｖｉｓｉｏｎ
ｃｙｇ ｕｉｎｔ８ｃａｃｈｅｌｉｎｅ ｓｉｚｅ； ／／ｃａｃｈｅｌｉｎｅｓｉｚｅ
ｃｙｇ ｕｉｎｔ８ｌａｔｅｎｃｙ ｔｉｍｅｒ； ／／ｌａｔｅｎｃｙｔｉｍｅｒ
ｃｙｇ ｐｃｉ ｈｅａｄｅｒ ｔｙｐｅｈｅａｄｅｒ ｔｙｐｅ； ／／ｈｅａｄｅｒｔｙｐｅ
ｃｙｇ ｕｉｎｔ８ｂｉｓｔ； ／／ＢｕｉｌｔｉｎＳｅｌｆＴｅｓｔ
ｃｙｇ ｕｉｎｔ３２ｂａｓｅ ａｄｄｒｅｓｓ［６］； ／／Ｍｅｍｏｒｙｂａｓｅａｄｄｒｅｓｓｒｅｇｉｓｔｅｒｓ
／／Ｔｈｅｆｏｌｌｏｗｉｎｇｆｉｅｌｄｓａｒｅｕｓｅｄｂｙｔｈｅｒｅｓｏｕｒｃｅａｌｌｏｃａｔｉｏｎ
／／ｒｏｕｔｉｎｅｓｔｏｋｅｅｐｔｒａｃｋｏｆａｌｌｏｃａｔｅｄｒｅｓｏｕｒｃｅｓ．
Ｃｙｇ ｕｉｎｔ３２ｎｕｍ ｂａｒｓ；

ｃｙｇ ｕｉｎｔ３２ｂａｓｅ ｓｉｚｅ［６］； ／／Ｍｅｍｏｒｙｓｉｚｅｆｏｒｅａｃｈｂａｓｅａｄｄｒｅｓｓ
ｃｙｇ ｕｉｎｔ３２ｂａｓｅ ｍａｐ［６］； ／／Ｐｈｙｓｉｃａｌａｄｄｒｅｓｓｍａｐｐｅｄ
ＣＹＧ ＡＤＤＲＷＯＲＤｈａｌ ｖｅｃｔｏｒ； ／／ＨＡＬｉｎｔｅｒｒｕｐｔｖｅｃｔｏｒｕｓｅｄｂｙ

／／ｄｅｖｉｃｅｉｆｉｎｔｌｉｎｅ！＝０
／／Ｏｎｅｏｆｔｈｅｆｏｌｌｏｗｉｎｇｕｎｉｏｎｓｗｉｌｌｂｅｆｉｌｌｅｄｉｎａｃｃｏｒｄｉｎｇｔｏ
／／ｔｈｅｖａｌｕｅｏｆｔｈｅｈｅａｄｅｒ ｔｙｐｅｆｉｅｌｄ．
Ｕｎｉｏｎ
｛

ｓｔｒｕｃｔ
｛

ｃｙｇ ｕｉｎｔ３２ｃａｒｄｂｕｓ ｃｉｓ； ／／ＣａｒｄＢｕｓＣＩＳＰｏｉｎｔｅｒ
ｃｙｇ ｕｉｎｔ１６ｓｕｂ ｖｅｎｄｏｒ； ／／ｓｕｂｓｙｓｔｅｍｖｅｎｄｏｒｉｄ

７７１

ｃｙｇ ｕｉｎｔ１６ｓｕｂ ｉｄ； ／／ｓｕｂｓｙｓｔｅｍｉｄ
ｃｙｇ ｕｉｎｔ３２ｒｏｍ ａｄｄｒｅｓｓ； ／／ＲＯＭａｄｄｒｅｓｓｒｅｇｉｓｔｅｒ
ｃｙｇ ｕｉｎｔ８ｃａｐ ｌｉｓｔ； ／／ｃａｐａｂｉｌｉｔｙｌｉｓｔ
ｃｙｇ ｕｉｎｔ８ｒｅｓｅｒｖｅｄ１［７］；

ｃｙｇ ｕｉｎｔ８ｉｎｔｌｉｎｅ； ／／ｉｎｔｅｒｒｕｐｔｌｉｎｅ
ｃｙｇ ｕｉｎｔ８ｉｎｔ ｐｉｎ； ／／ｉｎｔｅｒｒｕｐｔｐｉｎ
ｃｙｇ ｕｉｎｔ８ｍｉｎ ｇｎｔ； ／／ｔｉｍｅｓｌｉｃｅｒｅｑｕｅｓｔ
ｃｙｇ ｕｉｎｔ８ｍａｘ ｌａｔ； ／／ｐｒｉｏｒｉｔｙｌｅｖｅｌｒｅｑｕｅｓｔ
｝ｎｏｒｍａｌ；

ｓｔｒｕｃｔ
｛

ｃｙｇ ｕｉｎｔ８ｐｒｉ ｂｕｓ； ／／ｐｒｉｍａｒｙｂｕｓｎｕｍｂｅｒ
ｃｙｇ ｕｉｎｔ８ｓｅｃ ｂｕｓ； ／／ｓｅｃｏｎｄａｒｙｂｕｓｎｕｍｂｅｒ
ｃｙｇ ｕｉｎｔ８ｓｕｂ ｂｕｓ； ／／ｓｕｂｏｒｄｉｎａｔｅｂｕｓｎｕｍｂｅｒ
ｃｙｇ ｕｉｎｔ８ｓｅｃｌａｔｅｎｃｙ ｔｉｍｅｒ； ／／ｓｅｃｏｎｄａｒｙｂｕｓｌａｔｅｎｃｙ
ｃｙｇ ｕｉｎｔ８ｉｏ ｂａｓｅ；

ｃｙｇ ｕｉｎｔ８ｉｏ ｌｉｍｉｔ；

ｃｙｇ ｕｉｎｔ１６ｓｅｃ ｓｔａｔｕｓ； ／／ｓｅｃｏｎｄａｒｙｂｕｓｓｔａｔｕｓ
ｃｙｇ ｕｉｎｔ１６ｍｅｍ ｂａｓｅ；

ｃｙｇ ｕｉｎｔ１６ｍｅｍ ｌｉｍｉｔ；

ｃｙｇ ｕｉｎｔ１６ｐｒｅｆｅｔｃｈ ｂａｓｅ；

ｃｙｇ ｕｉｎｔ１６ｐｒｅｆｅｔｃｈ ｌｉｍｉｔ；

ｃｙｇ ｕｉｎｔ３２ｐｒｅｆｅｔｃｈ ｂａｓｅ ｕｐｐｅｒ３２；

ｃｙｇ ｕｉｎｔ３２ｐｒｅｆｅｔｃｈ ｌｉｍｉｔ ｕｐｐｅｒ３２；

ｃｙｇ ｕｉｎｔ１６ｉｏ ｂａｓｅ ｕｐｐｅｒ１６；

ｃｙｇ ｕｉｎｔ１６ｉｏ ｌｉｍｉｔ ｕｐｐｅｒ１６；

ｃｙｇ ｕｉｎｔ８ｒｅｓｅｒｖｅｄ１［４］；

ｃｙｇ ｕｉｎｔ３２ｒｏｍ ａｄｄｒｅｓｓ； ／／ＲＯＭａｄｄｒｅｓｓｒｅｇｉｓｔｅｒ
ｃｙｇ ｕｉｎｔ８ｉｎｔｌｉｎｅ； ／／ｉｎｔｅｒｒｕｐｔｌｉｎｅ
ｃｙｇ ｕｉｎｔ８ｉｎｔ ｐｉｎ； ／／ｉｎｔｅｒｒｕｐｔｐｉｎ
ｃｙｇ ｕｉｎｔ１６ｃｏｎｔｒｏｌ； ／／ｂｒｉｄｇｅｃｏｎｔｒｏｌ
｝ｂｒｉｄｇｅ；

ｓｔｒｕｃｔ
｛

／／Ｎｏｔｙｅｔｓｕｐｐｏｒｔｅｄ
｝ｃａｒｄｂｕｓ ｂｒｉｄｇｅ；

｝ｈｅａｄｅｒ；
｝ｃｙｇ ｐｃｉ ｄｅｖｉｃｅ；

当查找到ＰＣＩ设备后，可以使用下面的函数对ＰＣＩ的配置空间进行读写操作：

ｖｏｉｄｃｙｇ ｐｃｉ ｇｅｔ ｄｅｖｉｃｅｉｎｆｏ（ｃｙｇｐｃｉ ｄｅｖｉｃｅｉｄｄｅｖｉｄ，

ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｄｅｖ ｉｎｆｏ）

ｖｏｉｄｃｙｇ ｐｃｉｓｅｔ ｄｅｖｉｃｅｉｎｆｏ（ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｉｄｄｅｖｉｄ，

８７１

ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｄｅｖ ｉｎｆｏ）

在测试程序ｐｃｉ１．ｃ内，使用了下面的程序代码对ＰＣＩ设备配置空间进行操作：

／／Ｇｅｔｄｅｖｉｃｅｉｎｆｏ
ｃｙｇ ｐｃｉ ｇｅｔ ｄｅｖｉｃｅｉｎｆｏ（ｄｅｖｉｄ，＆ｄｅｖ ｉｎｆｏ）；
／／Ｐｒｉｎｔｓｔｕｆｆ
ｄｉａｇｐｒｉｎｔｆ（″Ｆｏｕｎｄｄｅｖｉｃｅｏｎｂｕｓ％ｄ，ｄｅｖｆｎ０ｘ％０２ｘ：＼ｎ″，

ＣＹＧ ＰＣＩ ＤＥＶ ＧＥＴ ＢＵＳ（ｄｅｖｉｄ），

ＣＹＧ ＰＣＩ ＤＥＶ ＧＥＴ ＤＥＶＦＮ（ｄｅｖｉｄ））；

ｄｉａｇ ｐｒｉｎｔｆ（″＼ｎＣｏｍｍａｎｄ０ｘ％０４ｘ，Ｓｔａｔｕｓ０ｘ％０４ｘ＼ｎ″，

ｄｅｖ ｉｎｆｏ．ｃｏｍｍａｎｄ，ｄｅｖ ｉｎｆｏ．ｓｔａｔｕｓ）；

可以对ＰＣＩ配置空间的命令寄存器进行写操作，用以控制该设备是否响应来自总线的ＩＯ
访问或ｍｅｍｏｒｙ访问。
上面的函数只能对普通的ＰＣＩ配置寄存器进行操作。某些ＰＣＩ设备可能还有其他一些

ＰＣＩ标准中没有说明的专用配置寄存器。对这些专用配置寄存器的访问可以使用下述函数来
实现：

ｖｏｉｄｃｙｇ ｐｃｉｒｅａｄ ｃｏｎｆｉｇ ｕｉｎｔ８（ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｉｄｄｅｖｉｄ，

ｃｙｇ ｕｉｎｔ８ｏｆｆｓｅｔ，ｃｙｇ ｕｉｎｔ８ｖａｌ）

ｖｏｉｄｃｙｇ ｐｃｉｒｅａｄ ｃｏｎｆｉｇ ｕｉｎｔ１６（ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｉｄｄｅｖｉｄ，

ｃｙｇ ｕｉｎｔ８ｏｆｆｓｅｔ，ｃｙｇ ｕｉｎｔ１６ｖａｌ）

ｖｏｉｄｃｙｇ ｐｃｉｒｅａｄ ｃｏｎｆｉｇ ｕｉｎｔ３２（ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｉｄｄｅｖｉｄ，

ｃｙｇ ｕｉｎｔ８ｏｆｆｓｅｔ，ｃｙｇ ｕｉｎｔ３２ｖａｌ）

ｖｏｉｄｃｙｇ ｐｃｉ ｗｒｉｔｅ ｃｏｎｆｉｇ ｕｉｎｔ８（ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｉｄｄｅｖｉｄ，

ｃｙｇ ｕｉｎｔ８ｏｆｆｓｅｔ，ｃｙｇ ｕｉｎｔ８ｖａｌ）

ｖｏｉｄｃｙｇ ｐｃｉ ｗｒｉｔｅ ｃｏｎｆｉｇ ｕｉｎｔ１６（ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｉｄｄｅｖｉｄ，

ｃｙｇ ｕｉｎｔ８ｏｆｆｓｅｔ，ｃｙｇ ｕｉｎｔ１６ｖａｌ）

ｖｏｉｄｃｙｇ ｐｃｉ ｗｒｉｔｅ ｃｏｎｆｉｇ ｕｉｎｔ３２（ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｉｄｄｅｖｉｄ，

ｃｙｇ ｕｉｎｔ８ｏｆｆｓｅｔ，ｃｙｇ ｕｉｎｔ３２ｖａｌ）

必须注意，在使用这些函数对配置寄存器进行写操作时，这种写操作只能针对专用配置寄

存器，不能对普通配置寄存器进行写操作。否则将会引起先前已经读取的存放在ｃｙｇ ｐｃｉ
ｄｅｖｉｃｅ数据结构内的配置信息失效。

４内存分配

ＰＣＩ设备在启动之前不会响应任何Ｉ／Ｏ访问和Ｍｅｍｏｒｙ访问，ＰＣＩ设备的启动必须在其
配置操作完成之后进行。对ＰＣＩ设备的配置操作实际上是告诉设备其ＩＯ资源和Ｍｅｍｏｒｙ资
源被映射到什么地方，这种配置操作可以使用下面的函数进行：

ｃｙｇ ｂｏｏｌｃｙｇ ｐｃｉｃｏｎｆｉｇｕｒｅ ｄｅｖｉｃｅ（ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｄｅｖ ｉｎｆｏ）

ｃｙｇ ｂｏｏｌｃｙｇ ｐｃｉｃｏｎｆｉｇｕｒｅ ｂｕｓ（ｃｙｇ ｕｉｎｔ８ｂｕｓ，ｃｙｇ ｕｉｎｔ８ｎｅｘｔ ｂｕｓ）

对于非桥ＰＣＩ设备的配置，全部使用ｃｙｇ ｐｃｉ ｃｏｎｆｉｇｕｒｅ ｄｅｖｉｃｅ（）函数来处理所有的ＩＯ
和Ｍｅｍｏｒｙ空间配置。当系统平台使用ＰＣＩ桥连接多条ＰＣＩ总线时，应该使用ｃｙｇ ｐｃｉｃｏｎ

９７１

ｆｉｇｕｒｅ ｂｕｓ（）函数进行配置，这一函数将递归配置指定总线（参数ｂｕｓ）上的所有设备和所有从
属总线。ｃｙｇ ｐｃｉ ｃｏｎｆｉｇｕｒｅ ｂｕｓ（）将使用ｃｙｇ ｐｃｉ ｃｏｎｆｉｇｕｒｅ ｄｅｖｉｃｅ（）对单个非桥设备进
行配置。

分配给ＰＣＩ设备的每个区分别使用其配置空间的基地址寄存器ＢＡＲ来表示，这种空间的
分配将根据空间的类型分别使用下面的函数进行：

① Ｍｅｍｏｒｙ空间的分配：

ｃｙｇ ｂｏｏｌｃｙｇ ｐｃｉ ａｌｌｏｃａｔｅ ｍｅｍｏｒｙ（ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｄｅｖ ｉｎｆｏ，

ｃｙｇ ｕｉｎｔ３２ｂａｒ，

ＣＹＧ ＰＣＩ ＡＤＤＲＥＳＳ６４ｂａｓｅ）

②ＩＯ空间的分配：

ｃｙｇ ｂｏｏｌｃｙｇ ｐｃｉ ａｌｌｏｃａｔｅｉｏ（ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｄｅｖ ｉｎｆｏ，

ｃｙｇ ｕｉｎｔ３２ｂａｒ，

ＣＹＧ ＰＣＩ ＡＤＤＲＥＳＳ３２ｂａｓｅ）

在对ＰＣＩ设备进行空间分配时，基地址（ＩＯ基地址和Ｍｅｍｏｒｙ基地址）将依次增加。如果
基地址超出了地址空间的限制，将会引起空间分配的失败。ＩＯ空间地址的上限是１ＭＢ，

Ｍｅｍｏｒｙ空间地址的上限是２３２Ｂ或２６４Ｂ。
应用程序和驱动程序在需要的时候可以直接调用上述这些函数。基地址在初始化时被设

置为ＨＡＬ所提供的默认值。如果应用程序希望改变这些基地址，可以使用下述函数：

ｖｏｉｄｃｙｇ ｐｃｉｓｅｔ ｍｅｍｏｒｙ ｂａｓｅ（ＣＹＧ ＰＣＩ ＡＤＤＲＥＳＳ６４ｂａｓｅ）

ｖｏｉｄｃｙｇ ｐｃｉｓｅｔｉｏ ｂａｓｅ（ＣＹＧ ＰＣＩ ＡＤＤＲＥＳＳ３２ｂａｓｅ）

在完成对ＰＣＩ设备的配置操作后，ｃｙｇ ｐｃｉ ｄｅｖｉｃｅ数据结构中的基地址将是属于ＣＰＵ
地址空间的物理地址，ＣＰＵ可以对其进行访问。对于ＰＣＩ设备的每一个基地址寄存器ＢＡＲ，
该数据结构中均采用一个３２位的ｂａｓｅ ｍａｐ［］来表示。对于３２位ＰＣＩ的内存空间，每一个

ｂａｓｅ ｍａｐ［］都代表一个实际的指针，驱动程序可以直接使用这些指针。对于６４位ＰＣＩ的内
存空间，则有可能会超出ＣＰＵ的地址空间。这种情况下，要求驱动程序知道如何分段访问这
些空间。

５中断的处理
有些ＰＣＩ设备可能会产生中断，对中断进行处理时必须知道系统为该设备所分配的中断

向量。对于给定的设备，硬件抽象层ＨＡＬ中与其相对应的中断向量在不同的系统平台中会
有所不同。驱动程序可以使用下面的函数获取给定设备的实际中断向量：

ｃｙｇ ｂｏｏｌｃｙｇ ｐｃｉｔｒａｎｓｌａｔｅｉｎｔｅｒｒｕｐｔ（ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｄｅｖ ｉｎｆｏ，

ＣＹＧ ＡＤＤＲＷＯＲＤｖｅｃ）

调用该函数时如果返回ｆａｌｓｅ，说明该设备不会产生中断。如果返回ｔｒｕｅ，该设备所使用的

ＨＡＬ中断向量将由指针ｖｅｃ带回。下面是ｐｃｉ１．ｃ测试程序中使用该函数的例子：

ｉｆ（ｃｙｇ ｐｃｉｔｒａｎｓｌａｔｅｉｎｔｅｒｒｕｐｔ（＆ｄｅｖ ｉｎｆｏ，＆ｉｒｑ））

ｄｉａｇ ｐｒｉｎｔｆ（″ＷｉｒｅｄｔｏＨＡＬｖｅｃｔｏｒ％ｄ＼ｎ″，ｉｒｑ）；

ｅｌｓｅ

０８１

ｄｉａｇ ｐｒｉｎｔｆ（″Ｄｏｅｓｎｏｔｇｅｎｅｒａｔｅｉｎｔｅｒｒｕｐｔｓ．＼ｎ″）；

应用程序和驱动程序在启动一个ＰＣＩ设备之前必须将中断处理程序和设备中断进行连
接。

６ＰＣＩ设备的启动

ＰＣＩ设备在被启动之前，不会响应任何ＩＯ和Ｍｅｍｏｒｙ访问请求。在配置操作完成后，必
须对其进行启动操作。驱动程序在完成对设备的初始化操作后，可以通过使能ＰＣＩ配置寄存
器中的命令寄存器的使能标志对其进行启动。下面是ｐｃｉ１．ｃ测试程序对ＰＣＩ设备进行启动
的例子：

＃ｉｆｄｅｆＥＮＡＢＬＥ ＰＣＩ ＤＥＶＩＣＥＳ
｛

ｃｙｇ ｕｉｎｔ１６ｃｍｄ；
／／Ｄｏｎ′ｔｕｓｅｃｙｇ ｐｃｉｓｅｔ ｄｅｖｉｃｅｉｎｆｏｓｉｎｃｅｉｔｃｌｅａｒｓ
／／ｓｏｍｅｏｆｔｈｅｆｉｅｌｄｓｗｅｗａｎｔｔｏｐｒｉｎｔｏｕｔｂｅｌｏｗ．
ｃｙｇ ｐｃｉｒｅａｄ ｃｏｎｆｉｇｕｉｎｔ１６（ｄｅｖ ｉｎｆｏ．ｄｅｖｉｄ，

ＣＹＧ ＰＣＩ ＣＦＧ ＣＯＭＭＡＮＤ，＆ｃｍｄ）；

ｃｍｄ｜＝ＣＹＧ ＰＣＩ ＣＦＧ ＣＯＭＭＡＮＤ ＩＯ｜ＣＹＧ ＰＣＩ ＣＦＧ ＣＯＭＭＡＮＤ ＭＥＭＯＲＹ；

ｃｙｇ ｐｃｉ ｗｒｉｔｅ ｃｏｎｆｉｇ ｕｉｎｔ１６（ｄｅｖ ｉｎｆｏ．ｄｅｖｉｄ，

ＣＹＧ ＰＣＩ ＣＦＧ ＣＯＭＭＡＮＤ，ｃｍｄ）；
｝

ｄｉａｇ ｐｒｉｎｔｆ（″ＤｅｖｉｃｅＩＯａｎｄＭＥＭａｃｃｅｓｓｅｎａｂｌｅｄ＼ｎ″）；

＃ｅｎｄｉｆ

该例使用了ｃｙｇ ｐｃｉ ｗｒｉｔｅ ｃｏｎｆｉｇ ｕｉｎｔ１６（）函数对命令寄存器进行写操作，使能对ＩＯ
空间和Ｍｅｍｏｒｙ空间的访问，从而完成了该ＰＣＩ设备的启动操作。值得注意的是，启动ＰＣＩ设
备的最好办法是通过ｃｙｇ ｐｃｉ ｓｅｔ ｄｅｖｉｃｅ ｉｎｆｏ（）函数来进行。上例是一种特殊情况，这是
由于该测试程序需要输出ＰＣＩ设备被启动前的ｃｙｇ ｐｃｉ ｄｅｖｉｃｅ数据结构内的信息，如果使用

ｃｙｇ ｐｃｉ ｓｅｔ ｄｅｖｉｃｅ ｉｎｆｏ（）函数，在调用该函数时该数据结构的内容已经被修改，输出的配
置信息将是被修改后的内容。

８５２ ＰＣＩ库ＡＰＩ

ＰＣＩ库为ＰＣＩ总线配置空间的访问提供了一组使用非常方便的函数。它提供两种类型的

ＡＰＩ函数：高级ＡＰＩ函数和低级ＡＰＩ函数。高级ＡＰＩ主要供设备驱动程序和其他程序访问

ＰＣＩ配置空间。低级ＡＰＩ主要供ＰＣＩ库自己对硬件进行访问，也可以为设备驱动程序提供一
种直接访问ＰＣＩ配置空间的方法。在低级ＡＰＩ之下是硬件抽象层ＨＡＬ，它对配置空间的基本
操作提供支持。这种支持只针对ＰＣＩ库，其他程序代码通常不使用这种支持。

１数据结构与类型定义

ＰＣＩ库所提供的ＡＰＩ函数和数据类型都在头文件ｃｙｇ／ｉｏ／ｐｃｉ．ｈ中有定义，该头文件中包
含了对ＰＣＩ配置空间数据结构的定义和设备名、厂家名及类型代码。下面介绍一些典型的数
据类型。

设备ＩＤ数据类型：

１８１

ｔｙｐｅｄｅｆＣＹＧ ＷＯＲＤ３２ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｉｄ；

ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｉｄ是一个３２位的数据类型，包含了总线号（ｂｕｓｎｕｍｂｅｒ）、设备号（ｄｅｖｉｃｅ
ｎｕｍｂｅｒ）和功能号（ｆｕｎｃｔｉｏｎｎｕｍｂｅｒ）。两个宏定义ＣＹＧ ＰＣＩ ＤＥＶ ＭＡＫＥ ＩＤ（）和ＣＹＧ
ＰＣＩ ＤＥＶ ＭＡＫＥ ＤＥＶＦＮ（）可以用来将总线号、设备号和功能号组合成一个设备ＩＤ。另
外，ｅＣｏｓ还定义了四个宏定义，可以从设备ＩＤ中提取出总线号、设备号和功能号。这四个宏
定义分别是：

ＣＹＧ ＰＣＩ ＤＥＶ ＧＥＴ ＢＵＳ（）

ＣＹＧ ＰＣＩ ＤＥＶ ＧＥＴ ＤＥＶＦＮ（）

ＣＹＧ ＰＣＩ ＤＥＶ ＧＥＴ ＤＥＶ（）

ＣＹＧ ＰＣＩ ＤＥＶ ＧＥＴ ＦＮ（）

正常情况下，一般不会用到这些宏定义。下面是使用这些宏定义的一个例子：

／／Ｃｒｅａｔｅａｐａｃｋｅｄｒｅｐｒｅｓｅｎｔａｔｉｏｎｏｆｄｅｖｉｃｅ１，ｆｕｎｃｔｉｏｎ０
ｃｙｇ ｕｉｎｔ８ｄｅｖｆｎ＝ＣＹＧ ＰＣＩ ＤＥＶ ＭＡＫＥ ＤＥＶＦＮ（１，０）；
／／Ｃｒｅａｔｅａｐａｃｋｅｄｄｅｖｉｄｆｏｒｔｈａｔｄｅｖｉｃｅｏｎｂｕｓ２
ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｉｄｄｅｖｉｄ＝ＣＹＧ ＰＣＩ ＤＥＶ ＭＡＫＥ ＩＤ（２，ｄｅｖｆｎ）；

ｄｉａｇ ｐｒｉｎｔｆ（″ｂｕｓ％ｄ，ｄｅｖ％ｄ，ｆｕｎｃ％ｄ＼ｎ″，

ＣＹＧ ＰＣＩ ＤＥＶ ＧＥＴ ＢＵＳ（ｄｅｖｉｄ），

ＣＹＧ ＰＣＩ ＤＥＶ ＧＥＴ ＤＥＶ（ＣＹＧ ＰＣＩ ＤＥＶ ＧＥＴ ＤＥＶＦＮ（ｄｅｖｉｄ）），

ＣＹＧ ＰＣＩ ＤＥＶ ＧＥＴ ＦＮ（ＣＹＧ ＰＣＩ ＤＥＶ ＧＥＴ ＤＥＶＦＮ（ｄｅｖｉｄ）
）；

ＰＣＩ配置信息数据结构：

ｔｙｐｅｄｅｆｓｔｒｕｃｔｃｙｇ ｐｃｉ ｄｅｖｉｃｅ；

上一节已经对该数据结构进行了介绍。它包含了从ＰＣＩ设备配置空间读取的数据，也用
于记录对该设备的资源分配信息。ＰＣＩ配置信息可以使用ｃｙｇ ｐｃｉ ｇｅｔ ｄｅｖｉｃｅ ｉｎｆｏ（）函数
读取。

ＰＣＩ地址空间类型：

ｔｙｐｅｄｅｆＣＹＧ ＷＯＲＤ６４ＣＹＧ ＰＣＩ ＡＤＤＲＥＳＳ６４；

ｔｙｐｅｄｅｆＣＹＧ ＷＯＲＤ３２ＣＹＧ ＰＣＩ ＡＤＤＲＥＳＳ３２；

这两种类型为ＰＣＩ的地址提供了定义。ＰＣＩ的ＩＯ地址空间指针为３２位，Ｍｅｍｏｒｙ空间
地址指针为３２位或６４位。

２高级ＡＰＩ
ＰＣＩ库为应用程序和驱动程序提供了一组高级ＡＰＩ函数，使用这些函数可以对ＰＣＩ总线
及ＰＣＩ设备进行操作。下面简单介绍这些高级ＡＰＩ函数。

ｖｏｉｄｃｙｇ ｐｃｉｉｎｉｔ（ｖｏｉｄ）

该函数对ＰＣＩ库进行初始化，并与硬件建立联系。系统内所有驱动程序都可以调用该函
数，也可以仅由应用程序的初始化函数进行调用。

２８１

ｃｙｇ ｂｏｏｌｃｙｇ ｐｃｉｆｉｎｄ ｄｅｖｉｃｅ（ｃｙｇ ｕｉｎｔ１６ｖｅｎｄｏｒ，

ｃｙｇ ｕｉｎｔ１６ｄｅｖｉｃｅ，

ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｉｄｄｅｖｉｄ）

该函数查找符合指定的厂家号ｖｅｎｄｏｒ和设备号（ｄｅｖｉｃｅ）的设备。这种查找从ｄｅｖｉｄ指定
的设备处开始（若ｄｅｖｉｄ为ＣＹＧ ＰＣＩ ＮＵＬＬ ＤＥＶＩＤ则从第一个ＰＣＩ槽开始），如果发现了
相应的设备，则其设备ＩＤ将通过ｄｅｖｉｄ带回。发现相应的设备时，函数返回ｔｒｕｅ，否则返回

ｆａｌｓｅ。

ｃｙｇ ｂｏｏｌｃｙｇ ｐｃｉｆｉｎｄ ｃｌａｓｓ（ｃｙｇ ｕｉｎｔ３２ｄｅｖ ｃｌａｓｓ，

ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｉｄｄｅｖｉｄ）

该函数查找给定设备类型代码ｄｅｖ ｃｌａｓｓ的设备。查找过程开始于ｄｅｖｉｄ指定的设备（如
果ｄｅｖｉｄ为ＣＹＧ ＰＣＩ ＮＵＬＬ ＤＥＶＩＤ，则从ＰＣＩ的第一个槽开始）。如果查找到相应的设
备，则返回ｔｒｕｅ且ｄｅｖｉｄ包含被查找到的设备ＩＤ，否则返回ｆａｌｓｅ。

ｃｙｇ ｂｏｏｌｃｙｇ ｐｃｉｆｉｎｄ ｎｅｘｔ（ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｉｄｃｕｒ ｄｅｖｉｄ，

ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｉｄｎｅｘｔ ｄｅｖｉｄ）

该函数查找ｃｕｒ ｄｅｖｉｄ指定设备之后的有效设备。如果ｃｕｒ ｄｅｖｉｄ为ＣＹＧ ＰＣＩ
ＮＵＬＬ ＤＥＶＩＤ，则从第一个ＰＣＩ槽开始查找。该函数允许ｎｅｘｔ ｄｅｖｉｄ指向ｃｕｒ ｄｅｖｉｄ。如
果查找到另一个设备，函数返回ｔｒｕｅ，否则返回ｆａｌｓｅ。

ｃｙｇ ｂｏｏｌｃｙｇ ｐｃｉｆｉｎｄ ｍａｔｃｈｉｎｇ（ｃｙｇ ｐｃｉ ｍａｔｃｈ ｆｕｎｃｍａｔｃｈｐ，

ｖｏｉｄｍａｔｃｈ ｃａｌｌｂａｃｋ ｄａｔａ，

ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｉｄｄｅｖｉｄ）

该函数查找设备属性与匹配函数ｍａｔｃｈｐ相匹配的设备。查找过程开始于ｄｅｖｉｄ指定的
设备，如果ｄｅｖｉｄ为ＣＹＧ ＰＣＩ ＮＵＬＬ ＤＥＶＩＤ，则从第一个ＰＣＩ槽开始查找。如果查找到
相匹配的设备，则返回ｔｒｕｅ且ｄｅｖｉｄ包含被查找到的设备ＩＤ，否则返回ｆａｌｓｅ。匹配函数的类型
声称如下：

ｔｙｐｅｄｅｆｃｙｇ ｂｏｏｌ（ｃｙｇ ｐｃｉ ｍａｔｃｈ ｆｕｎｃ）（ｃｙｇ ｕｉｎｔ１６ｖｅｎｄｏｒ，

ｃｙｇ ｕｉｎｔ１６ｄｅｖｉｃｅ，

ｃｙｇ ｕｉｎｔ３２ｃｌａｓｓ，

ｖｏｉｄｕｓｅｒ ｄａｔａ）

其中的ｖｅｎｄｏｒ、ｄｅｖｉｃｅ和ｃｌａｓｓ三个参数来自ＰＣＩ设备配置空间，ｕｓｅｒ ｄａｔａ为传递给ｃｙｇ
ｐｃｉｆｉｎｄ ｍａｔｃｈｉｎｇ函数的回调数据（即ｍａｔｃｈ ｃａｌｌｂａｃｋ ｄａｔａ）。

ｖｏｉｄｃｙｇ ｐｃｉ ｇｅｔ ｄｅｖｉｃｅｉｎｆｏ（ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｉｄｄｅｖｉｄ，

ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｄｅｖ ｉｎｆｏ）

该函数获取ｄｅｖｉｄ所指定设备的ＰＣＩ配置信息。配置信息存放于ｄｅｖ ｉｎｆｏ指定的ｃｙｇ
ｐｃｉ ｄｅｖｉｃｅ数据结构内。如果该设备没有被使能，则该函数将从基地址寄存器取回其大小和
类型信息，并放置于ｃｙｇ ｐｃｉ ｄｅｖｉｃｅ中的ｂａｓｅ ｓｉｚｅ［］数组内。

ｖｏｉｄｃｙｇ ｐｃｉｓｅｔ ｄｅｖｉｃｅｉｎｆｏ（ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｉｄｄｅｖｉｄ，

３８１

ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｄｅｖ ｉｎｆｏ）

该函数对ｄｅｖｉｄ指定的设备进行ＰＣＩ配置信息的设置。这种设置只对可写配置寄存器进
行设置。一旦所有信息设置完成，设备的配置信息将被读回到ｄｅｖ ｉｎｆｏ，ｄｅｖ ｉｎｆｏ反映了硬
件的真实状态。

ｖｏｉｄｃｙｇ ｐｃｉｒｅａｄ ｃｏｎｆｉｇ ｕｉｎｔ８（ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｉｄｄｅｖｉｄ，

ｃｙｇ ｕｉｎｔ８ｏｆｆｓｅｔ，ｃｙｇ ｕｉｎｔ８ｖａｌ）

ｖｏｉｄｃｙｇ ｐｃｉｒｅａｄ ｃｏｎｆｉｇ ｕｉｎｔ１６（ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｉｄｄｅｖｉｄ，

ｃｙｇ ｕｉｎｔ８ｏｆｆｓｅｔ，ｃｙｇ ｕｉｎｔ１６ｖａｌ）

ｖｏｉｄｃｙｇ ｐｃｉｒｅａｄ ｃｏｎｆｉｇ ｕｉｎｔ３２（ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｉｄｄｅｖｉｄ，

ｃｙｇ ｕｉｎｔ８ｏｆｆｓｅｔ，ｃｙｇ ｕｉｎｔ３２ｖａｌ）

这三个函数用于读取指定设备ｄｅｖｉｄ的配置寄存器。它们主要用于读取设备专用配置寄
存器。对普通ＰＣＩ配置寄存器的访问最好通过ｃｙｇ ｐｃｉ ｇｅｔ ｄｅｖｉｃｅ ｉｎｆｏ（）函数进行。

ｖｏｉｄｃｙｇ ｐｃｉ ｗｒｉｔｅ ｃｏｎｆｉｇ ｕｉｎｔ８（ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｉｄｄｅｖｉｄ，

ｃｙｇ ｕｉｎｔ８ｏｆｆｓｅｔ，ｃｙｇ ｕｉｎｔ８ｖａｌ）；

ｖｏｉｄｃｙｇ ｐｃｉ ｗｒｉｔｅ ｃｏｎｆｉｇ ｕｉｎｔ１６（ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｉｄｄｅｖｉｄ，

ｃｙｇ ｕｉｎｔ８ｏｆｆｓｅｔ，ｃｙｇ ｕｉｎｔ１６ｖａｌ）；

ｖｏｉｄｃｙｇ ｐｃｉ ｗｒｉｔｅ ｃｏｎｆｉｇ ｕｉｎｔ３２（ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｉｄｄｅｖｉｄ，

ｃｙｇ ｕｉｎｔ８ｏｆｆｓｅｔ，ｃｙｇ ｕｉｎｔ３２ｖａｌ）；

这三个函数用于写指定设备ｄｅｖｉｄ的ＰＣＩ配置寄存器。主要用于访问设备专用配置寄存
器。对普通ＰＣＩ配置寄存器的访问最好通过ｃｙｇ ｐｃｉ ｓｅｔ ｄｅｖｉｃｅ ｉｎｆｏ（）函数进行。如果使
用这三个函数对普通ＰＣＩ配置寄存器进行写操作，则有可能导致ｃｙｇ ｐｃｉ ｄｅｖｉｃｅ内的数据失
效。

利用上述ＡＰＩ函数可以进行ＰＣＩ总线的初始化操作，并可以对ＰＣＩ配置空间进行访问。
另外还有下面的一些ＡＰＩ函数，这些函数可以被用来对ＰＣＩ设备进行资源分配：

ｃｙｇ ｂｏｏｌｃｙｇ ｐｃｉｃｏｎｆｉｇｕｒｅ ｄｅｖｉｃｅ（ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｄｅｖ ｉｎｆｏ）

该函数对ＰＣＩ设备的所有基地址寄存器进行设置，为ＰＣＩ设备分配Ｍｅｍｏｒｙ和ＩＯ空间。
所设置的基地址存放在ｄｅｖ ｉｎｆｏ内的ｂａｓｅ ｍａｐ［］内，可以直接使用。如果ｄｅｖ ｉｎｆｏ没
有有效的ｂａｓｅ ｓｉｚｅ［］，函数结果将返回ｆａｌｓｅ。该函数还调用了ｃｙｇ ｐｃｉ ｔｒａｎｓｌａｔｅ ｉｎｔｅｒｒｕｐｔ
（）函数将ＰＣＩ设备中断转换成ＨＡＬ中断向量。

ｃｙｇ ｂｏｏｌｃｙｇ ｐｃｉｃｏｎｆｉｇｕｒｅ ｂｕｓ（ｃｙｇ ｕｉｎｔ８ｂｕｓ，

ｃｙｇ ｕｉｎｔ８ｎｅｘｔ ｂｕｓ）

该函数对指定总线及其从属总线上所有设备的所有基地址寄存器进行设置，为ＰＣＩ设备
分配Ｍｅｍｏｒｙ和ＩＯ空间。如果总线上有ＰＣＩＰＣＩ桥，该函数将对自己进行递归调用，完成对
该桥另一侧总线的配置。在对桥设备的Ｍｅｍｏｒｙ和ＩＯ窗口进行配置之前，必须完成桥设备另
一侧总线上所有设备的Ｍｅｍｏｒｙ和ＩＯ空间分配。参数ｎｅｘｔ ｂｕｓ指向分配给下一条子总线的
总线号，总线号将随着新总线的发现而增加。函数执行成功返回ｔｒｕｅ，否则返回ｆａｌｓｅ。

ｃｙｇ ｂｏｏｌｃｙｇ ｐｃｉｔｒａｎｓｌａｔｅｉｎｔｅｒｒｕｐｔ（ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｄｅｖ ｉｎｆｏ，

４８１

ＣＹＧ ＡＤＤＲＷＯＲＤｖｅｃ）

该函数将设备的ＰＣＩ中断（ＩＮＴＡ＃～ＩＮＴＡＤ＃）转换成相应的ＨＡＬ中断向量。这种转
换与ＰＣＩ设备在总线上的位置相关。如果设备可以产生中断，则被转换的中断向量号将被存
放在ｖｅｃ内，并返回ｔｒｕｅ，否则返回ｆａｌｓｅ。

ｃｙｇ ｂｏｏｌｃｙｇ ｐｃｉ ａｌｌｏｃａｔｅ ｍｅｍｏｒｙ（ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｄｅｖ ｉｎｆｏ，

ｃｙｇ ｕｉｎｔ３２ｂａｒ，

ＣＹＧ ＰＣＩ ＡＤＤＲＥＳＳ６４ｂａｓｅ）

ｃｙｇ ｂｏｏｌｃｙｇ ｐｃｉ ａｌｌｏｃａｔｅｉｏ（ｃｙｇ ｐｃｉ ｄｅｖｉｃｅｄｅｖ ｉｎｆｏ，

ｃｙｇ ｕｉｎｔ３２ｂａｒ，

ＣＹＧ ＰＣＩ ＡＤＤＲＥＳＳ３２ｂａｓｅ）

上面两个函数对ｂａｒ指定的基地址寄存器进行设置，对ＰＣＩ设备分配 Ｍｅｍｏｒｙ和ＩＯ空
间。参数ｂａｓｅ必须具有正确的字节边界，如果空间分配成功，函数返回时该参数将带回下一
个未被分配的空间地址。如果基地址寄存器被分配一个错误类型的地址，或者ｄｅｖ ｉｎｆｏ所包
含的不是有效的ｂａｓｅ ｓｉｚｅ［］，则返回结果为ｆａｌｓｅ。这些函数允许设备驱动程序建立自己所需
的地址映像。大多数设备应该使用ｃｙｇ ｐｃｉ ｃｏｎｆｉｇｕｒｅ ｄｅｖｉｃｅ（）函数来实现这种地址空间的
分配。

ｖｏｉｄｃｙｇ ｐｃｉｓｅｔ ｍｅｍｏｒｙ ｂａｓｅ（ＣＹＧ ＰＣＩ ＡＤＤＲＥＳＳ６４ｂａｓｅ）

ｖｏｉｄｃｙｇ ｐｃｉｓｅｔｉｏ ｂａｓｅ（ＣＹＧ ＰＣＩ ＡＤＤＲＥＳＳ３２ｂａｓｅ）

这两个函数分别对内存分配程序所使用的Ｍｅｍｏｒｙ和ＩＯ映像的基地址进行设置。正常
情况下这些基地址使用系统平台的默认基地址。应用程序可根据需要使用这两个函数来改变

这些基地址的设置。

３低级ＡＰＩ
ＰＣＩ库提供了一些硬件ＡＰＩ函数，主要为ＰＣＩ库自己提供访问ＰＣＩ总线配置空间的方
法。驱动程序和应用程序也可以使用这些函数来实现ＰＣＩ库不支持的一些ＰＣＩ总线操作。
下面是这些低级ＡＰＩ函数的简单介绍。

ｖｏｉｄｃｙｇ ｐｃｉｈｗ ｉｎｉｔ（ｖｏｉｄ）

该函数对ＰＣＩ硬件进行初始化，使得ＰＣＩ配置空间可以被访问。

ｖｏｉｄｃｙｇ ｐｃｉｈｗｒｅａｄ ｃｏｎｆｉｇ ｕｉｎｔ８（ｃｙｇ ｕｉｎｔ８ｂｕｓ，

ｃｙｇ ｕｉｎｔ８ｄｅｖｆｎ，ｃｙｇ ｕｉｎｔ８ｏｆｆｓｅｔ，ｃｙｇ ｕｉｎｔ８ｖａｌ）

ｖｏｉｄｃｙｇ ｐｃｉｈｗ ｒｅａｄ ｃｏｎｆｉｇ ｕｉｎｔ１６（ｃｙｇ ｕｉｎｔ８ｂｕｓ，

ｃｙｇ ｕｉｎｔ８ｄｅｖｆｎ，ｃｙｇ ｕｉｎｔ８ｏｆｆｓｅｔ，ｃｙｇ ｕｉｎｔ１６ｖａｌ）

ｖｏｉｄｃｙｇ ｐｃｉｈｗ ｒｅａｄ ｃｏｎｆｉｇ ｕｉｎｔ３２（ｃｙｇ ｕｉｎｔ８ｂｕｓ，

ｃｙｇ ｕｉｎｔ８ｄｅｖｆｎ，ｃｙｇ ｕｉｎｔ８ｏｆｆｓｅｔ，ｃｙｇ ｕｉｎｔ３２ｖａｌ）

这些函数分别读取ＰＣＩ配置空间内的不同长度的寄存器，寄存器地址由参数ｂｕｓ、ｄｅｖｆｎ、

ｏｆｆｓｅｔ指定。

ｖｏｉｄｃｙｇ ｐｃｉｈｗ ｗｒｉｔｅ ｃｏｎｆｉｇ ｕｉｎｔ８（ｃｙｇ ｕｉｎｔ８ｂｕｓ，

ｃｙｇ ｕｉｎｔ８ｄｅｖｆｎ，ｃｙｇ ｕｉｎｔ８ｏｆｆｓｅｔ，ｃｙｇ ｕｉｎｔ８ｖａｌ）

５８１

ｖｏｉｄｃｙｇ ｐｃｉｈｗ ｗｒｉｔｅ ｃｏｎｆｉｇ ｕｉｎｔ１６（ｃｙｇ ｕｉｎｔ８ｂｕｓ，

ｃｙｇ ｕｉｎｔ８ｄｅｖｆｎ，ｃｙｇ ｕｉｎｔ８ｏｆｆｓｅｔ，ｃｙｇ ｕｉｎｔ１６ｖａｌ）

ｖｏｉｄｃｙｇ ｐｃｉｈｗ ｗｒｉｔｅ ｃｏｎｆｉｇ ｕｉｎｔ３２（ｃｙｇ ｕｉｎｔ８ｂｕｓ，

ｃｙｇ ｕｉｎｔ８ｄｅｖｆｎ，ｃｙｇ ｕｉｎｔ８ｏｆｆｓｅｔ，ｃｙｇ ｕｉｎｔ３２ｖａｌ）

这些函数分别对ＰＣＩ配置空间内的不同长度的寄存器进行设置，寄存器地址由参数ｂｕｓ、

ｄｅｖｆｎ、ｏｆｆｓｅｔ指定。

ｃｙｇ ｂｏｏｌｃｙｇ ｐｃｉｈｗ ｔｒａｎｓｌａｔｅｉｎｔｅｒｒｕｐｔ（ｃｙｇ ｕｉｎｔ８ｂｕｓ，

ｃｙｇ ｕｉｎｔ８ｄｅｖｆｎ，

ＣＹＧ ＡＤＤＲＷＯＲＤｖｅｃ）

该函数询问ＰＣＩ设备哪一个ＨＡＬ中断向量与其相对应。

４硬件抽象层ＨＡＬ对ＰＣＩ的支持
硬件抽象层ＨＡＬ对ＰＣＩ的支持由一组Ｃ语言宏定义组成，这些宏为ＰＣＩ低级ＡＰＩ提供

了具体实现。下面简单介绍这些宏定义。

ＨＡＬ ＰＣＩ ＩＮＩＴ（）

初始化ＰＣＩ总线。

ＨＡＬ ＰＣＩ ＲＥＡＤ ＵＩＮＴ８（ｂｕｓ，ｄｅｖｆｎ，ｏｆｆｓｅｔ，ｖａｌ）

ＨＡＬ ＰＣＩ ＲＥＡＤ ＵＩＮＴ１６（ｂｕｓ，ｄｅｖｆｎ，ｏｆｆｓｅｔ，ｖａｌ）

ＨＡＬ ＰＣＩ ＲＥＡＤ ＵＩＮＴ３２（ｂｕｓ，ｄｅｖｆｎ，ｏｆｆｓｅｔ，ｖａｌ）

这三个宏定义分别读取ＰＣＩ配置空间内的不同长度的寄存器，寄存器地址由参数ｂｕｓ、ｄｅ
ｖｆｎ、ｏｆｆｓｅｔ指定。

ＨＡＬ ＰＣＩ ＷＲＩＴＥ ＵＩＮＴ８（ｂｕｓ，ｄｅｖｆｎ，ｏｆｆｓｅｔ，ｖａｌ）

ＨＡＬ ＰＣＩ ＷＲＩＴＥ ＵＩＮＴ１６（ｂｕｓ，ｄｅｖｆｎ，ｏｆｆｓｅｔ，ｖａｌ）

ＨＡＬ ＰＣＩ ＷＲＩＴＥ ＵＩＮＴ３２（ｂｕｓ，ｄｅｖｆｎ，ｏｆｆｓｅｔ，ｖａｌ）

这三个宏定义分别对ＰＣＩ配置空间内的不同长度的寄存器进行设置，寄存器地址由参数

ｂｕｓ、ｄｅｖｆｎ、ｏｆｆｓｅｔ指定。

ＨＡＬ ＰＣＩ ＴＲＡＮＳＬＡＴＥ ＩＮＴＥＲＲＵＰＴ（ｂｕｓ，ｄｅｖｆｎ，ｖｅｃ，ｖａｌｉｄ）

将ＰＣＩ设备中断转换成ＨＡＬ中断向量。

ＨＡＬ ＰＣＩ ＡＬＬＯＣ ＢＡＳＥ ＭＥＭＯＲＹ
ＨＡＬ ＰＣＩ ＡＬＬＯＣ ＢＡＳＥ ＩＯ

这两个宏定义了用于对Ｍｅｍｏｒｙ和ＩＯ分配指针进行初始化的默认基地址。

ＨＡＬ ＰＣＩ ＰＨＹＳＩＣＡＬ ＭＥＭＯＲＹ ＢＡＳＥ
ＨＡＬ ＰＣＩ ＰＨＹＳＩＣＡＬ ＩＯ ＢＡＳＥ

ＰＣＩ的Ｍｅｍｏｒｙ空间和ＩＯ空间并不总是直接使用物理Ｍｅｍｏｒｙ地址和物理ＩＯ地址。这
些地址空间常常是ＣＰＵ地址空间内某一ｏｆｆｓｅｔ处的一处窗口。这两个宏对这种ｏｆｆｓｅｔ进行了
定义，该ｏｆｆｓｅｔ加上ＰＣＩ基地址将ＰＣＩ总线地址转换成物理内存地址，使用这种转换后的物理

６８１

地址可以访问分配给ＰＣＩ设备的Ｍｅｍｏｒｙ和ＩＯ空间。使用这种ＣＰＵ地址窗口机制给ＰＣＩ设
备分配的可直接寻址的内存空间要比实际可提供给ＰＣＩ的内存空间要小。在这种情况下，设
备驱动程序必须使用段（ｓｅｇｍｅｎｔ）对ＰＣＩ内存空间进行访问。

ＨＡＬ ＰＣＩ ＩＧＮＯＲＥ ＤＥＶＩＣＥ（ｂｕｓ，ｄｅｖ，ｆｎ）

如果对该宏进行了定义，那么在使用ＰＣＩ总线扫描函数查找设备时，设备的指定将会受
到限制。这是因为某些时候需要对设备进行特殊处理。如果该宏的值为ｔｒｕｅ，则在使用ｃｙｇ
ｐｃｉｆｉｎｄ ｎｅｘｔ（）函数或其他总线扫描函数查找设备时，将不会发现参数ｂｕｓ、ｄｅｖ、ｆｎ所指定的
设备。

７８１

第９章 文 件 系 统

本章主要介绍ｅＣｏｓ文件系统的基本结构和基本的文件ＩＯ操作。ｅＣｏｓ文件系统主要实现
于ＦＩＬＥＩＯ包，该包提供了与ＰＯＳＩＸ兼容的文件ＩＯ操作，另外还提供了ＢＳＤＳｏｃｋｅｔ网络

ＡＰＩ。本章的侧重点主要在于文件系统和基于文件系统的网络协议栈的客户端接口。如果读
者想详细了解这些ＡＰＩ的具体说明，可以参阅其他相关标准和说明。

ｅＣｏｓ文件系统并不局限于真正意义上的文件。通过文件系统接口所访问的对象可以是
网络协议Ｓｏｃｋｅｔｓ、设备驱动程序、ＦＩＦＯ、消息队列，或者其他任何具有类文件接口的对象。以
设备为例，设备的访问可以通过一个安装（ｍｏｕｎｔ）于“／ｄｅｖ”的伪文件系统“ｄｅｖｆｓ”来实现。设
备的打开操作被转换为对ｃｙｇ ｉｏ ｌｏｏｋｕｐ（）函数的调用，如果调用成功，则其文件对象中ｆ
ｏｐｓ内的函数将文件系统的ＡＰＩ函数转换为对设备ＡＰＩ的调用。

ｅＣｏｓ提供的ＦＩＬＥＩＯ源码中包含了一组包含许多指针的表格，这些指针指向文件系统的
主要接口函数。这种方法可以避免函数名字的混淆（例如在多个文件系统中可能都有一个相

同的ｒｅａｄ（）函数）。同时，采用这种方法还可以减少动态内存分配的需要。
用户在进行开发时，可以创建新的文件系统。通过将ＦＩＬＥＩＯ的函数调用转换为现有文

件系统的调用，可以很容易地将其他系统现有的文件系统移植到ｅＣｏｓ中来，而且这种移植的
代码量很小。

本章还介绍了ＲＡＭ文件系统和ＲＯＭ文件系统。

９１ 文件系统表格

ｅＣｏｓ文件系统包含了一些文件系统表格和文件操作函数。这些表格有文件系统表（Ｆｉｌｅ
ＳｙｓｔｅｍＴａｂｌｅ）、安装表（ＭｏｕｎｔＴａｂｌｅ）和文件表（ＦｉｌｅＴａｂｌｅ）。文件系统表用于描述具体ｅＣｏｓ
系统中所有的文件系统以及对每个文件系统进行操作的一些函数信息，安装表描述了系统中

处于活跃状态的文件系统，而文件表所描述的是被打开的文件对象的一些详细信息。

９１１ 文件系统表（ＦｉｌｅＳｙｓｔｅｍＴａｂｌｅ）

文件系统表是一个数组形式的表格，数组的每一项对应于系统中的每一个文件系统，它们

分别对相应的文件系统进行描述。系统中的每一个文件系统都应当使用宏ＦＳＴＡＢ ＥＮＴＲＹ
（）在文件系统表中注册一个相应的表项。目前版本的ｅＣｏｓ不支持对文件系统表项的动态增
加或删除，但提供了一个可以向文件系统表增加新表项的一个类似于ｍｏｕｎｔ（）的ＡＰＩ函数。
文件系统表用于存放已安装在系统上的所有文件系统的入口，它采用如下的数组形式表

示：

ｅｘｔｅｒｎＣｃｙｇ ｆｓｔａｂ ｅｎｔｒｙｆｓｔａｂ［］；

文件系统表中的每一个表项对应一个文件系统。表项是一个数据结构，其结构定义如下：

８８１

ｓｔｒｕｃｔｃｙｇ ｆｓｔａｂ ｅｎｔｒｙ
｛

ｃｏｎｓｔｃｈａｒ ｎａｍｅ； ／／ｆｉｌｅｓｙｓｔｅｍｎａｍｅ
ＣＹＧ ＡＤＤＲＷＯＲＤ ｄａｔａ； ／／ｐｒｉｖａｔｅｄａｔａｖａｌｕｅ
ｃｙｇ ｕｉｎｔ３２ ｓｙｎｃｍｏｄｅ； ／／ｓｙｎｃｈｒｏｎｉｚａｔｉｏｎｍｏｄｅ

ｉｎｔ（ｍｏｕｎｔ）（ｃｙｇ ｆｓｔａｂ ｅｎｔｒｙｆｓｔｅ，ｃｙｇ ｍｔａｂ ｅｎｔｒｙｍｔｅ）；

ｉｎｔ（ｕｍｏｕｎｔ）（ｃｙｇ ｍｔａｂ ｅｎｔｒｙｍｔｅ）；

ｉｎｔ（ｏｐｅｎ） （ｃｙｇ ｍｔａｂ ｅｎｔｒｙｍｔｅ，ｃｙｇ ｄｉｒｄｉｒ，ｃｏｎｓｔｃｈａｒｎａｍｅ，

ｉｎｔｍｏｄｅ，ｃｙｇ ｆｉｌｅｆｔｅ）；

ｉｎｔ（ｕｎｌｉｎｋ）（ｃｙｇ ｍｔａｂ ｅｎｔｒｙｍｔｅ，ｃｙｇ ｄｉｒｄｉｒ，ｃｏｎｓｔｃｈａｒｎａｍｅ）；

ｉｎｔ（ｍｋｄｉｒ）（ｃｙｇ ｍｔａｂ ｅｎｔｒｙｍｔｅ，ｃｙｇ ｄｉｒｄｉｒ，ｃｏｎｓｔｃｈａｒｎａｍｅ）；

ｉｎｔ（ｒｍｄｉｒ）（ｃｙｇ ｍｔａｂ ｅｎｔｒｙｍｔｅ，ｃｙｇ ｄｉｒｄｉｒ，ｃｏｎｓｔｃｈａｒｎａｍｅ）；

ｉｎｔ（ｒｅｎａｍｅ）（ｃｙｇ ｍｔａｂ ｅｎｔｒｙｍｔｅ，ｃｙｇ ｄｉｒｄｉｒ１，ｃｏｎｓｔｃｈａｒｎａｍｅ１，

ｃｙｇ ｄｉｒｄｉｒ２，ｃｏｎｓｔｃｈａｒｎａｍｅ２）；

ｉｎｔ（ｌｉｎｋ） （ｃｙｇ ｍｔａｂ ｅｎｔｒｙｍｔｅ，ｃｙｇ ｄｉｒｄｉｒ１，ｃｏｎｓｔｃｈａｒｎａｍｅ１，

ｃｙｇ ｄｉｒｄｉｒ２，ｃｏｎｓｔｃｈａｒｎａｍｅ２，ｉｎｔｔｙｐｅ）；

ｉｎｔ（ｏｐｅｎｄｉｒ）（ｃｙｇ ｍｔａｂ ｅｎｔｒｙｍｔｅ，ｃｙｇ ｄｉｒｄｉｒ，ｃｏｎｓｔｃｈａｒｎａｍｅ，

ｃｙｇ ｆｉｌｅｆｔｅ）；

ｉｎｔ（ｃｈｄｉｒ） （ｃｙｇ ｍｔａｂ ｅｎｔｒｙｍｔｅ，ｃｙｇ ｄｉｒｄｉｒ，ｃｏｎｓｔｃｈａｒｎａｍｅ，

ｃｙｇ ｄｉｒｄｉｒ ｏｕｔ）；

ｉｎｔ（ｓｔａｔ） （ｃｙｇ ｍｔａｂ ｅｎｔｒｙｍｔｅ，ｃｙｇ ｄｉｒｄｉｒ，ｃｏｎｓｔｃｈａｒｎａｍｅ，

ｓｔｒｕｃｔｓｔａｔｂｕｆ）；

ｉｎｔ（ｇｅｔｉｎｆｏ）（ｃｙｇ ｍｔａｂ ｅｎｔｒｙｍｔｅ，ｃｙｇ ｄｉｒｄｉｒ，ｃｏｎｓｔｃｈａｒｎａｍｅ，

ｉｎｔｋｅｙ，ｃｈａｒｂｕｆ，ｉｎｔｌｅｎ）；

ｉｎｔ（ｓｅｔｉｎｆｏ）（ｃｙｇ ｍｔａｂ ｅｎｔｒｙｍｔｅ，ｃｙｇ ｄｉｒｄｉｒ，ｃｏｎｓｔｃｈａｒｎａｍｅ，

ｉｎｔｋｅｙ，ｃｈａｒｂｕｆ，ｉｎｔｌｅｎ）；
｝；

其中：

ｎａｍｅ— 文件系统名字，如“ｎｏｍｆｓ”、“ｍｓｄｏｓ”、“ｅｘｔ２”等。

ｄａｔａ— 文件系统私有数据。

ｓｙｎｃｍｏｄｅ— 同步方式，描述该文件系统被访问时所使用的锁定协议。
结构体内的其余部分是对该文件系统进行文件和目录操作的一些函数：

ｍｏｕｎｔ— 安装文件系统。

ｕｍｏｕｎｔ— 卸载文件系统。

ｏｐｅｎ— 打开一个文件。

ｕｎｌｉｎｋ— 取消文件连接。

ｍｋｄｉｒ— 创建文件目录。

ｒｍｄｉｒ— 删除文件目录。

ｌｉｎｋ— 给文件创建一个新的连接。

ｏｐｅｎｄｉｒ— 打开一个文件目录。

９８１

ｃｈｄｉｒ— 改变当前目录。

ｓｔａｔ— 获取文件信息。

ｇｅｔｉｎｆｏ— 获取文件系统信息。

ｓｅｔｉｎｆｏ— 设置文件系统信息。
除ｍｏｕｎｔ（）函数和ｕｍｏｕｎｔ（）函数外，其他函数都包含了三个标准参数：安装表指针、目录

指针和文件名，这些参数用于对操作对象进行定位。

宏ＦＳＴＡＢ ＥＮＴＲＹ（）用于在文件系统表中注册一个文件系统。每一个驻留在系统中的
文件系统都要使用宏ＦＳＴＡＢ ＥＮＴＲＹ在文件系统表中注册一个入口，为将来安装文件系统
做好准备。ＦＳＴＡＢ ＥＮＴＲＹ（）的使用格式如下：

ＦＳＴＡＢ ＥＮＴＲＹ（ ｌ， ／／文件系统表表项的Ｃ语言标识符

ｎａｍｅ， ／／文件系统名字

ｄａｔａ， ／／文件系统私有数据

ｓｙｎｃｍｏｄｅ，／／同步方式

ｍｏｕｎｔ， ／／文件系统内部ｍｏｕｎｔ函数指针

ｕｍｏｕｎｔ， ／／文件系统内部ｕｍｏｕｎｔ函数指针

ｏｐｅｎ， ／／文件系统内部ｏｐｅｎ函数指针

ｕｎｌｉｎｋ， ／／文件系统内部ｕｎｌｉｎｋ函数指针

ｍｋｄｉｒ， ／／文件系统内部ｍｋｄｉｒ函数指针

ｒｍｄｉｒ， ／／文件系统内部ｒｍｄｉｒ函数指针

ｒｅｎａｍｅ， ／／文件系统内部ｒｅｎａｍｅ函数指针

ｌｉｎｋ， ／／文件系统内部ｌｉｎｋ函数指针

ｏｐｅｎｄｉｒ， ／／文件系统内部ｏｐｅｎｄｉｒ函数指针

ｃｈｄｉｒ， ／／文件系统内部ｃｈｄｉｒ函数指针

ｓｔａｔ， ／／文件系统内部ｓｔａｔ函数指针

ｇｅｔｉｎｆｏ， ／／文件系统内部ｇｅｔｉｎｆｏ函数指针

ｓｅｔｉｎｆｏ ／／文件系统内部ｓｅｔｉｎｆｏ函数指针
）

９１２ 安装表（ＭｏｕｎｔＴａｂｌｅ）

文件系统安装表记录了系统中当前处于活跃状态的文件系统。ｅＣｏｓ的这种安装表类似
于ＵＮＩＸ系统中的文件系统安装点。
安装表表项有两个来源。文件系统和其他组件可以使用宏ＭＴＡＢ ＥＮＴＲＹ（）向安装表

输出静态表项，另一种方法是使用ｍｏｕｎｔ（）函数在运行时安装新的表项。通过这两种方法安
装的表项都可以调用ｕｍｏｕｎｔ（）函数进行卸载。
系统中正在运行的文件系统安装表采用下面的数组形式表示：

ｅｘｔｅｒｎＣｃｙｇ ｍｔａｂ ｅｎｔｒｙｍｔａｂ［］；

安装表表项也是一个数据结构，其定义如下：

ｓｔｒｕｃｔｃｙｇ ｍｔａｂ ｅｎｔｒｙ
｛

０９１

ｃｏｎｓｔｃｈａｒ ｎａｍｅ； ／／ｎａｍｅｏｆｍｏｕｎｔｐｏｉｎｔ
ｃｏｎｓｔｃｈａｒ ｆｓｎａｍｅ； ／／ｎａｍｅｏｆｉｍｐｌｅｍｅｎｔｉｎｇｆｉｌｅｓｙｓｔｅｍ
ｃｏｎｓｔｃｈａｒ ｄｅｖｎａｍｅ； ／／ｎａｍｅｏｆｈａｒｄｗａｒｅｄｅｖｉｃｅ
ＣＹＧ ＡＤＤＲＷＯＲＤｄａｔａ； ／／ｐｒｉｖａｔｅｄａｔａｖａｌｕｅ
ｃｙｇ ｂｏｏｌ ｖａｌｉｄ； ／／ｖａｌｉｄｅｎｔｒｙ？

ｃｙｇ ｆｓｔａｂ ｅｎｔｒｙ ｆｓ； ／／ｐｏｉｎｔｅｒｔｏｆｓｔａｂｅｎｔｒｙ
ｃｙｇ ｄｉｒ ｒｏｏｔ； ／／ｒｏｏｔｄｉｒｅｃｔｏｒｙｐｏｉｎｔｅｒ
｝；

安装表中的ｎａｍｅ为安装点（ｍｏｕｎｔｐｏｉｎｔ）名字。它用于将具有根的文件名（以“／”开始的
文件名）指向正确的文件系统。当使用以“／”开始的文件名时，系统将其与安装表中所有有效

的表项名字进行比较，表项名字在字符“／”出现之前或字符串结束之前与文件名具有最长匹配

的表项即为该文件所属的文件系统安装表表项。文件名的剩余部分、该安装表表项的指针以

及作为目录指针的ｒｏｏｔ值一起被当作参数传送到文件系统表表项中的相应函数。
例如，假设一个安装表具有如下的表项内容：

｛″／″，″ｍｓｄｏｓ″，″／ｄｅｖ／ｈｄ０″，．．．｝
｛″／ｆｄ″，″ｍｓｄｏｓ″，″／ｄｅｖ／ｆｄ０″，．．．｝
｛″／ｒｏｍ″，″ｒｏｍｆｓ″，″″，．．．｝
｛″／ｔｍｐ″，″ｒａｍｆｓ″，″″，．．．｝
｛″／ｄｅｖ″，″ｄｅｖｆｓ″，″″，．．．｝

当试图打开文件“／ｔｍｐ／ｆｏｏ”时，该文件被定向到ＲＡＭ文件系统（ｒａｍｆｓ），而“／ｂａｒ／ｂｕｎｄｙ”
则被定向到硬盘ＭＳＤＯＳ文件系统（ｍｓｄｏｓ）。打开“／ｄｅｖ／ｔｔｙ０”的操作将被定向到设备管理文
件系统（ｄｅｖｆｓ）的设备表中的ｌｏｏｋｕｐ（）函数。
不带根的文件名（不以“／“开始的文件名）将直接定向到包含当前目录的文件系统。当前

目录是由一个安装表表项和一个目录指针组合起来表示的。

安装表表项中的ｆｓｎａｍｅ为文件系统名字。它与文件系统表中的ｎａｍｅ相对应。在初始化
过程中，系统将对安装表进行扫描，并在文件系统表中查找相应的ｆｓｎａｍｅ表项。这种匹配过
程每成功一次，都将调用该文件系统的ｍｏｕｎｔ函数。如果ｍｏｕｎｔ成功，该安装表表项将被标
记为有效，而且还要对表项中的ｆｓ进行设置，使其指向相应的文件系统。

ｄｅｖｎａｍｅ包含了文件系统所使用的设备名字。它可能与设备表中的某个表项相匹配，也
可能是文件系统的一个特定的字符串（在文件系统具有自己的内部设备驱动程序的情况下）。

ｄａｔａ是安装表表项的私有数据。当安装表表项属于静态定义时，ｄａｔａ的设置是静态的。

ｄａｔａ的值也可以在ｍｏｕｎｔ（）操作中对其进行动态设置。

ｖａｌｉｄ表示该安装点是否已被成功安装。在对名字进行匹配的搜索过程中，将忽略ｖａｌｉｄ
值为ｆａｌｓｅ的表项。

ｖｓ指向具体的文件系统，在ｍｏｕｎｔ（）操作成功后对其进行设置。

ｒｏｏｔ为目录指针。文件系统将其认为是其目录树的根（ｒｏｏｔ）。当使用带根的文件名进行
文件操作时，ｒｏｏｔ将作为文件系统函数的参数ｄｉｒ传递给相应的函数。文件系统的ｍｏｕｎｔ（）函
数必须对ｒｏｏｔ进行初始化。
宏ＭＴＡＢ ＥＮＴＲＹ（）用于向安装表输出静态表项，它的使用格式如下：

１９１

ＭＴＡＢ ＥＮＴＲＹ（ ｌ， ／／安装表表项Ｃ语言标识符

ｎａｍｅ， ／／安装点

ｆｓｎａｍｅ， ／／文件系统名字

ｄｅｖｎａｍｅ， ／／文件系统设备名字

ｄａｔａ ／／安装表表项私有数据

）

９１３ 文件表

文件被打开后，将用一个打开的文件对象（ｆｉｌｅｏｂｊｅｃｔ）来表示该文件。文件对象是从一个
文件对象数组（ｓｔａｔｉｃｃｙｇ ｆｉｌｅｆｉｌｅ［ＣＹＧＮＵＭ ＦＩＬＥＩＯ ＮＦＩＬＥ］）中分配的，这种数组就是ｅ
Ｃｏｓ文件系统中的文件表。用户程序使用另外一个索引数组（ｓｔａｔｉｃｃｙｇ ｆｉｌｅｄｅｓｃ
［ＣＹＧＮＵＭ ＦＩＬＥＩＯ ＮＦＤ］）来访问这些被打开的文件对象。ｅＣｏｓ的这种文件访问机制具
有ＵＮＩＸ系统的文件描述符功能，拥有多种文件复制机制。
文件表表项结构定义如下：

ｓｔｒｕｃｔＣＹＧ ＦＩＬＥ ＴＡＧ
｛

ｃｙｇ ｕｉｎｔ３２ ｆｆｌａｇ； ／ｆｉｌｅｓｔａｔｅ ／

ｃｙｇ ｕｉｎｔ１６ ｆ ｕｃｏｕｎｔ； ／ｕｓｅｃｏｕｎｔ ／

ｃｙｇ ｕｉｎｔ１６ ｆｔｙｐｅ； ／ｄｅｓｃｒｉｐｔｏｒｔｙｐｅ ／

ｃｙｇ ｕｉｎｔ３２ ｆ ｓｙｎｃｍｏｄｅ； ／ｓｙｎｃｈｒｏｎｉｚａｔｉｏｎｐｒｏｔｏｃｏｌ ／

ｓｔｒｕｃｔＣＹＧ ＦＩＬＥＯＰＳ ＴＡＧ ｆ ｏｐｓ； ／ｆｉｌｅｏｐｅｒａｔｉｏｎｓ ／

ｏｆｆｔ ｆ ｏｆｆｓｅｔ； ／ｃｕｒｒｅｎｔｏｆｆｓｅｔ ／

ＣＹＧ ＡＤＤＲＷＯＲＤ ｆ ｄａｔａ； ／ｆｉｌｅｏｒｓｏｃｋｅｔ ／

ＣＹＧ ＡＤＤＲＷＯＲＤ ｆ ｘｏｐｓ； ／ｅｘｔｒａｔｙｐｅｓｐｅｃｉｆｉｃｏｐｓ ／

ｃｙｇ ｍｔａｂ ｅｎｔｒｙ ｆ ｍｔｅ； ／ｍｏｕｎｔｔａｂｌｅｅｎｔｒｙ ／
｝；

文件表表项中的ｆ ｆｌａｇ包含了一些ＦＩＬＥＩＯ控制位（ｂｉｔ１６～ｂｉｔ２３），该标志的其他一些位
来自ｏｐｅｎ（）函数的ｆｌａｇｓ参数（ｂｉｔ０～ｂｉｔ１５，由ＣＹＧ ＦＩＬＥ ＭＯＤＥ ＭＡＳＫ所定义），ｂｉｔ２４～
ｂｉｔ３１保留。

ｆ ｕｃｏｕｎｔ为使用次数计数器，用于控制文件关闭的时机。文件每复制一次，该计数器加

１。每进行一次文件Ｉ／Ｏ操作，该计数器也加１，这样保证了在进行当前Ｉ／Ｏ操作时文件不会
被关闭。

ｆｔｙｐｅ为文件对象的类型，可能的值有ＣＹＧ ＦＩＬＥ ＴＹＰＥ ＦＩＬＥ、ＣＹＧ ＦＩＬＥ
ＴＹＰＥ ＳＯＣＫＥＴ和ＣＹＧ ＦＩＬＥ ＴＹＰＥ ＤＥＶＩＣＥ。

ｆ ｓｙｎｃｍｏｄｅ是相应的文件系统表中的ｓｙｎｃｍｏｄｅ的拷贝，表示该文件的同步方式。

ｆ ｏｆｆｓｅｔ记录当前文件的位置。对文件进行操作的函数必须对其进行更新。

ｆ ｄａｔａ为文件系统的私有数据，通常是该文件所属文件系统对象的一个指针或句柄，用
来指向数据结点。

ｆ ｘｏｐｓ是一个指针，指向文件操作函数的一些额外的数据类型。例如，Ｓｏｃｋｅｔ的Ｉ／Ｏ系

２９１

统具有一个指针，该指针指向实现标准Ｓｏｃｋｅｔ操作的函数表。

ｆ ｍｔｅ是一个指向该文件所属的文件安装表的指针，主要用于同步协议的实现。

ｆ ｏｐｓ是一个指向文件Ｉ／Ｏ操作函数表的指针，该表具有下面的结构：

ｓｔｒｕｃｔＣＹＧ ＦＩＬＥＯＰＳ ＴＡＧ
｛

ｉｎｔ（ｆｏ ｒｅａｄ） （ｓｔｒｕｃｔＣＹＧ ＦＩＬＥ ＴＡＧｆｐ，ｓｔｒｕｃｔＣＹＧ ＵＩＯ ＴＡＧｕｉｏ）；

ｉｎｔ（ｆｏ ｗｒｉｔｅ） （ｓｔｒｕｃｔＣＹＧ ＦＩＬＥ ＴＡＧｆｐ，ｓｔｒｕｃｔＣＹＧ ＵＩＯ ＴＡＧｕｉｏ）；

ｉｎｔ（ｆｏ ｌｓｅｅｋ） （ｓｔｒｕｃｔＣＹＧ ＦＩＬＥ ＴＡＧｆｐ，ｏｆｆｔｐｏｓ，ｉｎｔｗｈｅｎｃｅ）；

ｉｎｔ（ｆｏ ｉｏｃｔｌ） （ｓｔｒｕｃｔＣＹＧ ＦＩＬＥ ＴＡＧｆｐ，ＣＹＧ ＡＤＤＲＷＯＲＤｃｏｍ，

ＣＹＧ ＡＤＤＲＷＯＲＤｄａｔａ）；

ｉｎｔ（ｆｏ ｓｅｌｅｃｔ） （ｓｔｒｕｃｔＣＹＧ ＦＩＬＥ ＴＡＧｆｐ，ｉｎｔｗｈｉｃｈ，

ＣＹＧ ＡＤＤＲＷＯＲＤｉｎｆｏ）；

ｉｎｔ（ｆｏ ｆｓｙｎｃ） （ｓｔｒｕｃｔＣＹＧ ＦＩＬＥ ＴＡＧｆｐ，ｉｎｔｍｏｄｅ）；

ｉｎｔ（ｆｏ ｃｌｏｓｅ） （ｓｔｒｕｃｔＣＹＧ ＦＩＬＥ ＴＡＧｆｐ）；

ｉｎｔ（ｆｏ ｆｓｔａｔ） （ｓｔｒｕｃｔＣＹＧ ＦＩＬＥ ＴＡＧｆｐ，ｓｔｒｕｃｔｓｔａｔｂｕｆ）；

ｉｎｔ（ｆｏ ｇｅｔｉｎｆｏ） （ｓｔｒｕｃｔＣＹＧ ＦＩＬＥ ＴＡＧｆｐ，ｉｎｔｋｅｙ，ｃｈａｒｂｕｆ，

ｉｎｔｌｅｎ）；

ｉｎｔ（ｆｏ ｓｅｔｉｎｆｏ） （ｓｔｒｕｃｔＣＹＧ ＦＩＬＥ ＴＡＧｆｐ，ｉｎｔｋｅｙ，ｃｈａｒｂｕｆ，

ｉｎｔｌｅｎ）；
｝；

上面结构体内的每一个域分别是相应文件操作函数的指针。其中ｆｏ ｒｅａｄ（）函数和ｆｏ
ｗｒｉｔｅ（）函数的第二个参数是一个指向ＵＩＯ结构的指针，ＵＩＯ结构定义如下：

ｓｔｒｕｃｔＣＹＧ ＵＩＯ ＴＡＧ
｛

ｓｔｒｕｃｔＣＹＧ ＩＯＶＥＣ ＴＡＧｕｉｏ ｉｏｖ； ／ｐｏｉｎｔｅｒｔｏａｒｒａｙｏｆｉｏｖｅｃｓ／

ｉｎｔ ｕｉｏ ｉｏｖｃｎｔ； ／ｎｕｍｂｅｒｏｆｉｏｖｅｃｓｉｎａｒｒａｙ／

ｏｆｆｔ ｕｉｏ ｏｆｆｓｅｔ； ／ｏｆｆｓｅｔｉｎｔｏｆｉｌｅｔｈｉｓｕｉｏｃｏｒｒｅｓｐｏｎｄｓｔｏ／

ｓｓｉｚｅ ｔ ｕｉｏ ｒｅｓｉｄ； ／ｒｅｓｉｄｕａｌｉ／ｏｃｏｕｎｔ／

ｅｎｕｍｃｙｇ ｕｉｏ ｓｅｇ ｕｉｏ ｓｅｇｆｌｇ； ／ｓｅｅａｂｏｖｅ／

ｅｎｕｍｃｙｇ ｕｉｏ ｒｗ ｕｉｏ ｒｗ； ／ｓｅｅａｂｏｖｅ／
｝；

其中ｕｉｏ ｉｏｖ是一个ＣＹＧ ＩＯＤＥＶ ＴＡＧ结构：

ｓｔｒｕｃｔＣＹＧ ＩＯＶＥＣ ＴＡＧ
｛

ｖｏｉｄｉｏｖ ｂａｓｅ；／Ｂａｓｅａｄｄｒｅｓｓ．／

ｓｓｉｚｅ ｔｉｏｖ ｌｅｎ；／Ｌｅｎｇｔｈ．／
｝；

这些数据结构包含了数据传送操作的参数。它支持ｓｃａｔｔｅｒ／ｇａｔｈｅｒ操作，并记录数据传送
的进展状态。

３９１

当打开一个文件时，或者在使用其他方法（例如使用ｓｏｃｋｅｔ（）或ａｃｃｅｐｔ（）函数）创建一个文
件对象时，文件系统的ｏｐｅｎ操作负责对文件表中除ｆ ｕｃｏｕｎｔ、ｆ ｓｙｎｃｍｏｄｅ和ｆ ｍｔｅ以外的
每个域进行初始化。由于文件表的ｆ ｆｌａｇ中含有属于ＦＩＬＥＩＯ基本结构的一些信息，因此对
它所作的任何变化都必须进行相应的操作。

９２ 文件目录

文件系统的所有操作都要使用目录指针作为它的一个参数。目录指针是一个由文件系统

进行管理的不透明的句柄，它应该被封装成在一个文件系统内对一个特定目录的引用。它可

能是一个指向某个目录的数据结构的指针（如索引节点ｉｎｏｄｅ），也可能是一个指向某个目录路
径的指针。

指定当前目录的方法是使用一个安装表入口指针和一个目录指针：

ｅｘｔｅｒｎＣｃｙｇ ｍｔａｂ ｅｎｔｒｙｃｄｉｒ ｍｔａｂ ｅｎｔｒｙ；

ｅｘｔｅｒｎＣｃｙｇ ｄｉｒｃｄｉｒ ｄｉｒ；

文件系统表中的内部ｃｈｄｉｒ（）函数用于改变当前目录，它具有两种使用方式。当使用ｄｉｒ
ｏｕｔ参数来传递一个指针时，它将定位到指定的目录，并将目录指针指向该处。如果参数ｄｉｒ
ｏｕｔ为ＮＵＬＬ，则其参数ｄｉｒ是一个以前形成的目前可以取消的目录指针。系统调用ｃｈｄｉｒ（）调
用了两次文件系统表中的内部ｃｈｄｉｒ（）函数，第一次调用是取当前新目录的目录指针，如果调
用成功再进行第二次调用，清除旧的目录指针。

文件系统表中的内部ｏｐｅｎｄｉｒ（）函数为文件系统的读操作打开一个目录。它所允许的对
文件的操作只是ｒｅａｄ、ｌｓｅｅｋ和ｃｌｏｓｅ。当到达目录的底端时，ｏｐｅｎｄｉｒ（）返回０。惟一允许的ｓｅｅｋ
操作只能是定位到目录的起点，使用参数ｏｆｆｓｅｔ＝０和ｗｈｅｎｃｅ＝ＳＥＥＫ ＳＥＴ。
这些操作细节对于文件系统的客户端来说是不可见的，目录的访问可以通过ＰＯＳＩＸ函数

ｏｐｅｎｄｉｒ（）、ｒｅａｄｄｉｒ（）和ｃｌｏｓｅｄｉｒ（）进行。
获取当前工作目录的绝对路径可以使用ｇｅｔｃｗｄ（）函数。

９３ 同步

ｅＣｏｓ的ＦＩＬＥＩＯ基础结构提供了一个同步机制用于对文件系统的并发访问进行控制。这种
同步机制使得其他系统中现有的即使没有同步机制的文件系统也可以轻松移植到ｅＣｏｓ系统。
同时，这种同步机制的实现还使得新文件系统的创建更加容易，可以不用再考虑其同步问题。

ｅＣｏｓ基础结构为文件系统表、安装表和文件表的每一个表项都提供了一个互斥体。在对
文件系统进行操作时，每一次操作之前都会锁定相应的互斥体。它们的定义如下：

① 文件系统表互斥体：

Ｃｙｇ Ｍｕｔｅｘｆｓｔａｂ ｌｏｃｋ［ＣＹＧＮＵＭ ＦＩＬＥＩＯ ＦＳＴＡＢ ＭＡＸ］；

② 安装表互斥体：

Ｃｙｇ Ｍｕｔｅｘｍｔａｂ ｌｏｃｋ［ＣＹＧＮＵＭ ＦＩＬＥＩＯ ＭＴＡＢ ＭＡＸ］；

４９１

③ 文件表互斥体：

ｓｔａｔｉｃＣｙｇ Ｍｕｔｅｘｆｉｌｅｌｏｃｋ［ＣＹＧＮＵＭ ＦＩＬＥＩＯ ＮＦＩＬＥ］＼
ＣＹＧＢＬＤ ＡＴＴＲＩＢ ＩＮＩＴ ＰＲＩ（ＣＹＧ ＩＮＩＴ ＩＯ）；

文件系统表的ｓｙｎｃｍｏｄｅ域描述了文件系统所需要的同步协议。它是下列标志的组合：

①ＣＹＧ ＳＹＮＣＭＯＤＥ ＦＩＬＥ ＦＩＬＥＳＹＳＴＥＭ。在文件系统级的所有操作过程中锁定
文件系统表互斥体。

②ＣＹＧ ＳＹＮＣＭＯＤＥ ＦＩＬＥ ＭＯＵＮＴＰＯＩＮＴ。在文件系统级的所有操作过程中锁定
安装表互斥体。

③ＣＹＧ ＳＹＮＣＭＯＤＥ ＩＯ ＦＩＬＥ。在所有文件Ｉ／Ｏ操作中锁定文件表互斥体。

④ＣＹＧ ＳＹＮＣＭＯＤＥ ＩＯ ＦＩＬＥＳＹＳＴＥＭ。在所有文件Ｉ／Ｏ操作中锁定文件系统表
互斥体。

⑤ＣＹＧ ＳＹＮＣＭＯＤＥ ＩＯ ＭＯＵＮＴＰＯＩＮＴ。在所有文件Ｉ／Ｏ操作中锁定安装表互斥
体。

⑥ＣＹＧ ＳＹＮＣＭＯＤＥ ＳＯＣＫ ＦＩＬＥ。在所有Ｓｏｃｋｅｔ操作中锁定文件表互斥体。

⑦ＣＹＧ ＳＹＮＣＭＯＤＥ ＳＯＣＫ ＮＥＴＳＴＡＣＫ。在所有Ｓｏｃｋｅｔ操作中锁定网络栈表互斥
体。

⑧ＣＹＧ ＳＹＮＣＭＯＤＥ ＮＯＮＥ。在所有操作中不进行锁定操作。
在ｏｐｅｎ（）函数成功完成后，系统将文件系统表中的ｓｙｎｃｍｏｄｅ值复制到打开的文件对象

中。

９４ 初始化和安装

前面已经提到，安装表表项来源于两个地方，一个来源是静态定义，另一个来源是使用

ｍｏｕｎｔ（）函数。静态安装表表项可以使用宏ＭＴＡＢ ＥＮＴＲＹ（）来定义，这种静态表项在系统
启动时被自动安装。对于安装表中的每一个ｎａｍｅ域非空的表项，将对文件系统表进行搜索，
查找安装表的ｎａｍｅ域与文件系统表的ｆｓｎａｍｅ域相匹配的文件系统表表项。如果发现相匹配
的文件系统表表项，则调用该表项的内部ｍｏｕｎｔ函数。ｍｏｕｎｔ函数执行成功时，相应的安装表
表项被标记为有效，并对其ｆｓ域进行初始化。ｍｏｕｎｔ函数负责其ｒｏｏｔ域的初始化。
安装表的大小由配置选项ＣＹＧＮＵＭ ＦＩＬＥＩＯ ＭＴＡＢ ＭＡＸ的值来定义。任何没有

被静态定义的安装表表项都可以使用动态安装。

文件系统可以调用ｍｏｕｎｔ（）函数进行动态安装。该函数原型如下：

ｉｎｔｍｏｕｎｔ（ｃｏｎｓｔｃｈａｒｄｅｖｎａｍｅ，

ｃｏｎｓｔｃｈａｒｄｉｒ，

ｃｏｎｓｔｈａｒｆｓｎａｍｅ）；

其参数说明如下：

ｄｅｖｎａｍｅ—该文件系统所使用的设备名，其值将赋给对应的安装表表项的ｄｅｖｎｅｍｅ域。

ｄｉｒ—安装点名称，将赋值给对应的安装表表项的ｎａｍｅ域。

ｆｓｎａｍｅ—文件系统名字，将赋值给对应的安装表表项的ｆｓｎａｍｅ域。

５９１

文件系统的动态安装过程如下：首先，对安装表进行搜索，查找一个ｎａｍｅ为ＮＵＬＬ的表
项作为新的安装点。然后对文件系统表进行搜索，查找名字与ｆｓｎａｍｅ相匹配的一个文件系统
表表项。如果查找成功，则对安装表表项进行初始化，并调用文件系统的内部ｍｏｕｎｔ函数。
如果ｍｏｕｎｔ成功返回，则将该安装表表项标记为有效，并对其ｆｓ域进行初始化。
卸载文件系统可以使用ｕｍｏｕｎｔ（）函数来实现。静态安装的文件系统和动态安装的文件

系统都可以使用该函数进行卸载。ｕｍｏｕｎｔ（）函数原型如下：

ｉｎｔｕｍｏｕｎｔ（ｃｏｎｓｔｃｈａｒｎａｍｅ）；

该函数对安装表进行搜索，查找ｎａｍｅ域与其参数ｎａｍｅ相匹配的安装表表项。当这种匹
配成功时，将调用文件系统的内部ｕｍｏｕｎｔ函数，成功返回后将安装表表项的ｖａｌｉｄ域置为

ｆａｌｓｅ，ｎａｍｅ域置为ＮＵＬＬ，使该安装表表项失效。

９５ 文件操作

ｅＣｏｓ是一个支持ＰＯＳＩＸ标准的嵌入式实时操作系统，这种支持来自于两个包：ＰＯＳＩＸ包
和ＦＩＬＥＩＯ包。ＰＯＳＩＸ包提供对线程、信号、同步、定时器和消息队列的支持，而ＦＩＬＥＩＯ包提
供了对文件和设备Ｉ／Ｏ的支持。ｅＣｏｓ对文件系统的操作主要包括文件系统的安装和卸载、目
录操作、文件操作等几个方面。它实现了ＰＯＳＩＸ标准中的下列文件和目录函数：

ＤＩＲｏｐｅｎｄｉｒ（ｃｏｎｓｔｃｈａｒｄｉｒｎａｍｅ）；

ｓｔｒｕｃｔｄｉｒｅｎｔｒｅａｄｄｉｒ（ＤＩＲｄｉｒｐ）；

ｉｎｔｒｅａｄｄｉｒ ｒ（ＤＩＲｄｉｒｐ，ｓｔｒｕｃｔｄｉｒｅｎｔｅｎｔｒｙ，ｓｔｒｕｃｔｄｉｒｅｎｔｒｅｓｕｌｔ）；

ｖｏｉｄｒｅｗｉｎｄｄｉｒ（ＤＩＲｄｉｒｐ）；

ｉｎｔｃｌｏｓｅｄｉｒ（ＤＩＲｄｉｒｐ）；

ｉｎｔｃｈｄｉｒ（ｃｏｎｓｔｃｈａｒｐａｔｈ）；

ｃｈａｒｇｅｔｃｗｄ（ｃｈａｒｂｕｆ，ｓｉｚｅ ｔｓｉｚｅ）；

ｉｎｔｏｐｅｎ（ｃｏｎｓｔｃｈａｒｐａｔｈ，ｉｎｔｏｆｌａｇ，．．．）；

ｉｎｔｃｒｅａｔ（ｃｏｎｓｔｃｈａｒｐａｔｈ，ｍｏｄｅ ｔｍｏｄｅ）；

ｉｎｔｃｌｏｓｅ（ｉｎｔｆｉｌｅｄｅｓ）；

ｉｎｔｌｉｎｋ（ｃｏｎｓｔｃｈａｒｅｘｉｓｔｉｎｇ，ｃｏｎｓｔｃｈａｒｎｅｗ）；

ｉｎｔｍｋｄｉｒ（ｃｏｎｓｔｃｈａｒｐａｔｈ，ｍｏｄｅ ｔｍｏｄｅ）；

ｉｎｔｕｎｌｉｎｋ（ｃｏｎｓｔｃｈａｒｐａｔｈ）；

ｉｎｔｒｍｄｉｒ（ｃｏｎｓｔｃｈａｒｐａｔｈ）；

ｉｎｔｒｅｎａｍｅ（ｃｏｎｓｔｃｈａｒｏｌｄ，ｃｏｎｓｔｃｈａｒｎｅｗ）；

ｉｎｔｓｔａｔ（ｃｏｎｓｔｃｈａｒｐａｔｈ，ｓｔｒｕｃｔｓｔａｔｂｕｆ）；

ｉｎｔｆｓｔａｔ（ｉｎｔｆｄ，ｓｔｒｕｃｔｓｔａｔｂｕｆ）；

ｉｎｔａｃｃｅｓｓ（ｃｏｎｓｔｃｈａｒｐａｔｈ，ｉｎｔａｍｏｄｅ）；

ｌｏｎｇｐａｔｈｃｏｎｆ（ｃｏｎｓｔｃｈａｒｐａｔｈ，ｉｎｔｎａｍｅ）；

ｌｏｎｇｆｐａｔｈｃｏｎｆ（ｉｎｔｆｄ，ｉｎｔｎａｍｅ）；

前面已经提到，ｅＣｏｓ对文件进行操作时也采取ＵＮＩＸ文件系统中的文件描述符来引述被
打开的文件。文件描述符是一个非负整数。当打开一个现存文件或创建一个新文件时，将返

６９１

回一个文件描述符。当读、写一个文件时，用ｏｐｅｎ或ｃｒｅａｔ返回的文件描述符来描述该文件，
并将其作为参数传送给ｒｅａｄ或ｗｒｉｔｅ操作函数。
与其他操作系统一样，ｅＣｏｓ对文件操作也具有一些限制：

① 文件名的最大长度为６４个字符（包括路径名）。

② 允许打开的最大文件数由配置选项ＣＹＧＮＵＭ ＦＩＬＥＩＯ ＮＦＩＬＥ指定。

③ 文件描述符的最大值由配置选项ＣＹＧＮＵＭ ＦＩＬＥＩＯ ＮＦＤ指定。
通过ｅＣｏｓ配置工具可以对文件系统的操作进行配置。图９１是ｅＣｏｓ图形配置工具中

ＰＯＳＩＸ文件ＩＯ兼容层的配置选项信息。从其配置选项可以看出，最多允许打开文件数量、最
多打开文件描述符、最多允许文件系统安装的数量等都可以在配置期间进行指定。

９５１ 文件系统的安装ｍｏｕｎｔ与卸载ｕｍｏｕｎｔ

前面已经介绍了文件系统的安装和卸载的两个函数ｍｏｕｎｔ（）和ｕｍｏｕｎｔ（）。在对一个文
件系统进行操作时，首先必须使用ｍｏｕｎｔ（）函数将其安装到系统的文件系统表中。如果不再
使用该文件系统，可以使用ｕｍｏｕｎｔ（）函数将其从文件系统表中卸载。
下面是ＲＡＭ文件系统ｒａｍｆｓ的安装与卸载的例子：

图９１ ＰＯＳＩＸ文件ＩＯ兼容层的配置

ｉｎｔｍａｉｎ（ｉｎｔａｒｇｃ，ｃｈａｒａｒｇｖ）
｛

ｉｎｔｅｒｒ；

ｉｎｔｆｄ；

ｅｒｒ＝ｍｏｕｎｔ（″″，″／ｒａｍ″，″ｒａｍｆｓ″）； ／／安装ｒａｍｆｓ文件系统

ｉｆ（ｅｒｒ＜０）ＳＨＯＷ ＲＥＳＵＬＴ（ｍｏｕｎｔ，ｅｒｒ）； ／／显示安装错误

．．．
ｆｄ＝ｏｐｅｎ（″／ｒａｍ／ｔｅｓｔ″，Ｏ ＷＲＯＮＬＹ｜Ｏ ＣＲＥＡＴ）；

．．．／／文件操作（略）

ｃｌｏｓｅ（ｆｄ）；

．．．
ｅｒｒ＝ｕｍｏｕｎｔ（″／ｒａｍ″）； ／／卸载ｒａｍｆｓ文件系统

ｉｆ（ｅｒｒ＜０）ＳＨＯＷ ＲＥＳＵＬＴ（ｕｍｏｕｎｔ，ｅｒｒ）； ／／显示卸载错误
｝

７９１

该例中使用了ｍｏｕｎｔ（）函数将名字为“ｒａｍｆｓ”的ＲＡＭ文件系统进行安装，安装点为“／

ｒａｍ”。文件操作完成后，使用ｕｍｏｕｎｔ（）函数将位于安装点“／ｒａｍ”处的文件系统ｒａｍｆｓ进行卸
载操作。例子中打开一个名为“ｔｅｓｔ”的文件，其路径为“／ｒａｍ”，表示它属于ｒａｍｆｓ文件系统。

９５２ ｏｐｅｎ、ｃｒｅａｔ和ｃｌｏｓｅ函数

ｏｐｅｎ（）函数用于打开或创建一个文件。函数原型为：

ｉｎｔｏｐｅｎ（ｃｏｎｓｔｃｈａｒｐａｔｈ，ｉｎｔｏｆｌａｇ，．．．／，ｍｏｄｅ ｔｍｏｄｅ ／）；

若成功则返回文件描述符，若出错则返回１。
参数ｐａｔｈ是将要打开或创建的文件的名字。
参数ｏｆｌａｇ用来说明此函数的多个选择项。如果使用第三个参数ｍｏｄｅ，ｅＣｏｓ的当前版本

将忽略此参数。使用下列一个或多个常数的或操作构成ｏｆｌａｇ参数（这些常数定义在＜ｆｃｎｔｌ．ｈ
＞头文件中）：

①Ｏ ＲＤＯＮＬＹ只读打开。

②Ｏ ＷＲＯＮＬＹ只写打开。

③Ｏ ＲＤＷＲ读、写打开。
上面这三个常数只能选择一个。下列常数则是可选择的：

①Ｏ ＣＲＥＡＴ若此文件不存在则创建它。

②Ｏ ＥＸＣＬ如果同时指定了Ｏ ＣＲＥＡＴ而文件已经存在，则出错。可以用来测试一个
文件是否存在，如果不存在则创建此文件。

③Ｏ ＮＯＣＴＴＹ如果ｐａｔｈ指的是终端设备，则不将此设备分配为控制终端。

④Ｏ ＴＲＵＮＣ如果此文件存在，而且为只读或只写成功打开，则将其长度截短为０。

⑤Ｏ ＡＰＰＥＮＤ每次写操作都加到文件的尾端。

⑥Ｏ ＮＯＮＢＬＯＣＫ将本次打开操作和后续的Ｉ／Ｏ操作设置为非阻塞方式。

⑦Ｏ ＤＳＹＮＣ写Ｉ／Ｏ数据同步（每次ｗｒｉｔｅ数据都要等到物理Ｉ／Ｏ操作完成）。

⑧Ｏ ＲＳＹＮＣＩ／Ｏ读同步（每次ｒｅａｄ都等要到物理Ｉ／Ｏ操作完成）。

⑨Ｏ ＳＹＮＣ写Ｉ／Ｏ文件同步（每次ｗｒｉｔｅ文件都要等到物理Ｉ／Ｏ操作完成）。

ｃｒｅａｔ（）函数也用于创建一个新文件，函数原型为：

ｉｎｔｃｒｅａｔ（ｃｏｎｓｔｃｈａｒｐａｔｈ，ｍｏｄｅ ｔｍｏｄｅ）；

若成功则返回只写打开的文件描述符，若出错则返回１。
此函数等效于：

ｏｐｅｎ（ｐａｔｈ，Ｏ ＷＲＯＮＬＹ｜Ｏ ＣＲＥＡＴ｜Ｏ ＴＲＵＮＣ，ｍｏｄｅ）；

ｃｌｏｓｅ（）函数用于关闭一个已打开的文件。函数原型为：

ｉｎｔｃｌｏｓｅ（ｉｎｔｆｄ）；

若成功则返回０，若出错则返回１。参数ｆｄ为文件描述符。

９５３ ｒｅａｄ、ｗｒｉｔｅ和ｌｓｅｅｋ函数

ｒｅａｄ（）函数用于从文件中读数据。函数原型为：

８９１

ｓｓｉｚｅ ｔｒｅａｄ（ｉｎｔｆｄ，ｖｏｉｄｂｕｆ，ｓｉｚｅ ｔｎｂｙｔｅ）；

若ｒｅａｄ成功，则返回读取的字节数。如果到达文件末尾，则返回０。
参数ｆｄ为文件描述符，ｂｕｆ为读回的数据存放地址指针，ｎｂｙｔｅ为将要读取的字节数目。

ｗｒｉｔｅ（）函数用于向文件写数据。函数原型为：

ｓｓｉｚｅ ｔｗｒｉｔｅ（ｉｎｔｆｄ，ｃｏｎｓｔｖｏｉｄｂｕｆ，ｓｉｚｅ ｔｎｂｙｔｅ）；

若成功则返回已写的字节数，若出错则返回１。其返回值通常与参数ｎｂｙｔｅ的值不同。
该函数出错的一个常见原因是：磁盘已写满，或者超过了文件长度限制。

参数ｆｄ为文件描述符，ｂｕｆ为写数据地址指针，ｎｂｙｔｅ为写字节长度。
对于普通文件，写操作从文件的当前位置（当前文件指针）开始。如果在打开该文件时选

择了Ｏ ＡＰＰＥＮＤ，则在每次写操作之前都将文件指针设置在文件的尾端。在写操作成功完
成后，该文件指针将增加实际写的字节数。

ｌｓｅｅｋ（）函数用于显式地定位一个打开文件。函数原型为：

ｏｆｆｔｌｓｅｅｋ（ｉｎｔｆｄ，ｏｆｆｔｏｆｆｓｅｔ，ｉｎｔｗｈｅｎｃｅ）；

若成功则返回新的文件指针，若出错则返回１。
参数ｆｄ为文件描述符，对参数ｏｆｆｓｅｔ的解释与参数ｗｈｅｎｃｅ的值有关。

① 若ｗｈｅｎｃｅ是ＳＥＥＫ ＳＥＴ，则将该文件指针设置为距文件开始处ｏｆｆｓｅｔ个字节。

② 若ｗｈｅｎｃｅ是ＳＥＥＫ ＣＵＲ，则将该文件指针设置为其当前值加ｏｆｆｓｅｔ，ｏｆｆｓｅｔ可为正或
负。

③ 若ｗｈｅｎｃｅ是ＳＥＥＫ ＥＮＤ，则将该文件指针设置为文件长度加ｏｆｆｓｅｔ，ｏｆｆｓｅｔ可为正或
负。

每个被打开的文件都有一个与其相关联的“当前文件指针”。它是一个非负整数，用以度

量从文件开始处计算的字节数。一般来说，读、写操作都从当前文件指针处开始，并使指针增

加读或写的字节数。在默认方式下，当打开一个文件时，除非指定Ｏ ＡＰＰＥＮＤ选择项，否则
该指针被设置为０。采用ｌｓｅｅｋ（）函数可以对一个已打开的文件进行定位。它仅返回当前的文
件指针，并不引起任何Ｉ／Ｏ操作，返回的文件指针用于后续的读或写操作。

９５４ ｆｃｎｔｌ函数

ｆｃｎｔｌ（）函数可以改变已经被打开的文件的性质。函数原型为：

ｉｎｔｆｃｎｔｌ（ｉｎｔｆｄ，ｉｎｔｃｍｄ，．．．／ｉｎｔａｒｇ ／）；

若成功，它的返回值与参数ｃｍｄ有关（见下面的说明），若出错则返回１。

ｆｃｎｔｌ函数有五种功能：

① 复制一个现有的文件描述符（ｃｍｄ＝Ｆ ＤＵＰＦＤ）。

② 获取／设置文件描述符标记（ｃｍｄ＝Ｆ ＧＥＴＦＤ或Ｆ ＳＥＴＦＤ）。

③ 获取／设置文件状态标志（ｃｍｄ＝Ｆ ＧＥＴＦＬ或Ｆ ＳＥＴＦＬ）。

④ 获取／设置异步Ｉ／Ｏ拥有权限（ｃｍｄ＝Ｆ ＧＥＴＯＷＮ或Ｆ ＳＥＴＯＷＮ）。

⑤ 获取／设置记录锁（ｃｍｄ＝Ｆ ＧＥＴＬＫ，Ｆ ＳＥＴＬＫ或Ｆ ＳＥＴＬＫＷ）。
参数ｃｍｄ具有下述值：

９９１

①Ｆ ＤＵＰＦＤ复制文件描述符ｆｄ，新文件描述符作为函数的返回值。新描述符与ｆｄ共
享同一文件表表项。但新描述符有它自己的一套文件描述符标志，其ＦＤ ＣＬＯＥＸＥＣ文件描
述符标志则被清除。

②Ｆ ＧＥＴＦＤ与ｆｄ对应的文件描述符标志作为函数的返回值。当前版本的ｅＣｏｓ只定义
了一个文件描述符标志ＦＤ ＣＬＯＥＸＥＣ。

③Ｆ ＳＥＴＦＤ对ｆｄ设置文件描述符标志。新标志值按第三个参数（取整型值）设置。

④Ｆ ＧＥＴＦＬ与ｆｉｌｅｄｅｓ对应的文件状态标志作为函数的返回值。在ｏｐｅｎ函数的介绍中
已说明了文件状态标志。

⑤Ｆ ＳＥＴＦＬ将文件状态标志设置为第三个参数的值（取整型值）。可以更改的几个标
志是：Ｏ ＡＰＰＥＮＤ，Ｏ ＮＯＮＢＬＯＣＫ，Ｏ ＳＹＮＣ和Ｏ ＡＳＹＮＣ。

Ｆ ＧＥＴＬＫ、Ｆ ＳＥＴＬＫ或Ｆ ＳＥＴＬＫＷ用于记录锁。第三个参数是一个指向ｆｌｏｃｋ结构
的指针（为方便起见，用ｆｌｏｃｋｐｒｔ表示）：

①Ｆ ＧＥＴＬＫ获取记录锁信息。

②Ｆ ＳＥＴＬＫ设置由ｆｌｏｃｋｐｔｒ所描述的记录锁。

③Ｆ ＳＥＴＬＫＷ 设置由ｆｌｏｃｋｐｔｒ所描述的锁，如果被阻塞就等待。

ｆｌｏｃｋ的结构定义如下：

ｓｔｒｕｃｔｆｌｏｃｋ｛

ｓｈｏｒｔｌｔｙｐｅ； ／Ｆ ＲＤＬＣＫ，Ｆ ＷＲＬＣＫ，Ｆ ＵＮＬＣＫ／

ｓｈｏｒｔｌ ｗｈｅｎｃｅ； ／Ｆｌａｇｆｏｒｓｔａｒｔｉｎｇｏｆｆｓｅｔ／

ｏｆｆｔｌｓｔａｒｔ； ／Ｒｅｌａｔｉｖｅｏｆｆｓｅｔｉｎｂｙｔｅｓ／

ｏｆｆｔｌｌｅｎ； ／Ｓｉｚｅ；ｉｆ０，ｔｈｅｎｕｎｔｉｌＥＯＦ／

ｐｉｄ ｔｌ ｐｉｄ； ／ＰｒｏｃｅｓｓＩＤｏｆｔｈｅｐｒｏｃｅｓｓｈｏｌｄｉｎｇｔｈｅｌｏｃｋ，

ｒｅｔｕｒｎｅｄｗｉｔｈＦ ＧＥＴＬＫ．／
｝；

其中：

ｌｔｙｐｅ—锁的期望类型：Ｆ ＲＤＬＣＫ（共享读锁）、Ｆ ＷＲＬＣＫ（独占性写锁）或Ｆ ＵＮＬ
ＣＫ（解锁一个区域）。

ｌ ｗｈｅｎｃｅ和ｌ ｓｔａｒｔ—被加锁或解锁的区域的起始地址。ｌ ｓｔａｒｔ是相对位移量（字节），ｌ
ｗｈｅｎｃｅ则决定了相对位移量的起点。这与ｌｓｅｅｋ函数中最后两个参数类似。

ｌｌｅｎ—区域的长度。

ｌ ｐｉｄ—该锁的拥有者ＩＤ号，当ｃｍｄ为Ｆ ＧＥＴＬＫ时返回。

ｅＣｏｓ当前只实现了Ｆ ＤＵＰＦＤ命令。

９５５ ｄｕｐ和ｄｕｐ２函数

这两个函数都用于复制一个现有的文件描述符。函数原型为：

ｉｎｔｄｕｐ（ｉｎｔｆｄ）；

ｉｎｔｄｕｐ２（ｉｎｔｆｄ，ｉｎｔｆｄ２）；

若成功则返回新的文件描述符，若出错则返回１。

００２

由ｄｕｐ返回的新文件描述符一定是当前可用文件描述符中的最小数值。而ｄｕｐ２则可以
用参数ｆｄ２指定新描述符的数值。如果ｆｄ２已经打开，则先将其关闭。如果ｆｄ等于ｆｄ２，则

ｄｕｐ２返回ｆｄ２，而不关闭它。
这些函数返回的新文件描述符与参数ｆｄ共享同一个文件表项。

９５６ ｓｔａｔ和ｆｓｔａｔ函数

这两个函数都用于返回文件信息。函数原型如下：

ｉｎｔｓｔａｔ（ｃｏｎｓｔｃｈａｒｐａｔｈ，ｓｔｒｕｃｔｓｔａｔｂｕｆ）；

ｉｎｔｆｓｔａｔ（ｉｎｔｆｄ，ｓｔｒｕｃｔｓｔａｔｂｕｆ）；

若成功则返回０，若出错则返回１。
对于一个给定的文件名ｐａｔｈ，ｓｔａｔ函数返回一个与该文件有关的信息结构，ｆｓｔａｔ函数获取

已在文件描述符ｆｄ上打开的文件的相关信息。这些函数的第二个参数是个指针，它指向一个
表示文件信息的结构，函数在执行过程中填写该结构（ｂｕｆ指向该结构）。该结构定义如下：

ｓｔｒｕｃｔｓｔａｔ｛

ｍｏｄｅ ｔ ｓｔ ｍｏｄｅ； ／Ｆｉｌｅｍｏｄｅ／

ｉｎｏ ｔ ｓｔｉｎｏ； ／Ｆｉｌｅｓｅｒｉａｌｎｕｍｂｅｒ／

ｄｅｖ ｔ ｓｔ ｄｅｖ； ／ＩＤｏｆｄｅｖｉｃｅｃｏｎｔａｉｎｉｎｇｆｉｌｅ／

ｎｌｉｎｋ ｔ ｓｔ ｎｌｉｎｋ； ／Ｎｕｍｂｅｒｏｆｈａｒｄｌｉｎｋｓ／

ｕｉｄ ｔ ｓｔ ｕｉｄ； ／ＵｓｅｒＩＤｏｆｔｈｅｆｉｌｅｏｗｎｅｒ／

ｇｉｄ ｔ ｓｔ ｇｉｄ； ／ＧｒｏｕｐＩＤｏｆｔｈｅｆｉｌｅ′ｓｇｒｏｕｐ／

ｏｆｆｔ ｓｔ ｓｉｚｅ； ／Ｆｉｌｅｓｉｚｅ（ｒｅｇｕｌａｒｆｉｌｅｓｏｎｌｙ）／

ｔｉｍｅ ｔ ｓｔ ａｔｉｍｅ； ／Ｌａｓｔａｃｃｅｓｓｔｉｍｅ／

ｔｉｍｅ ｔ ｓｔ ｍｔｉｍｅ； ／Ｌａｓｔｄａｔａｍｏｄｉｆｉｃａｔｉｏｎｔｉｍｅ／

ｔｉｍｅ ｔ ｓｔ ｃｔｉｍｅ； ／Ｌａｓｔｆｉｌｅｓｔａｔｕｓｃｈａｎｇｅｔｉｍｅ／

｝；

该结构提供了文件的一些具体信息，包括文件类型、用户ＩＤ、文件组、包含该文件的设备

ＩＤ、文件大小、上次访问时间、最后数据修改时间、最后状态改变时间、文件许可权限等等。
表９１列举了五种文件类型的宏定义，它们可用于对ｓｔ ｍｏｄｅ作出判断。

表９１ 文件类型宏

宏 文 件 类 型

Ｓ ＩＳＲＥＧ（） 普通文件

Ｓ ＩＳＤＩＲ（） 目录文件

Ｓ ＩＳＣＨＲ（）
字符特殊文

件
Ｓ ＩＳＢＬＫ（） 块特殊文件

Ｓ ＩＳＦＩＦＯ（） ＦＩＦＯ

ｓｔ ｍｏｄｅ还包含了文件的访问权限，见表９２。

１０２

９５７ ａｃｃｅｓｓ函数

当用ｏｐｅｎ函数打开一个文件时，需要对用户ＩＤ和组ＩＤ进行文件访问权限的测试。ａｃ
ｃｅｓｓ（）函数按实际的用户ＩＤ和实际的组ＩＤ对该文件进行访问权限测试。其函数原型为：

ｉｎｔａｃｃｅｓｓ（ｃｏｎｓｔｃｈａｒｐａｔｈ，ｉｎｔｍｏｄｅ）；

若成功则返回０，若出错则返回１。
其中，ｍｏｄｅ是表９３中所列常数的逐位或运算。

表９２ 文件访问权限许可屏蔽位

ｔ ｍｏｄｅ屏蔽 意 义

Ｓ ＩＲＵＳＲ 用户－读

Ｓ ＩＷＵＳＲ 用户－写

Ｓ ＩＸＵＳＲ 用户－执行

Ｓ ＩＲＷＸＵ 用户－读、写、执行

Ｓ ＩＲＧＲＰ 组－读

Ｓ ＩＷＧＲＰ 组－写

Ｓ ＩＸＧＲＰ 组－执行

Ｓ ＩＲＷＸＧ 组－读、写、执行

Ｓ ＩＲＯＴＨ 其他－读

Ｓ ＩＷＯＴＨ 其他－写

Ｓ ＩＸＯＴＨ 其他－执行

Ｓ ＩＲＷＸＯ 其他－读、写执行

表９３ ａｃｃｅｓｓ函数的ｍｏｄｅ常数

ｍｏｄｅ 说 明

Ｒ ＯＫ 测试读权限

Ｗ ＯＫ 测试写权限

Ｘ ＯＫ 测试执行权限

Ｆ ＯＫ 测试文件是否存在

在ｅＣｏｓ的当前版本中，ａｃｃｅｓｓ（）只对Ｆ ＯＫ进行测试，对其他三个选项进行测试时均返
回１。

９５８ ｌｉｎｋ，ｕｎｌｉｎｋ，ｒｅｍｏｖｅ和ｒｅｎａｍｅ函数

像ＵＮＩＸ文件系统一样，ｅＣｏｓ文件系统也允许一个文件同时拥有多个连接，它所允许的
最大连接数为８。ｌｉｎｋ（）函数用于创建文件连接，其函数原型为：

ｉｎｔｌｉｎｋ（ｃｏｎｓｔｃｈａｒｅｘｉｓｔｉｎｇｐａｔｈ，ｃｏｎｓｔｃｈａｒｎｅｗｐａｔｈ）；

若成功则返回０，若出错则返回１。此函数为现有文件ｅｘｉｓｔｉｎｇｐａｔｈ创建一个新的连接

２０２

ｎｅｗｐａｔｈ，如若ｎｅｗｐａｔｈ已经存在，则返回错误。
如果要删除一个文件连接，则可以使用ｕｎｌｉｎｋ（）函数，其函数原型为：

ｉｎｔｕｎｌｉｎｋ（ｃｏｎｓｔｃｈａｒｐａｔｈｎａｍｅ）；

若成功则返回０，若出错则返回１。此函数删除文件连接，ｐａｔｈｎａｍｅ所引用的文件的连接
计数减１。如果该文件还有其他连接，则仍可通过其他的连接访问该文件数据。如果出错，则
不对该文件作任何更改。只有当连接计数达到０时，该文件的内容才可被删除。
一些ｅＣｏｓ系统提供了文件删除ｒｅｍｏｖｅ（）函数。ｒｅｍｏｖｅ（）函数是ＡＮＳＩＣ提供的函数，若

系统没有该函数，则应该使用ｕｎｌｉｎｋ（）函数进行文件的删除操作。

ｒｅｍｏｖｅ（）函数原型如下：

ｉｎｔｒｅｍｏｖｅ（ｃｏｎｓｔｃｈａｒｐａｔｈｎａｍｅ）；

若成功则返回０，若出错则返回１。

ｅＣｏｓ另外还提供了一个对文件进行更名的函数ｒｅｎａｍｅ（），其函数原型为：

ｉｎｔｒｅｎａｍｅ（ｃｏｎｓｔｃｈａｒｏｌｄ ｎａｍｅ，ｃｏｎｓｔｃｈａｒｎｅｗ ｎａｍｅ）；

若成功则返回０，若出错则返回１。该函数将ｏｌｄ ｎａｍｅ所指的文件名字用ｎｅｗ ｎａｍｅ指
定的新名字替代。

９５９ ｍｋｄｉｒ和ｒｍｄｉｒ函数

ｍｋｄｉｒ（）函数用于创建目录，ｒｍｄｉｒ（）函数用于删除目录。

ｍｋｄｉｒ（）的函数原型如下：

ｉｎｔｍｋｄｉｒ（ｃｏｎｓｔｃｈａｒｐａｔｈｎａｍｅ，ｍｏｄｅ ｔｍｏｄｅ）；

若成功则返回０，若出错则返回１。此函数创建一个ｐａｔｈｎａｍｅ指定的新的空目录。ｍｏｄｅ
指定该目录的文件访问权限。

ｒｍｄｉｒ（）函数原型如下：

ｉｎｔｒｍｄｉｒ（ｃｏｎｓｔｃｈａｒｐａｔｈｎａｍｅ）；

若成功则返回０，若出错则返回１。此函数删除ｐａｔｈｎａｍｅ指定目录。

９５１０ ｏｐｅｎｄｉｒ、ｒｅａｄｄｉｒ、ｒｅｗｉｎｄｄｉｒ和ｃｌｏｓｅｄｉｒ函数

这四个函数用于实现对目录的读操作。函数原型为：

ＤＩＲｏｐｅｎｄｉｒ（ｃｏｎｓｔｃｈａｒｄｉｒｎａｍｅ）；

ｓｔｒｕｃｔｄｉｒｅｎｔｒｅａｄｄｉｒ（ＤＩＲｄｉｒｐ）；

ｖｏｉｄｒｅｗｉｎｄｄｉｒ（ＤＩＲｄｉｒｐ）；

ｉｎｔｃｌｏｓｅｄｉｒ（ＤＩＲｄｉｒｐ）；

ｏｐｅｎｄｉｒ（）函数若成功则返回一个ＤＩＲ指针，若出错则返回ＮＵＬＬ。

ｒｅａｄｄｉｒ（）函数若成功则返回一个ｄｉｒｅｎｔ结构的指针，若在目录尾或出错则返回ＮＵＬＬ。

ｒｅｗｉｎｄｄｉｒ（）函数和ｃｌｏｓｅｄｉｒ（）函数若成功则返回０，若出错则返回１。

３０２

ｄｉｒｅｎｔ结构定义如下：

ｓｔｒｕｃｔｄｉｒｅｎｔ｛

ｃｈａｒｄ ｎａｍｅ［ＮＡＭＥ ＭＡＸ＋１］；／ｎｕｌｌｔｅｒｍｉｎａｔｅｄｆｉｌｅｎａｍｅ／
｝

ＤＩＲ结构是一个内部结构，上述四个函数用它来保存被读目录的相关信息。ｏｐｅｎｄｉｒ返回
的指向ＤＩＲ结构的指针被另外三个函数所使用。ｏｐｅｎｄｉｒ执行初始化操作，ｒｅａｄｄｉｒ的第一次
调用将读取目录中的第一个目录项。

９５１１ ｃｈｄｉｒ和ｇｅｔｃｗｄ函数

ｃｈｄｉｒ（）函数用于改变当前工作目录，ｇｅｔｃｗｄ（）函数用于获取当前工作目录的绝对路径。
它们的函数原型如下：

ｉｎｔｃｈｄｉｒ（ｃｏｎｓｔｃｈａｒｐａｔｈ）；

ｃｈａｒｇｅｔｃｗｄ（ｃｈａｒｂｕｆ，ｓｉｚｅ ｔｓｉｚｅ）；

ｃｈｄｉｒ（）函数若成功则返回０，若出错则返回１。它将当前目录改变到参数ｐａｔｈ指定的目
录。

ｇｅｔｃｗｄ（）函数若成功则返回ｂｕｆ，若出错则返回ＮＵＬＬ。它有两个参数，一个是缓存地址

ｂｕｆ，另一个是缓存的长度ｓｉｚｅ。该缓存必须有足够的长度以容纳绝对路径名再加上一个ｎｕｌｌ
终止字符，否则返回错误。

９５１２ Ｓｏｃｋｅｔ操作

如果ｅＣｏｓ系统被配置成支持网络协议栈，它的ＦＩＬＥＩＯ还将提供对标准ＢＳＤｓｏｃｋｅｔ调用
的支持。Ｓｏｃｋｅｔ是网络编程的入口，它提供了大量的系统调用。一个ｓｏｃｋｅｔ就是一个网络连
接，是网络传输的入口，它位于网络协议之上，屏蔽了不同网络协议之间的差异。ｅＣｏｓ向用户
提供了针对ｓｏｃｋｅｔ的文件Ｉ／Ｏ操作，网络通信的操作就像对文件的操作一样方便。这些操作
与网络协议紧密联系在一起，是应用程序和网络协议之间的接口。

ｅＣｏｓ使用一个网络栈表（ＮｅｔｓｔａｃｋＴａｂｌｅ）来表示对网络的支持，该表的每一个表项分别对
系统所支持的每一个网络协议栈进行描述。对于系统所支持的每一个网络协议栈，都要使用

宏ＮＳＴＡＢ ＥＮＴＲＹ（）进行注册，向该表输出一个表项。
网络协议栈表的表项结构定义如下：

ｓｔｒｕｃｔｃｙｇ ｎｓｔａｂ ｅｎｔｒｙ
｛

ｃｙｇ ｂｏｏｌ ｖａｌｉｄ； ／／ｔｒｕｅｉｆｓｔａｃｋｉｎｉｔｉａｌｉｚｅｄ
ｃｙｇ ｕｉｎｔ３２ ｓｙｎｃｍｏｄｅ； ／／ｓｙｎｃｈｒｏｎｉｚａｔｉｏｎｐｒｏｔｏｃｏｌ
ｃｈａｒ ｎａｍｅ； ／／ｓｔａｃｋｎａｍｅ
ｃｈａｒ ｄｅｖｎａｍｅ； ／／ｈａｒｄｗａｒｅｄｅｖｉｃｅｎａｍｅ
ＣＹＧ ＡＤＤＲＷＯＲＤ ｄａｔａ； ／／ｐｒｉｖａｔｅｄａｔａｖａｌｕｅ
ｉｎｔ（ｉｎｉｔ） （ｃｙｇ ｎｓｔａｂ ｅｎｔｒｙｎｓｔｅ）；

ｉｎｔ（ｓｏｃｋｅｔ） （ｃｙｇ ｎｓｔａｂ ｅｎｔｒｙｎｓｔｅ，ｉｎｔｄｏｍａｉｎ，ｉｎｔｔｙｐｅ，

４０２

ｉｎｔｐｒｏｔｏｃｏｌ，ｃｙｇ ｆｉｌｅｆｉｌｅ）；
｝；

网络协议栈表是一个类似于文件系统表和安装表的组合表。如果所定义的协议栈初始化

ｉｎｉｔ（）函数成功返回，则ｖａｌｉｄ域为ｔｒｕｅ，ｓｙｎｃｍｏｄｅ域包含了相应的同步方式ＣＹＧ ＳＹＮＣ
ＭＯＤＥ ＳＯＣＫ （９３节已有说明）。ｎａｍｅ为该协议栈的名字。ｄｅｖｎａｍｅ是该协议栈所使
用的设备名字，它可能是在／ｄｅｖ下的一个设备名字，也有可能是该协议栈专用的一个设备名
字。

系统在初始化时通过调用ｉｎｉｔ（）函数启动该协议栈运行。如果ｉｎｉｔ（）函数返回一个非０
值，则ｖａｌｉｄ域被置为ｆａｌｓｅ，系统将忽略该协议栈。
通过调用ｓｏｃｋｅｔ（）函数可以产生一个基于该协议栈的ｓｏｃｋｅｔ。当调用ＡＰＩ函数ｓｏｃｋｅｔ（）时，

它对网络协议栈表进行扫描，并调用每一个有效表项内的内部ｓｏｃｋｅｔ函数，如果返回一个非０
值，则继续扫描下一个有效的协议栈表项。如果到达表的尾部，则终止这种扫描并返回错误。

一个成功的ｓｏｃｋｅｔ调用将初始化一个文件对象，文件对象的ｆ ｘｏｐｓ域指向一个包含各
种函数调用的结构体：

ｓｔｒｕｃｔｃｙｇ ｓｏｃｋ ｏｐｓ
｛

ｉｎｔ（ｂｉｎｄ） （ｃｙｇ ｆｉｌｅｆｐ，ｃｏｎｓｔｓｏｃｋａｄｄｒｓａ，ｓｏｃｋｌｅｎ ｔｌｅｎ）；

ｉｎｔ（ｃｏｎｎｅｃｔ） （ｃｙｇ ｆｉｌｅｆｐ，ｃｏｎｓｔｓｏｃｋａｄｄｒｓａ，ｓｏｃｋｌｅｎ ｔｌｅｎ）；

ｉｎｔ（ａｃｃｅｐｔ） （ｃｙｇ ｆｉｌｅｆｐ，ｃｙｇ ｆｉｌｅｎｅｗ ｆｐ，

ｓｔｒｕｃｔｓｏｃｋａｄｄｒｎａｍｅ，ｓｏｃｋｌｅｎ ｔａｎａｍｅｌｅｎ）；

ｉｎｔ（ｌｉｓｔｅｎ） （ｃｙｇ ｆｉｌｅｆｐ，ｉｎｔｌｅｎ）；

ｉｎｔ（ｇｅｔｎａｍｅ） （ｃｙｇ ｆｉｌｅｆｐ，ｓｏｃｋａｄｄｒｓａ，ｓｏｃｋｌｅｎ ｔｌｅｎ，

ｉｎｔｐｅｅｒ）；

ｉｎｔ（ｓｈｕｔｄｏｗｎ） （ｃｙｇ ｆｉｌｅｆｐ，ｉｎｔｆｌａｇｓ）；

ｉｎｔ（ｇｅｔｓｏｃｋｏｐｔ）（ｃｙｇ ｆｉｌｅｆｐ，ｉｎｔｌｅｖｅｌ，ｉｎｔｏｐｔｎａｍｅ，

ｖｏｉｄｏｐｔｖａｌ，ｓｏｃｋｌｅｎ ｔｏｐｔｌｅｎ）；

ｉｎｔ（ｓｅｔｓｏｃｋｏｐｔ） （ｃｙｇ ｆｉｌｅｆｐ，ｉｎｔｌｅｖｅｌ，ｉｎｔｏｐｔｎａｍｅ，

ｃｏｎｓｔｖｏｉｄｏｐｔｖａｌ，ｓｏｃｋｌｅｎ ｔｏｐｔｌｅｎ）；

ｉｎｔ（ｓｅｎｄｍｓｇ） （ｃｙｇ ｆｉｌｅｆｐ，ｃｏｎｓｔｓｔｒｕｃｔｍｓｇｈｄｒｍ，

ｉｎｔｆｌａｇｓ，ｓｓｉｚｅ ｔｒｅｔｓｉｚｅ）；

ｉｎｔ（ｒｅｃｖｍｓｇ） （ｃｙｇ ｆｉｌｅｆｐ，ｓｔｒｕｃｔｍｓｇｈｄｒｍ，

ｓｏｃｋｌｅｎ ｔｎａｍｅｌｅｎ，ｓｓｉｚｅ ｔｒｅｔｓｉｚｅ）；
｝；

从结构体内的每一个函数名字可以看出它们支持哪一个ＡＰＩ函数。ｇｅｔｎａｍｅ函数支持两
个ＡＰＩ函数：ｇｅｔｓｏｃｋｎａｍｅ（）和ｇｅｔｐｅｅｒｎａｍｅ（），ｓｅｎｄｍｓｇ和ｒｅｃｖｍｓｇ函数对ｓｅｎｄ（）、ｓｅｎｄｔｏ（）、

ｓｅｎｄｍｓｇ（）、ｒｅｃｖ（）、ｒｅｃｖｆｒｏｍ（）和ｒｅｃｖｍｓｇ（）等ＡＰＩ函数提供支持。

９６ 创建文件系统

除了ｅＣｏｓ源码所提供的已有文件系统外，用户在开发过程中还可以根据具体平台的实际

５０２

需求创建新的文件系统。创建新的文件系统时，首先必须定义一个文件系统表表项，并对文件

ＩＯ操作进行定义。
创建新文件系统最简单也最为方便的一个方法是复制一个现有文件系统，再进行相应的

修改。既可以使用ｅＣｏｓ源码中ＦＩＬＥＩＯ包提供的ｔｅｓｔ文件系统作为蓝本进行复制，也可以使
用ＲＡＭ文件系统或ＲＯＭ文件系统进行复制。
下面以ＲＡＭ文件系统为例，说明如何创建一个新文件系统。
创建新文件系统的第一步是提供组成文件系统接口的函数。ＲＡＭ文件系统的接口函数

定义如下：

／／文件系统操作函数：

ｓｔａｔｉｃｉｎｔｒａｍｆｓ ｍｏｕｎｔ （ｃｙｇ ｆｓｔａｂ ｅｎｔｒｙｆｓｔｅ，ｃｙｇ ｍｔａｂ ｅｎｔｒｙｍｔｅ）；

ｓｔａｔｉｃｉｎｔｒａｍｆｓ ｕｍｏｕｎｔ （ｃｙｇ ｍｔａｂ ｅｎｔｒｙｍｔｅ）；

ｓｔａｔｉｃｉｎｔｒａｍｆｓ ｏｐｅｎ （ｃｙｇ ｍｔａｂ ｅｎｔｒｙｍｔｅ，ｃｙｇ ｄｉｒｄｉｒ，ｃｏｎｓｔｃｈａｒｎａｍｅ，

ｉｎｔｍｏｄｅ，ｃｙｇ ｆｉｌｅｆｔｅ）；

ｓｔａｔｉｃｉｎｔｒａｍｆｓ ｕｎｌｉｎｋ （ｃｙｇ ｍｔａｂ ｅｎｔｒｙｍｔｅ，ｃｙｇ ｄｉｒｄｉｒ，ｃｏｎｓｔｃｈａｒｎａｍｅ）；

ｓｔａｔｉｃｉｎｔｒａｍｆｓ ｍｋｄｉｒ （ｃｙｇ ｍｔａｂ ｅｎｔｒｙｍｔｅ，ｃｙｇ ｄｉｒｄｉｒ，ｃｏｎｓｔｃｈａｒｎａｍｅ）；

ｓｔａｔｉｃｉｎｔｒａｍｆｓ ｒｍｄｉｒ （ｃｙｇ ｍｔａｂ ｅｎｔｒｙｍｔｅ，ｃｙｇ ｄｉｒｄｉｒ，ｃｏｎｓｔｃｈａｒｎａｍｅ）；

ｓｔａｔｉｃｉｎｔｒａｍｆｓ ｒｅｎａｍｅ （ｃｙｇ ｍｔａｂ ｅｎｔｒｙｍｔｅ，ｃｙｇ ｄｉｒｄｉｒ１，ｃｏｎｓｔｃｈａｒｎａｍｅ１，

ｃｙｇ ｄｉｒｄｉｒ２，ｃｏｎｓｔｃｈａｒｎａｍｅ２）；

ｓｔａｔｉｃｉｎｔｒａｍｆｓｌｉｎｋ （ｃｙｇ ｍｔａｂ ｅｎｔｒｙｍｔｅ，ｃｙｇ ｄｉｒｄｉｒ１，ｃｏｎｓｔｃｈａｒｎａｍｅ１，

ｃｙｇ ｄｉｒｄｉｒ２，ｃｏｎｓｔｃｈａｒｎａｍｅ２，ｉｎｔｔｙｐｅ）；

ｓｔａｔｉｃｉｎｔｒａｍｆｓ ｏｐｅｎｄｉｒ （ｃｙｇ ｍｔａｂ ｅｎｔｒｙｍｔｅ，ｃｙｇ ｄｉｒｄｉｒ，ｃｏｎｓｔｃｈａｒｎａｍｅ，

ｃｙｇ ｆｉｌｅｆｔｅ）；

ｓｔａｔｉｃｉｎｔｒａｍｆｓ ｃｈｄｉｒ （ｃｙｇ ｍｔａｂ ｅｎｔｒｙｍｔｅ，ｃｙｇ ｄｉｒｄｉｒ，ｃｏｎｓｔｃｈａｒｎａｍｅ，

ｃｙｇ ｄｉｒｄｉｒ ｏｕｔ）；

ｓｔａｔｉｃｉｎｔｒａｍｆｓ ｓｔａｔ （ｃｙｇ ｍｔａｂ ｅｎｔｒｙｍｔｅ，ｃｙｇ ｄｉｒｄｉｒ，ｃｏｎｓｔｃｈａｒｎａｍｅ，

ｓｔｒｕｃｔｓｔａｔｂｕｆ）；

ｓｔａｔｉｃｉｎｔｒａｍｆｓ ｇｅｔｉｎｆｏ （ｃｙｇ ｍｔａｂ ｅｎｔｒｙｍｔｅ，ｃｙｇ ｄｉｒｄｉｒ，ｃｏｎｓｔｃｈａｒｎａｍｅ，

ｉｎｔｋｅｙ，ｖｏｉｄｂｕｆ，ｉｎｔｌｅｎ）；

ｓｔａｔｉｃｉｎｔｒａｍｆｓ ｓｅｔｉｎｆｏ （ｃｙｇ ｍｔａｂ ｅｎｔｒｙｍｔｅ，ｃｙｇ ｄｉｒｄｉｒ，ｃｏｎｓｔｃｈａｒｎａｍｅ，

ｉｎｔｋｅｙ，ｖｏｉｄｂｕｆ，ｉｎｔｌｅｎ）；

／／文件操作函数：

ｓｔａｔｉｃｉｎｔｒａｍｆｓ ｆｏ ｒｅａｄ （ｓｔｒｕｃｔＣＹＧ ＦＩＬＥ ＴＡＧｆｐ，ｓｔｒｕｃｔＣＹＧ ＵＩＯ ＴＡＧｕｉｏ）；

ｓｔａｔｉｃｉｎｔｒａｍｆｓ ｆｏ ｗｒｉｔｅ （ｓｔｒｕｃｔＣＹＧ ＦＩＬＥ ＴＡＧｆｐ，ｓｔｒｕｃｔＣＹＧ ＵＩＯ ＴＡＧｕｉｏ）；

ｓｔａｔｉｃｉｎｔｒａｍｆｓ ｆｏ ｌｓｅｅｋ （ｓｔｒｕｃｔＣＹＧ ＦＩＬＥ ＴＡＧｆｐ，ｏｆｆｔｐｏｓ，ｉｎｔｗｈｅｎｃｅ）；

ｓｔａｔｉｃｉｎｔｒａｍｆｓ ｆｏ ｉｏｃｔｌ （ｓｔｒｕｃｔＣＹＧ ＦＩＬＥ ＴＡＧｆｐ，ＣＹＧ ＡＤＤＲＷＯＲＤｃｏｍ，

ＣＹＧ ＡＤＤＲＷＯＲＤｄａｔａ）；

ｓｔａｔｉｃｉｎｔｒａｍｆｓ ｆｏ ｆｓｙｎｃ （ｓｔｒｕｃｔＣＹＧ ＦＩＬＥ ＴＡＧｆｐ，ｉｎｔｍｏｄｅ）；

ｓｔａｔｉｃｉｎｔｒａｍｆｓ ｆｏ ｃｌｏｓｅ （ｓｔｒｕｃｔＣＹＧ ＦＩＬＥ ＴＡＧｆｐ）；

ｓｔａｔｉｃｉｎｔｒａｍｆｓ ｆｏ ｆｓｔａｔ （ｓｔｒｕｃｔＣＹＧ ＦＩＬＥ ＴＡＧｆｐ，ｓｔｒｕｃｔｓｔａｔｂｕｆ）；

ｓｔａｔｉｃｉｎｔｒａｍｆｓ ｆｏ ｇｅｔｉｎｆｏ （ｓｔｒｕｃｔＣＹＧ ＦＩＬＥ ＴＡＧｆｐ，ｉｎｔｋｅｙ，ｖｏｉｄｂｕｆ，ｉｎｔｌｅｎ）；

ｓｔａｔｉｃｉｎｔｒａｍｆｓ ｆｏ ｓｅｔｉｎｆｏ （ｓｔｒｕｃｔＣＹＧ ＦＩＬＥ ＴＡＧｆｐ，ｉｎｔｋｅｙ，ｖｏｉｄｂｕｆ，ｉｎｔｌｅｎ）；

６０２

／／目录操作函数：

ｓｔａｔｉｃｉｎｔｒａｍｆｓ ｆｏ ｄｉｒｒｅａｄ（ｓｔｒｕｃｔＣＹＧ ＦＩＬＥ ＴＡＧｆｐ，ｓｔｒｕｃｔＣＹＧ ＵＩＯ ＴＡＧｕｉｏ）；

ｓｔａｔｉｃｉｎｔｒａｍｆｓ ｆｏ ｄｉｒｌｓｅｅｋ（ｓｔｒｕｃｔＣＹＧ ＦＩＬＥ ＴＡＧｆｐ，ｏｆｆｔｐｏｓ，ｉｎｔｗｈｅｎｃｅ）；

上面对文件系统的所有文件ＩＯ操作进行了定义，其中有两个可选的文件ＩＯ操作函数ｆｏ
ｒｅａｄ和ｆｏ ｌｓｅｅｋ。
完成上述定义后，第二步的工作是对文件系统表表项进行定义。使用宏ＦＳＴＡＢ ＥＮ

ＴＲＹ来完成这一步工作：

／／文件系统表表项：

／／Ｆｓｔａｂｅｎｔｒｙ．
／／Ｔｈｉｓｄｅｆｉｎｅｓｔｈｅｅｎｔｒｙｉｎｔｈｅｆｉｌｅｓｙｓｔｅｍｔａｂｌｅ．
／／Ｆｏｒｓｉｍｐｌｉｃｉｔｙｗｅｕｓｅ ＦＩＬＥＳＹＳＴＥＭｓｙｎｃｈｒｏｎｉｚａｔｉｏｎｆｏｒａｌｌａｃｃｅｓｓｅｓｓｉｎｃｅ
／／ｗｅｓｈｏｕｌｄｎｅｖｅｒｂｌｏｃｋｉｎａｎｙｆｉｌｅｓｙｓｔｅｍｏｐｅｒａｔｉｏｎｓ．
ＦＳＴＡＢ ＥＮＴＲＹ（ｒａｍｆｓ ｆｓｔｅ，″ｒａｍｆｓ″，０，

ＣＹＧ ＳＹＮＣＭＯＤＥ ＦＩＬＥ ＦＩＬＥＳＹＳＴＥＭ｜
ＣＹＧ ＳＹＮＣＭＯＤＥ ＩＯ ＦＩＬＥＳＹＳＴＥＭ，

ｒａｍｆｓ ｍｏｕｎｔ，

ｒａｍｆｓ ｕｍｏｕｎｔ，

ｒａｍｆｓ ｏｐｅｎ，

ｒａｍｆｓ ｕｎｌｉｎｋ，

ｒａｍｆｓ ｍｋｄｉｒ，

ｒａｍｆｓ ｒｍｄｉｒ，

ｒａｍｆｓ ｒｅｎａｍｅ，

ｒａｍｆｓｌｉｎｋ，

ｒａｍｆｓ ｏｐｅｎｄｉｒ，

ｒａｍｆｓ ｃｈｄｉｒ，

ｒａｍｆｓ ｓｔａｔ，

ｒａｍｆｓ ｇｅｔｉｎｆｏ，

ｒａｍｆｓ ｓｅｔｉｎｆｏ）；

宏ＦＳＴＡＢ ＥＮＴＲＹ（）的第一个参数给出了该文件系统表表项的名字“ｒａｍｆｓ ｆｓｔｅ”，其余
部分被初始化程序所使用，用于对文件系统表表项结构的各个成员域进行初始化。

创建文件系统的第三步是定义一个文件操作表。该表被安装在所有被打开的文件表表项

内，在进行文件操作时将调用文件操作表中的这些函数。ＲＡＭ文件系统的文件操作表定义如
下：

／／文件操作：

／／Ｔｈｉｓｓｅｔｏｆｆｉｌｅｏｐｅｒａｔｉｏｎｓａｒｅｕｓｅｄｆｏｒｎｏｒｍａｌｏｐｅｎｆｉｌｅｓ．
ｓｔａｔｉｃｃｙｇ ｆｉｌｅｏｐｓｒａｍｆｓ ｆｉｌｅｏｐｓ＝
｛

ｒａｍｆｓ ｆｏ ｒｅａｄ，

ｒａｍｆｓ ｆｏ ｗｒｉｔｅ，

７０２

ｒａｍｆｓ ｆｏ ｌｓｅｅｋ，

ｒａｍｆｓ ｆｏ ｉｏｃｔｌ，

ｃｙｇ ｆｉｌｅｉｏ ｓｅｌｔｒｕｅ，

ｒａｍｆｓ ｆｏ ｆｓｙｎｃ，

ｒａｍｆｓ ｆｏ ｃｌｏｓｅ，

ｒａｍｆｓ ｆｏ ｆｓｔａｔ，

ｒａｍｆｓ ｆｏ ｇｅｔｉｎｆｏ，

ｒａｍｆｓ ｆｏ ｓｅｔｉｎｆｏ
｝；

除了ｆｏ ｓｅｌｅｃｔ域使用函数ｃｙｇ ｆｉｌｅｉｏ ｓｅｌｔｒｕｅ（）的指针外，该结构体内其他所有域都指向
文件系统提供的相应函数。ｃｙｇ ｆｉｌｅｉｏ ｓｅｌｔｒｕｅ（）函数由ＦＩＬＥＩＯ包提供，它是一个ｓｅｌｅｃｔ函
数，对所有操作均返回ｔｒｕｅ。
创建文件系统的最后一步是定义一组读目录使用的文件操作函数。下面是ＲＡＭ文件系

统的读目录操作函数表，该表只定义了ｆｏ ｄｉｒｒｅａｄ和ｆｏ ｄｉｒｌｓｅｅｋ操作，其余操作除ｃｙｇ ｆｉｌｅｉｏ
ｓｅｌｔｒｕｅ和ｆｏ ｃｌｏｓｅ之外，都使用ＦＩＬＥＩＯ包中的占位函数，只返回一个错误代码。

／／目录操作

／／Ｔｈｉｓｓｅｔｏｆｏｐｅｒａｔｉｏｎｓａｒｅｕｓｅｄｆｏｒｏｐｅｎｄｉｒｅｃｔｏｒｉｅｓ．Ｍｏｓｔｅｎｔｒｉｅｓ
／／ｐｏｉｎｔｔｏｅｒｒｏｒｒｅｔｕｒｎｉｎｇｓｔｕｂｆｕｎｃｔｉｏｎｓ．Ｏｎｌｙｔｈｅｒｅａｄ，ｌｓｅｅｋａｎｄ
／／ｃｌｏｓｅｅｎｔｒｉｅｓａｒｅｆｕｎｃｔｉｏｎａｌ．
ｓｔａｔｉｃｃｙｇ ｆｉｌｅｏｐｓｒａｍｆｓ ｄｉｒｏｐｓ＝
｛

ｒａｍｆｓ ｆｏ ｄｉｒｒｅａｄ，
（ｃｙｇ ｆｉｌｅｏｐ ｗｒｉｔｅ）ｃｙｇ ｆｉｌｅｉｏ ｅｎｏｓｙｓ，

ｒａｍｆｓ ｆｏ ｄｉｒｌｓｅｅｋ，
（ｃｙｇ ｆｉｌｅｏｐ ｉｏｃｔｌ）ｃｙｇ ｆｉｌｅｉｏ ｅｎｏｓｙｓ，

ｃｙｇ ｆｉｌｅｉｏ ｓｅｌｔｒｕｅ，
（ｃｙｇ ｆｉｌｅｏｐ ｆｓｙｎｃ）ｃｙｇ ｆｉｌｅｉｏ ｅｎｏｓｙｓ，

ｒａｍｆｓ ｆｏ ｃｌｏｓｅ，
（ｃｙｇ ｆｉｌｅｏｐ ｆｓｔａｔ）ｃｙｇ ｆｉｌｅｉｏ ｅｎｏｓｙｓ，
（ｃｙｇ ｆｉｌｅｏｐ ｇｅｔｉｎｆｏ）ｃｙｇ ｆｉｌｅｉｏ ｅｎｏｓｙｓ，
（ｃｙｇ ｆｉｌｅｏｐ ｓｅｔｉｎｆｏ）ｃｙｇ ｆｉｌｅｉｏ ｅｎｏｓｙｓ

｝；

上述步骤已完成对文件系统的创建，如果希望在系统启动时能自动安装新创建的文件系

统，则必须定义一个相应的安装表表项。使用宏ＭＴＡＢ ＥＮＴＲＹ（）可以完成这一工作。下面
是ＲＡＭ文件系统使用该宏的例子：

ＭＴＡＢ ＥＮＴＲＹ（ｒａｍｆｓｍｔｅ１，

″／″，

″ｒａｍｆｓ″，

″″，

０）；

８０２

第一个参数为该表项提供一个名字，其余参数分别对应安装表表项中的ｎａｍｅ、ｆｓｎａｍｅ、ｄｅ
ｖｎａｍｅ和ｄａｔａ域。
至此，新的文件系统的基本骨架已经形成，剩下的工作是具体实现上面所定义的函数。显

然，这些函数的具体实现形式完全依赖于文件系统本身。如何实现这些函数可以参阅ｅＣｏｓ源
码所提供的ＲＡＭ和ＲＯＭ文件系统的具体实现方法。

９７ ＲＡＭ文件系统

ＲＡＭ文件系统是建立在内存ＲＡＭ区的一个文件系统，可以用于临时存放文件。文件系
统的大小可以根据文件的实际需求而动态增减。ＲＡＭ文件系统可以对其文件进行读写操作
和目录操作。很显然，系统断电时将不会保留ＲＡＭ文件系统中的文件。
图９２描述了ｅＣｏｓ图形配置工具中ＲＡＭ文件系统的一些配置选项。在对ＲＡＭ文件系

统进行配置时，有两种数据存储机制可供选择。此外，还可以对文件数据块大小等信息进行配

置。

图９２ ＲＡＭ文件系统的配置选项

９７１ 文件和目录节点

ＲＡＭ文件系统中的所有文件和目录都使用节点（ｎｏｄｅ）来表示。每一个节点所包含的信
息如下：

① 节点类型（ｍｏｄｅ）：表示该节点是文件还是目录。

② 节点引用计数（ｒｅｆｃｎｔ）：对该节点的引用进行计数。对于文件，每一次打开操作被当作
一次引用；对于目录，当它是当前目录或者它被打开读时被认为是一次引用。当关闭文件或目

录以及离开当前目录时，相应的节点引用计数减１。

③ 节点连接数（ｂｌｉｎｋ）：该节点的所有连接数。引用该节点的每一个目录项都是该节点的
一个连接。

④ 节点大小（ｓｉｚｅ）：该节点的大小，以字节为单位。

⑤ 最近访问时间（ａｔｉｍｅ）：该节点最近被访问的时间。

９０２

⑥ 最近修改时间（ｍｔｉｍｅ）：该节点最近被修改的时间。

⑦ 最近状态改变时间（ｃｔｉｍｅ）：该节点的状态信息最近改变时间。
根据配置时所选择的两种不同数据存储方式（见后面９７３节），节点还应该分别包含如

下信息：

① 如果选择使用简单的单一内存块分配机制，节点信息内容还包括了所分配的内存块的
大小（ｄａｔａｓｉｚｅ）和指针（ｄａｔａ）。

② 如果选择使用基于块的内存分配机制，还包含一个指向分配给该节点的所有内存块指
针数组（ｄｉｒｅｃｔ［］，或ｉｎｄｉｒｅｃｔ１［］，或ｉｎｄｉｒｅｃｔ２［］），数组的大小在配置时指定。
文件和目录的节点结构定义如下：

ｓｔｒｕｃｔｒａｍｆｓ ｎｏｄｅ
｛

ｍｏｄｅ ｔ ｍｏｄｅ； ／／ｎｏｄｅｔｙｐｅ

ｃｙｇ ｕｃｏｕｎｔ３２ｒｅｆｃｎｔ； ／／ｏｐｅｎｆｉｌｅ／ｃｕｒｒｅｎｔｄｉｒｒｅｆｅｒｅｎｃｅｓ

ｎｌｉｎｋ ｔ ｎｌｉｎｋ； ／／ｎｕｍｂｅｒｏｆｌｉｎｋｓｔｏｔｈｉｓｎｏｄｅ

ｓｉｚｅ ｔ ｓｉｚｅ； ／／ｓｉｚｅｏｆｆｉｌｅｉｎｂｙｔｅｓ

ｔｉｍｅ ｔ ａｔｉｍｅ； ／／ｌａｓｔａｃｃｅｓｓｔｉｍｅ

ｔｉｍｅ ｔ ｍｔｉｍｅ； ／／ｌａｓｔｍｏｄｉｆｉｅｄｔｉｍｅ

ｔｉｍｅ ｔ ｃｔｉｍｅ； ／／ｌａｓｔｃｈａｎｇｅｄｓｔａｔｕｓｔｉｍｅ

＃ｉｆｄｅｆＣＹＧＰＫＧ ＦＳ ＲＡＭ ＳＩＭＰＬＥ
／／Ｔｈｅｄａｔａｓｔｏｒａｇｅｉｎｔｈｉｓｃａｓｅｃｏｎｓｉｓｔｓｏｆａｓｉｎｇｌｅｍａｌｌｏｃｅｄ
／／ｍｅｍｏｒｙｂｌｏｃｋ，ｔｏｇｅｔｈｅｒｗｉｔｈｉｔｓｓｉｚｅ．

ｓｉｚｅ ｔ ｄａｔａｓｉｚｅ； ／／ｓｉｚｅｏｆｄａｔａｂｌｏｃｋ

ｃｙｇ ｕｉｎｔ８ ｄａｔａ； ／／ｍａｌｌｏｃｅｄｄａｔａｂｕｆｆｅｒ

＃ｅｌｓｅ
／／Ｔｈｅｄａｔａｓｔｏｒａｇｅｉｎｔｈｉｓｃａｓｅｃｏｎｓｉｓｔｓｏｆａｒｒａｙｓｏｆｐｏｉｎｔｅｒｓｔｏ
／／ｄａｔａｂｌｏｃｋｓ．

＃ｉｆＣＹＧＮＵＭ ＲＡＭＦＳ ＢＬＯＣＫＳ ＤＩＲＥＣＴ＞０
／／Ｄｉｒｅｃｔｌｙａｃｃｅｓｓｉｂｌｅｂｌｏｃｋｓｆｒｏｍｔｈｅｉｎｏｄｅ．

ｒａｍｆｓ ｂｌｏｃｋｄｉｒｅｃｔ［ＣＹＧＮＵＭ ＲＡＭＦＳ ＢＬＯＣＫＳ ＤＩＲＥＣＴ］；

＃ｅｎｄｉｆ

＃ｉｆＣＹＧＮＵＭ ＲＡＭＦＳ ＢＬＯＣＫＳ ＩＮＤＩＲＥＣＴ１＞０
／／Ｓｉｎｇｌｅｌｅｖｅｌｉｎｄｉｒｅｃｔｉｏｎ

ｒａｍｆｓ ｂｌｏｃｋｉｎｄｉｒｅｃｔ１［ＣＹＧＮＵＭ ＲＡＭＦＳ ＢＬＯＣＫＳ ＩＮＤＩＲＥＣＴ１］；

＃ｅｎｄｉｆ

＃ｉｆＣＹＧＮＵＭ ＲＡＭＦＳ ＢＬＯＣＫＳ ＩＮＤＩＲＥＣＴ２＞０
／／Ｔｗｏｌｅｖｅｌｉｎｄｉｒｅｃｔｉｏｎ

ｒａｍｆｓ ｂｌｏｃｋｉｎｄｉｒｅｃｔ２［ＣＹＧＮＵＭ ＲＡＭＦＳ ＢＬＯＣＫＳ ＩＮＤＩＲＥＣＴ２］；

＃ｅｎｄｉｆ

＃ｅｎｄｉｆ
｝；

０１２

９７２ 目录

目录是一个节点数据为一组目录项的节点。为简化目录的管理，长的目录项将按具有固

定大小的数据结构ｒａｍｆｓ ｄｉｒｅｎｔ进行分割，这些被分割的片段组成的链即为目录项。ｒａｍｆｓ
ｄｉｒｅｎｔ的结构定义如下：

ｓｔｒｕｃｔｒａｍｆｓ ｄｉｒｅｎｔ
｛

ｒａｍｆｓ ｎｏｄｅ ｎｏｄｅ； ／／ｐｏｉｎｔｅｒｔｏｎｏｄｅ
ｕｎｓｉｇｎｅｄｉｎｔ ｉｎｕｓｅ：１， ／／ｅｎｔｒｙｉｎｕｓｅ？

ｆｉｒｓｔ：１， ／／ｆｉｒｓｔｄｉｒｅｃｔｏｒｙｅｎｔｒｙｆｒａｇｍｅｎｔ？

ｌａｓｔ：１， ／／ｌａｓｔｄｉｒｅｃｔｏｒｙｅｎｔｒｙｆｒａｇｍｅｎｔ？

ｎａｍｅｌｅｎ：８， ／／ｂｙｔｅｓｉｎｗｈｏｌｅｎａｍｅ
ｆｒａｇｌｅｎ：８； ／／ｂｙｔｅｓｉｎｎａｍｅｆｒａｇｍｅｎｔ

ｏｆｆｔ ｎｅｘｔ； ／／ｏｆｆｓｅｔｏｆｎｅｘｔｄｉｒｅｎｔ
／／Ｎａｍｅｆｒａｇｍｅｎｔ，ｆｉｌｌｓｒｅｓｔｏｆｅｎｔｒｙ．
ｃｈａｒ ｎａｍｅ［ＣＹＧＮＵＭ ＲＡＭＦＳ ＤＩＲＥＮＴ ＳＩＺＥ

ｓｉｚｅｏｆ（ｒａｍｆｓ ｎｏｄｅ）
ｓｉｚｅｏｆ（ｃｙｇ ｕｉｎｔ３２）
ｓｉｚｅｏｆ（ｏｆｆｔ）］；

｝；

该结构每一个域的说明如下：

ｎｏｄｅ—指向该目录项所引用的节点，出现在目录项的每一个片段中。

ｉｎｕｓｅ—如果该目录项处于使用状态，则为１，否则为０。

ｆｉｒｓｔ—如果这是目录项中的第一个片段，则为１。

ｌａｓｔ—如果这是目录项中的最后一个片段，则为１。

ｎａｍｅｌｅｎ—整个文件名的长度。

ｆｒａｇｌｅｎ—文件名存放在该片段内的字节数。

ｎｅｘｔ—该目录项的下一个片段的偏移（ｏｆｆｓｅｔ）。

ｎａｍｅ—文件名存放在该片段内的字符。
一般来说，短的文件名存放在单个片段中，而长的文件名通常以多个片段链的形式存放。

９７３ 数据存储机制

前面已经提到，ＲＡＭ文件系统具有两种配置时可以选择的文件数据存储机制。这两种机
制分别是简单数据存储机制和块数据存储机制。简单数据存储机制的配置选项是ＣＹＧＰＫＧ
ＦＳ ＲＡＭ ＳＩＭＰＬＥ，而块数据存储机制的配置选项是ＣＹＧＰＫＧ ＦＳ ＲＡＭ ＢＬＯＣＫＳ。
简单数据存储机制简单地用ｍａｌｌｏｃ（）函数和ｆｒｅｅ（）函数对节点和文件数据分配内存。文

件数据被存放在ｍａｌｌｏｃ（）函数所分配的内存区，根据文件大小的实际需要还可以为其再分配
所需的内存。

简单数据存储机制的优点是ＲＡＭ文件系统只占用它实际所需的内存空间，剩下的内存

１１２

空间可以为其他组件所用。它的另一个好处是用于对文件系统进行管理的数据结构和程序比

较简单。但这种机制有其缺点。在有些文件的堆空间所占比例相当可观时，即使还有足够多

的可用内存，也存在存储碎片妨碍文件进行进一步扩展的危险。另外，这种机制要求系统提供

ｍａｌｌｏｃ（）函数。如果该函数也是系统中其他组件所需要的，这还不会成为问题。但如果仅仅
是为了该文件系统的使用而在系统中增加实现该函数的软件包，显然系统将额外增加大量的

数据和程序代码，这在嵌入式系统中这是难以接受的。

另一种机制是块数据存储机制。这种机制将用于文件存储的内存分成固定大小的块。这

些内存块既可以用ｍａｌｌｏｃ（）函数和ｆｒｅｅ（）函数进行分配和释放，也可以从专门为此保留的内存
块阵列中获取。在ｅＣｏｓ的配置过程中，可以对内存块的大小、内存分配机制进行设置和选择。
采用块数据存储机制时，节点内的数据存储采用了三个指向这些内存块的指针数组。第

一个数组直接指向内存数据块，这些数据存储内存块称为直接数据存储块，该数组的配置选项

是ＣＹＧＮＵＭ ＲＡＭＦＳ ＢＬＯＣＫＳ ＤＩＲＥＣＴ，默认大小为８。第二个数组指向另一个内存
块，该内存块包含了指向实际存储数据的内存块指针，这些数据存储内存块称为单级间接数据

存储块，该数组的配置选项是ＣＹＧＮＵＭ ＲＡＭＦＳ ＢＬＯＣＫＳ ＩＮＤＩＲＥＣＴ１。第三个数组所
指向的内存块的内容是指向另一个包含实际存储数据的内存块指针的内存块，这些数据存储

内存块称为二级间接数据存储块，该数组的配置选项是ＣＹＧＮＵＭ ＲＡＭＦＳ ＢＬＯＣＫＳ ＩＮ
ＤＩＲＥＣＴ２。在默认方式下，后两个数组分别只有一个数组元素。图９３为默认情况下块数据
存储机制的数据块分配示意图（块大小为２５６Ｂ）。

图９３ 默认配置下ＲＡＭ文件系统的块数据存储机制

采用块数据存储机制也有其优缺点。优点之一是可以按经过仔细考虑过的大小将所使用

的内存分成固定大小的内存块，对它们的管理更为容易。另一个优点是在使用ｍａｌｌｏｃ（）函数
２１２

对这些内存块进行分配时，可以使用任何一处具有适当大小的空闲内存。如果使用内存块阵

列，根本就不需要使用ｍａｌｌｏｃ（）函数，使整个系统减少数据和程序的代码量成为可能。
块数据存储机制的缺点之一是当使用ｍａｌｌｏｃ（）函数分配内存时，每一个内存块都要使用

该函数进行内存分配，这种内存分配的开销是基于每一个内存块的，而不是基于一个文件。可

能会造成整个可用于数据存储的内存空间变小。当使用内存块阵列时，这些内存块将为ＲＡＭ
文件系统永久保留，系统中的其他组件不能使用这些内存。

９８ ＲＯＭ文件系统

ＲＯＭ文件系统是建立在系统ＲＯＭ区的一个文件系统，可用于存放永久性的文件。文件
系统的大小是固定的，不能加以改变。与ＲＡＭ文件系统不同，ＲＯＭ文件系统只能进行只读
操作和读目录操作，不能进行写操作。系统断电时文件数据不会丢失。

ＲＯＭ文件系统具有一个对其进行描述的头结构Ｈｅａｄｅｒ。它的文件和目录也使用节点来表
示。所有的节点和目录结构都使用头的地址作为它们的偏移（ｏｆｆｓｅｔ）基地址。头的定义如下：

ｓｔｒｕｃｔｒｏｍｆｓ ｄｉｓｋ
｛

ｃｙｇ ｕｉｎｔ３２ ｍａｇｉｃ； ／／０３ＭａｒｋｓａｖａｌｉｄＲＯＭＦＳｅｎｔｒｙ
ｃｙｇ ｕｃｏｕｎｔ３２ ｎｏｄｅｃｏｕｎｔ；／／４７Ｃｏｕｎｔｏｆｎｏｄｅｓｉｎｔｈｉｓｆｉｌｅｓｙｓｔｅｍ
ｃｙｇ ｕｃｏｕｎｔ３２ ｄｉｓｋｓｉｚｅ； ／／８１１Ｃｏｕｎｔｏｆｂｙｔｅｓｉｎｔｈｉｓｆｉｌｅｓｙｓｔｅｍ
ｃｙｇ ｕｉｎｔ３２ ｄｅｖ ｉｄ； ／／１２１５ＩＤｏｆｄｉｓｋ（ｐｕｔｉｎｔｏｓｔａｔ．ｓｔ ｄｅｖ）

ｃｈａｒ ｎａｍｅ［１６］；／／１６３１Ｎａｍｅｐａｄｓｔｏ３２ｂｙｔｅｓ
ｒｏｍｆｓ ｎｏｄｅ ｎｏｄｅ［０］；
｝；

其中各域说明如下：

ｍａｇｉｃ—表示这是一个有效的ＲＯＭ文件系统，其值为ＲＯＭＦＳ ＭＡＧＩＣ（０ｘ５２６ｆ６ｄ２ｅ）。
如果是ＲＯＭＦＳ ＣＩＧＡＮ（０ｘ２ｅ６ｄ６ｆ５２），则说明字节排列方式有错。

ｎｏｄｅｃｏｕｎｔ—ＲＯＭ文件系统中的节点数。

ｄｉｓｋｓｉｚｅ—ＲＯＭ文件系统的字节大小。

ｄｅｖ ｉｄ—ＲＯＭ盘的ＩＤ号（该值将赋给ｓｔａｔ．ｓｔ ｄｅｖ）。

ｎａｍｅ［］—３２Ｂ边界的填充名字。

ｎｏｄｅ［］—ＲＯＭ文件系统的第一个节点。
紧跟在头之后的是节点表，节点表由各个节点组成。所有文件和目录都用节点表示。节

点具有下面的的结构定义：

ｓｔｒｕｃｔｒｏｍｆｓ ｎｏｄｅ
｛

ｃｙｇ ｕｉｎｔ３２ ｍｏｄｅ； ／／０３ ｎｏｄｅｔｙｐｅ
ｃｙｇ ｕｃｏｕｎｔ３２ ｎｌｉｎｋ； ／／４７ ｎｕｍｂｅｒｏｆｌｉｎｋｓｔｏｔｈｉｓｎｏｄｅ
ｃｙｇ ｕｉｎｔ１６ ｕｉｄ； ／／８９ Ｏｗｎｅｒｉｄ

３１２

ｃｙｇ ｕｉｎｔ１６ ｇｉｄ； ／／１０１１Ｇｒｏｕｐｉｄ
ｃｙｇ ｕｉｎｔ３２ ｓｉｚｅ； ／／１２１５ｓｉｚｅｏｆｆｉｌｅｉｎｂｙｔｅｓ
ｃｙｇ ｕｉｎｔ３２ ｃｔｉｍｅ； ／／１６１９ｃｒｅａｔｉｏｎｓｔａｔｕｓｔｉｍｅ
ｃｙｇ ｕｉｎｔ３２ ｏｆｆｓｅｔ； ／／２０２３ｏｆｆｓｅｔｏｆｄａｔａｆｒｏｍｓｔａｒｔｏｆＲＯＭＦＳ
ｃｙｇ ｕｉｎｔ３２ ｐａｄ［２］；／／２４３１ｐａｄｄｉｎｇｔｏａｌｉｇｎｔｏ３２ｂｙｔｅｂｏｕｎｄａｒｙ
｝；

其中：

ｍｏｄｅ—节点类型，文件和目录。

ｎｌｉｎｋ—节点连接数，每一个引用该节点的目录项是一个连接。

ｕｉｄ—该节点的拥有者ＩＤ。

ｇｉｄ—该节点所属组ＩＤ。

ｓｉｚｅ—节点内数据的字节长度。

ｃｔｉｍｅ—该文件的创建时间（不是ＲＯＭＦＳ）。

ｏｆｆｓｅｔ—从头的开始处到该节点的第一个数据字节的偏移。

ｐａｄ［２］—３２Ｂ边界的填充数据。
与ＲＡＭ文件系统同样，ＲＯＭ文件系统的目录也是一个其数据为一组目录项表的节点。

目录项结构定义如下：

ｓｔｒｕｃｔｒｏｍｆｓ ｄｉｒｅｎｔ
｛

ｃｙｇ ｕｃｏｕｎｔ３２ ｎｏｄｅ； ／／Ｉｎｄｅｘｏｆｎｏｄｅｉｎｒｏｍｆｓ ｄｉｓｋｓｔｒｕｃｔｕｒｅ
ｃｙｇ ｕｉｎｔ３２ ｎｅｘｔ； ／／Ｏｆｆｓｅｔｆｒｏｍｓｔａｒｔｏｆｄｉｒｅｃｔｏｒｙｏｆ

／／ａ）ｔｈｅｎｅｘｔｅｎｔｒｙ，ｏｒ
／／ｂ）ｔｈｅｅｎｄｏｆｔｈｅｄｉｒｅｃｔｏｒｙｄａｔａ

ｃｈａｒ ｎａｍｅ［０］； ／／Ｔｈｅｎａｍｅ，ＮＵＬｔｅｒｍｉｎａｔｅｄ
｝；

其中：

ｎｏｄｅ—该目录项所引用的节点在ｒｏｍｆｓ ｄｉｓｋ表中的索引，目录项的每一段都有该值。

ｎｅｘｔ—下一个名字项的偏移。

ｎａｍｅ—与该节点连接相对应的文件名。

ＲＯＭ文件系统中每个文件都将数据存储在其节点所指的单个连续的内存块内。

９９ 文件操作实例

本节介绍ＲＡＭ文件系统的一个文件操作实例。这是ｅＣｏｓ源码中提供的一个测试程序。
这些测试程序除了可以用来测试系统的正确性之外，读者还可以从测试程序中了解对文件系

统进行操作的方法。

该程序首先安装ＲＡＭ文件系统，其安装点为“／”。在此根目录下创建文件ｆｏｏ，然后对该
文件进行检查，将其复制为文件ｆｅｅ并比较这两个文件。随后创建新目录／ｂａｒ，将文件ｆｅｅ复制
到新目录下的ｆｕｍ文件（／ｂａｒ／ｆｕｍ），并对它们进行比较。最后，删除所有生成的文件和目录。

４１２

该程序还示范了对长文件名的操作。原测试程序还将ＲＡＭ文件系统安装到另一个安装点“／

ｒａｍ”进行类似的操作，这里为节省篇幅，不再列出。

／／＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝
＃ｉｎｃｌｕｄｅ＜ｐｋｇｃｏｎｆ／ｈａｌ．ｈ＞
＃ｉｎｃｌｕｄｅ＜ｐｋｇｃｏｎｆ／ｋｅｒｎｅｌ．ｈ＞
＃ｉｎｃｌｕｄｅ＜ｐｋｇｃｏｎｆ／ｉｏ ｆｉｌｅｉｏ．ｈ＞
＃ｉｎｃｌｕｄｅ＜ｃｙｇ／ｋｅｒｎｅｌ／ｋｔｙｐｅｓ．ｈ＞ ／／ｂａｓｅｋｅｒｎｅｌｔｙｐｅｓ
＃ｉｎｃｌｕｄｅ＜ｃｙｇ／ｉｎｆｒａ／ｃｙｇ ｔｒａｃ．ｈ＞ ／／ｔｒａｃｉｎｇｍａｃｒｏｓ
＃ｉｎｃｌｕｄｅ＜ｃｙｇ／ｉｎｆｒａ／ｃｙｇ ａｓｓ．ｈ＞ ／／ａｓｓｅｒｔｉｏｎｍａｃｒｏｓ
＃ｉｎｃｌｕｄｅ＜ｕｎｉｓｔｄ．ｈ＞
＃ｉｎｃｌｕｄｅ＜ｆｃｎｔｌ．ｈ＞
＃ｉｎｃｌｕｄｅ＜ｓｙｓ／ｓｔａｔ．ｈ＞
＃ｉｎｃｌｕｄｅ＜ｅｒｒｎｏ．ｈ＞
＃ｉｎｃｌｕｄｅ＜ｓｔｒｉｎｇ．ｈ＞
＃ｉｎｃｌｕｄｅ＜ｄｉｒｅｎｔ．ｈ＞
＃ｉｎｃｌｕｄｅ＜ｃｙｇ／ｆｉｌｅｉｏ／ｆｉｌｅｉｏ．ｈ＞
＃ｉｎｃｌｕｄｅ＜ｃｙｇ／ｉｎｆｒａ／ｔｅｓｔｃａｓｅ．ｈ＞
＃ｉｎｃｌｕｄｅ＜ｃｙｇ／ｉｎｆｒａ／ｄｉａｇ．ｈ＞ ／／ＨＡＬｐｏｌｌｅｄｏｕｔｐｕｔ
／／＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝
＃ｄｅｆｉｎｅＳＨＯＷ ＲＥＳＵＬＴ（ ｆｎ，ｒｅｓ）＼
ｄｉａｇ ｐｒｉｎｔｆ（″＜ＦＡＩＬ＞：″＃ ｆｎ″（）ｒｅｔｕｒｎｅｄ％ｄ％ｓ＼ｎ″，ｒｅｓ，ｒｅｓ＜０？ｓｔｒｅｒｒｏｒ（ｅｒｒｎｏ）：″″）；
／／＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝
＃ｄｅｆｉｎｅＩＯＳＩＺＥ１００
＃ｄｅｆｉｎｅＬＯＮＧＮＡＭＥ１ ″ｌｏｎｇ ｆｉｌｅ ｎａｍｅ ｔｈａｔ ｓｈｏｕｌｄ ｔａｋｅ ｕｐ ｍｏｒｅ ＼

ｔｈａｎ ｏｎｅ ｄｉｒｅｃｔｏｒｙ ｅｎｔｒｙ １″
＃ｄｅｆｉｎｅＬＯＮＧＮＡＭＥ２ ″ｌｏｎｇ ｆｉｌｅ ｎａｍｅ ｔｈａｔ ｓｈｏｕｌｄ ｔａｋｅ ｕｐ ｍｏｒｅ ＼

ｔｈａｎ ｏｎｅ ｄｉｒｅｃｔｏｒｙ ｅｎｔｒｙ ２″
／／＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝
／／列举目录和文件

ｓｔａｔｉｃｖｏｉｄｌｉｓｔｄｉｒ（ｃｈａｒｎａｍｅ，ｉｎｔｓｔａｔｐ，ｉｎｔｎｕｍｅｘｐｅｃｔｅｄ，ｉｎｔｎｕｍｇｏｔ）
｛

ｉｎｔｅｒｒ；

ＤＩＲｄｉｒｐ；

ｉｎｔｎｕｍ＝０；

ｄｉａｇ ｐｒｉｎｔｆ（″＜ＩＮＦＯ＞：ｒｅａｄｉｎｇｄｉｒｅｃｔｏｒｙ％ｓ＼ｎ″，ｎａｍｅ）；

ｄｉｒｐ＝ｏｐｅｎｄｉｒ（ｎａｍｅ）；

ｉｆ（ｄｉｒｐ＝＝ＮＵＬＬ）ＳＨＯＷ ＲＥＳＵＬＴ（ｏｐｅｎｄｉｒ，１）；

ｆｏｒ（；；）
｛

ｓｔｒｕｃｔｄｉｒｅｎｔｅｎｔｒｙ＝ｒｅａｄｄｉｒ（ｄｉｒｐ）；

ｉｆ（ｅｎｔｒｙ＝＝ＮＵＬＬ）

５１２

ｂｒｅａｋ；

ｎｕｍ＋＋；

ｄｉａｇ ｐｒｉｎｔｆ（″＜ＩＮＦＯ＞：ｅｎｔｒｙ％１４ｓ″，ｅｎｔｒｙ＞ｄ ｎａｍｅ）；

ｉｆ（ｓｔａｔｐ）
｛

ｃｈａｒｆｕｌｌｎａｍｅ［ＰＡＴＨ ＭＡＸ］；

ｓｔｒｕｃｔｓｔａｔｓｂｕｆ；

ｉｆ（ｎａｍｅ［０］）
｛

ｓｔｒｃｐｙ（ｆｕｌｌｎａｍｅ，ｎａｍｅ）；

ｉｆ（！（ｎａｍｅ［０］＝＝′／′＆＆ｎａｍｅ［１］＝＝０））

ｓｔｒｃａｔ（ｆｕｌｌｎａｍｅ，″／″）；
｝

ｅｌｓｅｆｕｌｌｎａｍｅ［０］＝０；

ｓｔｒｃａｔ（ｆｕｌｌｎａｍｅ，ｅｎｔｒｙ＞ｄ ｎａｍｅ）；

ｅｒｒ＝ｓｔａｔ（ｆｕｌｌｎａｍｅ，＆ｓｂｕｆ）；

ｉｆ（ｅｒｒ＜０）
｛

ｉｆ（ｅｒｒｎｏ＝＝ＥＮＯＳＹＳ）

ｄｉａｇ ｐｒｉｎｔｆ（″＜ｎｏｓｔａｔｕｓａｖａｉｌａｂｌｅ＞″）；

ｅｌｓｅＳＨＯＷ ＲＥＳＵＬＴ（ｓｔａｔ，ｅｒｒ）；
｝

ｅｌｓｅ
｛

ｄｉａｇ ｐｒｉｎｔｆ（″［ｍｏｄｅ％０８ｘｉｎｏ％０８ｘｎｌｉｎｋ％ｄｓｉｚｅ％ｄ］″，

ｓｂｕｆ．ｓｔ ｍｏｄｅ，ｓｂｕｆ．ｓｔｉｎｏ，ｓｂｕｆ．ｓｔ ｎｌｉｎｋ，ｓｂｕｆ．Ｎｓｔ ｓｉｚｅ）；
｝

｝

ｄｉａｇ ｐｒｉｎｔｆ（″＼ｎ″）；
｝

ｅｒｒ＝ｃｌｏｓｅｄｉｒ（ｄｉｒｐ）；

ｉｆ（ｅｒｒ＜０）ＳＨＯＷ ＲＥＳＵＬＴ（ｓｔａｔ，ｅｒｒ）；

ｉｆ（ｎｕｍｅｘｐｅｃｔｅｄ＞＝０＆＆ｎｕｍ！＝ｎｕｍｅｘｐｅｃｔｅｄ）

ＣＹＧ ＴＥＳＴ ＦＡＩＬ（″Ｗｒｏｎｇｎｕｍｂｅｒｏｆｄｉｒｅｎｔｒｉｅｓ＼ｎ″）；

ｉｆ（ｎｕｍｇｏｔ！＝ＮＵＬＬ）

ｎｕｍｇｏｔ＝ｎｕｍ；
｝

／／＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝
／／创建文件

ｓｔａｔｉｃｖｏｉｄｃｒｅａｔｅｆｉｌｅ（ｃｈａｒｎａｍｅ，ｓｉｚｅ ｔｓｉｚｅ）
｛

ｃｈａｒｂｕｆ［ＩＯＳＩＺＥ］；

ｉｎｔｆｄ；

６１２

ｓｓｉｚｅ ｔｗｒｏｔｅ；

ｉｎｔｉ；

ｉｎｔｅｒｒ；

ｄｉａｇ ｐｒｉｎｔｆ（″＜ＩＮＦＯ＞：ｃｒｅａｔｅｆｉｌｅ％ｓｓｉｚｅ％ｄ＼ｎ″，ｎａｍｅ，ｓｉｚｅ）；

ｅｒｒ＝ａｃｃｅｓｓ（ｎａｍｅ，Ｆ ＯＫ）；

ｉｆ（ｅｒｒ＜０＆＆ｅｒｒｎｏ！＝ＥＡＣＣＥＳ）ＳＨＯＷ ＲＥＳＵＬＴ（ａｃｃｅｓｓ，ｅｒｒ）；

ｆｏｒ（ｉ＝０；ｉ＜ＩＯＳＩＺＥ；ｉ＋＋）ｂｕｆ［ｉ］＝ｉ％２５６；

ｆｄ＝ｏｐｅｎ（ｎａｍｅ，Ｏ ＷＲＯＮＬＹ｜Ｏ ＣＲＥＡＴ）；

ｉｆ（ｆｄ＜０）ＳＨＯＷ ＲＥＳＵＬＴ（ｏｐｅｎ，ｆｄ）；

ｗｈｉｌｅ（ｓｉｚｅ＞０）
｛

ｓｓｉｚｅ ｔｌｅｎ＝ｓｉｚｅ；

ｉｆ（ｌｅｎ＞ＩＯＳＩＺＥ）ｌｅｎ＝ＩＯＳＩＺＥ；

ｗｒｏｔｅ＝ｗｒｉｔｅ（ｆｄ，ｂｕｆ，ｌｅｎ）；

ｉｆ（ｗｒｏｔｅ！＝ｌｅｎ）ＳＨＯＷ ＲＥＳＵＬＴ（ｗｒｉｔｅ，ｗｒｏｔｅ）；

ｓｉｚｅ＝ｗｒｏｔｅ；
｝

ｅｒｒ＝ｃｌｏｓｅ（ｆｄ）；

ｉｆ（ｅｒｒ＜０）ＳＨＯＷ ＲＥＳＵＬＴ（ｃｌｏｓｅ，ｅｒｒ）；
｝

／／＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝
／／检查指定文件

ｓｔａｔｉｃｖｏｉｄｃｈｅｃｋｆｉｌｅ（ｃｈａｒｎａｍｅ）
｛

ｃｈａｒｂｕｆ［ＩＯＳＩＺＥ］；

ｉｎｔｆｄ；

ｓｓｉｚｅ ｔｄｏｎｅ；

ｉｎｔｉ；

ｉｎｔｅｒｒ；

ｏｆｆｔｐｏｓ＝０；

ｄｉａｇ ｐｒｉｎｔｆ（″＜ＩＮＦＯ＞：ｃｈｅｃｋｆｉｌｅ％ｓ＼ｎ″，ｎａｍｅ）；

ｅｒｒ＝ａｃｃｅｓｓ（ｎａｍｅ，Ｆ ＯＫ）；

ｉｆ（ｅｒｒ！＝０）ＳＨＯＷ ＲＥＳＵＬＴ（ａｃｃｅｓｓ，ｅｒｒ）；

ｆｄ＝ｏｐｅｎ（ｎａｍｅ，Ｏ ＲＤＯＮＬＹ）；

ｉｆ（ｆｄ＜０）ＳＨＯＷ ＲＥＳＵＬＴ（ｏｐｅｎ，ｆｄ）；

ｆｏｒ（；；）
｛

ｄｏｎｅ＝ｒｅａｄ（ｆｄ，ｂｕｆ，ＩＯＳＩＺＥ）；

ｉｆ（ｄｏｎｅ＜０）ＳＨＯＷ ＲＥＳＵＬＴ（ｒｅａｄ，ｄｏｎｅ）；

ｉｆ（ｄｏｎｅ＝＝０）ｂｒｅａｋ；

ｆｏｒ（ｉ＝０；ｉ＜ｄｏｎｅ；ｉ＋＋）

ｉｆ（ｂｕｆ［ｉ］！＝ｉ％２５６）
｛

７１２

ｄｉａｇ ｐｒｉｎｔｆ（″ｂｕｆ［％ｄ＋％ｄ］（％０２ｘ）！＝ ％０２ｘ＼ｎ″，ｐｏｓ，ｉ，ｂｕｆ［ｉ］，ｉ％２５６）；

ＣＹＧ ＴＥＳＴ ＦＡＩＬ（″Ｄａｔａｒｅａｄｎｏｔｅｑｕａｌｔｏｄａｔａｗｒｉｔｔｅｎ＼ｎ″）；
｝

ｐｏｓ＋＝ｄｏｎｅ；
｝

ｅｒｒ＝ｃｌｏｓｅ（ｆｄ）；

ｉｆ（ｅｒｒ＜０）ＳＨＯＷ ＲＥＳＵＬＴ（ｃｌｏｓｅ，ｅｒｒ）；
｝

／／＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝
／／复制文件

ｓｔａｔｉｃｖｏｉｄｃｏｐｙｆｉｌｅ（ｃｈａｒｎａｍｅ２，ｃｈａｒｎａｍｅ１）
｛

ｉｎｔｅｒｒ；

ｃｈａｒｂｕｆ［ＩＯＳＩＺＥ］；

ｉｎｔｆｄ１，ｆｄ２；

ｓｓｉｚｅ ｔｄｏｎｅ，ｗｒｏｔｅ；

ｄｉａｇ ｐｒｉｎｔｆ（″＜ＩＮＦＯ＞：ｃｏｐｙｆｉｌｅ％ｓ＞ ％ｓ＼ｎ″，ｎａｍｅ２，ｎａｍｅ１）；

ｅｒｒ＝ａｃｃｅｓｓ（ｎａｍｅ１，Ｆ ＯＫ）；

ｉｆ（ｅｒｒ＜０＆＆ｅｒｒｎｏ！＝ＥＡＣＣＥＳ）ＳＨＯＷ ＲＥＳＵＬＴ（ａｃｃｅｓｓ，ｅｒｒ）；

ｅｒｒ＝ａｃｃｅｓｓ（ｎａｍｅ２，Ｆ ＯＫ）；

ｉｆ（ｅｒｒ！＝０）ＳＨＯＷ ＲＥＳＵＬＴ（ａｃｃｅｓｓ，ｅｒｒ）；

ｆｄ１＝ｏｐｅｎ（ｎａｍｅ１，Ｏ ＷＲＯＮＬＹ｜Ｏ ＣＲＥＡＴ）；

ｉｆ（ｆｄ１＜０）ＳＨＯＷ ＲＥＳＵＬＴ（ｏｐｅｎ，ｆｄ１）；

ｆｄ２＝ｏｐｅｎ（ｎａｍｅ２，Ｏ ＲＤＯＮＬＹ）；

ｉｆ（ｆｄ２＜０）ＳＨＯＷ ＲＥＳＵＬＴ（ｏｐｅｎ，ｆｄ２）；

ｆｏｒ（；；）
｛

ｄｏｎｅ＝ｒｅａｄ（ｆｄ２，ｂｕｆ，ＩＯＳＩＺＥ）；

ｉｆ（ｄｏｎｅ＜０）ＳＨＯＷ ＲＥＳＵＬＴ（ｒｅａｄ，ｄｏｎｅ）；

ｉｆ（ｄｏｎｅ＝＝０）ｂｒｅａｋ；

ｗｒｏｔｅ＝ｗｒｉｔｅ（ｆｄ１，ｂｕｆ，ｄｏｎｅ）；

ｉｆ（ｗｒｏｔｅ！＝ｄｏｎｅ）ＳＨＯＷ ＲＥＳＵＬＴ（ｗｒｉｔｅ，ｗｒｏｔｅ）；

ｉｆ（ｗｒｏｔｅ！＝ｄｏｎｅ）ｂｒｅａｋ；
｝

ｅｒｒ＝ｃｌｏｓｅ（ｆｄ１）；

ｉｆ（ｅｒｒ＜０）ＳＨＯＷ ＲＥＳＵＬＴ（ｃｌｏｓｅ，ｅｒｒ）；

ｅｒｒ＝ｃｌｏｓｅ（ｆｄ２）；

ｉｆ（ｅｒｒ＜０）ＳＨＯＷ ＲＥＳＵＬＴ（ｃｌｏｓｅ，ｅｒｒ）；
｝

／／＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝
／／比较两个文件

ｓｔａｔｉｃｖｏｉｄｃｏｍｐａｒｅｆｉｌｅｓ（ｃｈａｒｎａｍｅ２，ｃｈａｒｎａｍｅ１）
｛

８１２

ｉｎｔｅｒｒ；

ｃｈａｒｂｕｆ１［ＩＯＳＩＺＥ］；

ｃｈａｒｂｕｆ２［ＩＯＳＩＺＥ］；

ｉｎｔｆｄ１，ｆｄ２；

ｓｓｉｚｅ ｔｄｏｎｅ１，ｄｏｎｅ２；

ｉｎｔｉ；

ｄｉａｇ ｐｒｉｎｔｆ（″＜ＩＮＦＯ＞：ｃｏｍｐａｒｅｆｉｌｅｓ％ｓ＝＝ ％ｓ＼ｎ″，ｎａｍｅ２，ｎａｍｅ１）；

ｅｒｒ＝ａｃｃｅｓｓ（ｎａｍｅ１，Ｆ ＯＫ）；

ｉｆ（ｅｒｒ！＝０）ＳＨＯＷ ＲＥＳＵＬＴ（ａｃｃｅｓｓ，ｅｒｒ）；

ｅｒｒ＝ａｃｃｅｓｓ（ｎａｍｅ１，Ｆ ＯＫ）；

ｉｆ（ｅｒｒ！＝０）ＳＨＯＷ ＲＥＳＵＬＴ（ａｃｃｅｓｓ，ｅｒｒ）；

ｆｄ１＝ｏｐｅｎ（ｎａｍｅ１，Ｏ ＲＤＯＮＬＹ）；

ｉｆ（ｆｄ１＜０）ＳＨＯＷ ＲＥＳＵＬＴ（ｏｐｅｎ，ｆｄ１）；

ｆｄ２＝ｏｐｅｎ（ｎａｍｅ２，Ｏ ＲＤＯＮＬＹ）；

ｉｆ（ｆｄ２＜０）ＳＨＯＷ ＲＥＳＵＬＴ（ｏｐｅｎ，ｆｄ２）；

ｆｏｒ（；；）
｛

ｄｏｎｅ１＝ｒｅａｄ（ｆｄ１，ｂｕｆ１，ＩＯＳＩＺＥ）；

ｉｆ（ｄｏｎｅ１＜０）ＳＨＯＷ ＲＥＳＵＬＴ（ｒｅａｄ，ｄｏｎｅ１）；

ｄｏｎｅ２＝ｒｅａｄ（ｆｄ２，ｂｕｆ２，ＩＯＳＩＺＥ）；

ｉｆ（ｄｏｎｅ２＜０）ＳＨＯＷ ＲＥＳＵＬＴ（ｒｅａｄ，ｄｏｎｅ２）；

ｉｆ（ｄｏｎｅ１！＝ｄｏｎｅ２）

ｄｉａｇ ｐｒｉｎｔｆ（″Ｆｉｌｅｓｄｉｆｆｅｒｅｎｔｓｉｚｅｓ＼ｎ″）；

ｉｆ（ｄｏｎｅ１＝＝０）ｂｒｅａｋ；

ｆｏｒ（ｉ＝０；ｉ＜ｄｏｎｅ１；ｉ＋＋）

ｉｆ（ｂｕｆ１［ｉ］！＝ｂｕｆ２［ｉ］）
｛

ｄｉａｇ ｐｒｉｎｔｆ（″ｂｕｆ１［％ｄ］（％０２ｘ）

ｂｕｆ１［％ｄ］（％０２ｘ）＼ｎ″，ｉ，ｂｕｆ１［ｉ］，ｉ，ｂｕｆ２［ｉ］）；

ＣＹＧ ＴＥＳＴ ＦＡＩＬ（″Ｄａｔａｉｎｆｉｌｅｓｎｏｔｅｑｕａｌ＼ｎ″）；
｝

｝

ｅｒｒ＝ｃｌｏｓｅ（ｆｄ１）；

ｉｆ（ｅｒｒ＜０）ＳＨＯＷ ＲＥＳＵＬＴ（ｃｌｏｓｅ，ｅｒｒ）；

ｅｒｒ＝ｃｌｏｓｅ（ｆｄ２）；

ｉｆ（ｅｒｒ＜０）ＳＨＯＷ ＲＥＳＵＬＴ（ｃｌｏｓｅ，ｅｒｒ）；
｝

／／＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝
／／检查是否是指定目录

ｖｏｉｄｃｈｅｃｋｃｗｄ（ｃｏｎｓｔｃｈａｒｃｗｄ）
｛

ｓｔａｔｉｃｃｈａｒｃｗｄｂｕｆ［ＰＡＴＨ ＭＡＸ］；

ｃｈａｒｒｅｔ；

９１２

ｒｅｔ＝ｇｅｔｃｗｄ（ｃｗｄｂｕｆ，ｓｉｚｅｏｆ（ｃｗｄｂｕｆ））；

ｉｆ（ｒｅｔ＝＝ＮＵＬＬ）ＳＨＯＷ ＲＥＳＵＬＴ（ｇｅｔｃｗｄ，ｒｅｔ）；

ｉｆ（ｓｔｒｃｍｐ（ｃｗｄｂｕｆ，ｃｗｄ）！＝０）
｛

ｄｉａｇ ｐｒｉｎｔｆ（″ｃｗｄｂｕｆ％ｓｃｗｄ％ｓ＼ｎ″，ｃｗｄｂｕｆ，ｃｗｄ）；

ＣＹＧ ＴＥＳＴ ＦＡＩＬ（″Ｃｕｒｒｅｎｔｄｉｒｅｃｔｏｒｙｍｉｓｍａｔｃｈ″）；
｝

｝

／／＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝
／／ｍａｉｎ
ｉｎｔｍａｉｎ（ｉｎｔａｒｇｃ，ｃｈａｒａｒｇｖ）
｛

ｉｎｔｅｒｒ；

ｉｎｔｅｘｉｓｔｉｎｇｄｉｒｅｎｔｓ＝１；
／／
ｅｒｒ＝ｍｏｕｎｔ（″″，″／″，″ｒａｍｆｓ″）； ／／安装ＲＡＭ文件系统

ｉｆ（ｅｒｒ＜０）ＳＨＯＷ ＲＥＳＵＬＴ（ｍｏｕｎｔ，ｅｒｒ）；

ｅｒｒ＝ｃｈｄｉｒ（″／″）；／／进入根目录

ｉｆ（ｅｒｒ＜０）ＳＨＯＷ ＲＥＳＵＬＴ（ｃｈｄｉｒ，ｅｒｒ）；

ｃｈｅｃｋｃｗｄ（″／″）；／／检查当前目录是否是根目录

ｌｉｓｔｄｉｒ（″／″，ｔｒｕｅ，１，＆ｅｘｉｓｔｉｎｇｄｉｒｅｎｔｓ）； ／／列出根目录下所有文件和目录

ｉｆ（ｅｘｉｓｔｉｎｇｄｉｒｅｎｔｓ＜２）

ＣＹＧ ＴＥＳＴ ＦＡＩＬ（″Ｎｏｔｅｎｏｕｇｈｄｉｒｅｎｔｒｉｅｓ＼ｎ″）；
／／
ｃｒｅａｔｅｆｉｌｅ（″／ｆｏｏ″，２０２）； ／／创建文件ｆｏｏ
ｃｈｅｃｋｆｉｌｅ（″ｆｏｏ″）； ／／检查文件ｆｏｏ
ｃｏｐｙｆｉｌｅ（″ｆｏｏ″，″ｆｅｅ″）； ／／将文件ｆｏｏ复制到文件ｆｅｅ
ｃｈｅｃｋｆｉｌｅ（″ｆｅｅ″）； ／／检查文件ｆｅｅ
ｃｏｍｐａｒｅｆｉｌｅｓ（″ｆｏｏ″，″／ｆｅｅ″）； ／／比较ｆｏｏ和ｆｅｅ两个文件

ｄｉａｇ ｐｒｉｎｔｆ（″＜ＩＮＦＯ＞：ｍｋｄｉｒｂａｒ＼ｎ″）；

ｅｒｒ＝ｍｋｄｉｒ（″／ｂａｒ″，０）； ／／创建目录／ｂａｒ
ｉｆ（ｅｒｒ＜０）ＳＨＯＷ ＲＥＳＵＬＴ（ｍｋｄｉｒ，ｅｒｒ）；

ｌｉｓｔｄｉｒ（″／″，ｔｒｕｅ，ｅｘｉｓｔｉｎｇｄｉｒｅｎｔｓ＋３，ＮＵＬＬ）； ／／列举根目录文件

ｃｏｐｙｆｉｌｅ（″ｆｅｅ″，″／ｂａｒ／ｆｕｍ″）； ／／复制文件ｆｅｅ到文件／ｂａｒ／ｆｕｍ
ｃｈｅｃｋｆｉｌｅ（″ｂａｒ／ｆｕｍ″）； ／／检查新复制的文件ｆｕｍ
ｃｏｍｐａｒｅｆｉｌｅｓ（″／ｆｅｅ″，″ｂａｒ／ｆｕｍ″）； ／／比较ｆｅｅ和ｆｕｍ两个文件

ｄｉａｇ ｐｒｉｎｔｆ（″＜ＩＮＦＯ＞：ｃｄｂａｒ＼ｎ″）；

ｅｒｒ＝ｃｈｄｉｒ（″ｂａｒ″）； ／／进入ｂａｒ子目录

ｉｆ（ｅｒｒ＜０）ＳＨＯＷ ＲＥＳＵＬＴ（ｃｈｄｉｒ，ｅｒｒ）；

ｃｈｅｃｋｃｗｄ（″／ｂａｒ″）； ／／检查ｂａｒ目录

ｄｉａｇ ｐｒｉｎｔｆ（″＜ＩＮＦＯ＞：ｒｅｎａｍｅ／ｆｏｏｂｕｎｄｙ＼ｎ″）；

ｅｒｒ＝ｒｅｎａｍｅ（″／ｆｏｏ″，″ｂｕｎｄｙ″）； ／／将文件／ｆｏｏ更名为ｂｕｎｄｙ

０２２

ｉｆ（ｅｒｒ＜０）ＳＨＯＷ ＲＥＳＵＬＴ（ｒｅｎａｍｅ，ｅｒｒ）；

ｌｉｓｔｄｉｒ（″／″，ｔｒｕｅ，ｅｘｉｓｔｉｎｇｄｉｒｅｎｔｓ＋２，ＮＵＬＬ）；

ｌｉｓｔｄｉｒ（″″，ｔｒｕｅ，４，ＮＵＬＬ）；

ｃｈｅｃｋｆｉｌｅ（″／ｂａｒ／ｂｕｎｄｙ″）；

ｃｏｍｐａｒｅｆｉｌｅｓ（″／ｆｅｅ″，″ｂｕｎｄｙ″）；
／／
／／长文件名操作：

ｃｒｅａｔｅｆｉｌｅ（ＬＯＮＧＮＡＭＥ１，１２３）；

ｃｈｅｃｋｆｉｌｅ（ＬＯＮＧＮＡＭＥ１）；

ｃｏｐｙｆｉｌｅ（ＬＯＮＧＮＡＭＥ１，ＬＯＮＧＮＡＭＥ２）；

ｌｉｓｔｄｉｒ（″″，ｆａｌｓｅ，６，ＮＵＬＬ）；

ｄｉａｇ ｐｒｉｎｔｆ（″＜ＩＮＦＯ＞：ｕｎｌｉｎｋ″ＬＯＮＧＮＡＭＥ１″＼ｎ″）；

ｅｒｒ＝ｕｎｌｉｎｋ（ＬＯＮＧＮＡＭＥ１）；

ｉｆ（ｅｒｒ＜０）ＳＨＯＷ ＲＥＳＵＬＴ（ｕｎｌｉｎｋ，ｅｒｒ）；

ｄｉａｇ ｐｒｉｎｔｆ（″＜ＩＮＦＯ＞：ｕｎｌｉｎｋ″ＬＯＮＧＮＡＭＥ２″＼ｎ″）；

ｅｒｒ＝ｕｎｌｉｎｋ（ＬＯＮＧＮＡＭＥ２）；

ｉｆ（ｅｒｒ＜０）ＳＨＯＷ ＲＥＳＵＬＴ（ｕｎｌｉｎｋ，ｅｒｒ）；
／／
／／删除文件和目录：

ｄｉａｇ ｐｒｉｎｔｆ（″＜ＩＮＦＯ＞：ｕｎｌｉｎｋｆｅｅ＼ｎ″）；
ｅｒｒ＝ｕｎｌｉｎｋ（″／ｆｅｅ″）；
ｉｆ（ｅｒｒ＜０）ＳＨＯＷ ＲＥＳＵＬＴ（ｕｎｌｉｎｋ，ｅｒｒ）；
ｄｉａｇ ｐｒｉｎｔｆ（″＜ＩＮＦＯ＞：ｕｎｌｉｎｋｆｕｍ＼ｎ″）；
ｅｒｒ＝ｕｎｌｉｎｋ（″ｆｕｍ″）；
ｉｆ（ｅｒｒ＜０）ＳＨＯＷ ＲＥＳＵＬＴ（ｕｎｌｉｎｋ，ｅｒｒ）；
ｄｉａｇ ｐｒｉｎｔｆ（″＜ＩＮＦＯ＞：ｕｎｌｉｎｋ／ｂａｒ／ｂｕｎｄｙ＼ｎ″）；
ｅｒｒ＝ｕｎｌｉｎｋ（″／ｂａｒ／ｂｕｎｄｙ″）；
ｉｆ（ｅｒｒ＜０）ＳＨＯＷ ＲＥＳＵＬＴ（ｕｎｌｉｎｋ，ｅｒｒ）；
ｄｉａｇ ｐｒｉｎｔｆ（″＜ＩＮＦＯ＞：ｃｄ／＼ｎ″）；
ｅｒｒ＝ｃｈｄｉｒ（″／″）；
ｉｆ（ｅｒｒ＜０）ＳＨＯＷ ＲＥＳＵＬＴ（ｃｈｄｉｒ，ｅｒｒ）；
ｃｈｅｃｋｃｗｄ（″／″）；
ｄｉａｇ ｐｒｉｎｔｆ（″＜ＩＮＦＯ＞：ｒｍｄｉｒ／ｂａｒ＼ｎ″）；
ｅｒｒ＝ｒｍｄｉｒ（″／ｂａｒ″）； ／／删除目录／ｂａｒ
ｉｆ（ｅｒｒ＜０）ＳＨＯＷ ＲＥＳＵＬＴ（ｒｍｄｉｒ，ｅｒｒ）；
ｌｉｓｔｄｉｒ（″／″，ｆａｌｓｅ，ｅｘｉｓｔｉｎｇｄｉｒｅｎｔｓ，ＮＵＬＬ）；
（省略）

ＣＹＧ ＴＥＳＴ ＰＡＳＳ ＦＩＮＩＳＨ（″ｆｉｌｅｉｏ１″）；
｝

１２２

第１０章 网络支持与编程

随着网络应用的普及，嵌入式系统对网络支持的要求也越来越迫切。ｅＣｏｓ为满足这种应
用需求，在网络方面也提供了强有力的支持。它所包含的公共网络协议包（ＣｏｍｍｏｎＮｅｔｗｏｒｋ
ｉｎｇＰａｃｋａｇｅ）支持完整的ＴＣＰ／ＩＰ网络协议栈，提供了基于ＯｐｅｎＢＳＤ和ＦｒｅｅＢＳＤ的两种实现。

ｅＣｏｓ目前支持的网络服务包括ＦＴＰ、ＴＦＴＰ、ＳＮＭＰ、ＤＮＳ、ＨＴＴＰ等等。
本章首先描述ｅＣｏｓ网络驱动程序的设计方法，然后介绍基于ＯｐｅｎＢＳＤ和ＦｒｅｅＢＳＤ的网

络协议栈支持，并简单介绍目前ｅＣｏｓ提供的一些网络服务。最后用简单的例子来说明如何进
行ｅＣｏｓ的网络编程。

１０１ ｅＣｏｓ网络配置

使用ｅＣｏｓ配置工具可以对网络支持进行配置。ｅＣｏｓ的网络支持由多个包组成，有两种方
法将这些网络支持包加入到系统中来。一种方式是采用ｅＣｏｓ提供的模板，如“ｎｅｔ”模板，在图
形配置工具中选择菜单选项“Ｂｕｉｌｄ→Ｔｅｍｐｌａｔｅｓ”，在出现的模板选择对话框中选择“ｎｅｔ”包。
另一种方式是直接使用菜单选项“Ｂｕｉｌｄ→Ｐａｃｋａｇｅｓ”，在出现的包选择对话框中选择加入相应
的网络支持包。

一旦选择了网络支持包，就可以使用配置工具对具体的网络支持特性进行配置。对网络

的配置主要有两个方面，一个是基本的网络支持配置，另一个是网络设备的配置。

图１０１是使用图形配置工具对ｅＣｏｓ的基本网络支持进行配置的示意图。基本网络支持
的配置包括的主要内容有：

图１０１ 基本网络支持的配置

① 基本网络协议栈（ＴＣＰ／ＩＰ等）的配置。

２２２

② 网络协议栈的使用方式。

③ 网络属性设置，包括ＩＰ地址、网关、子网掩码等。

④ 编译和调试选项配置。
对网络设备的配置包括对以太网驱动程序的配置和网卡设备选项的配置，如图１０２所

示。网络设备的配置位于Ｉ／Ｏ子系统包内。

图１０２ 网络设备的配置

ＩＰ地址可以单独进行设置。可以使用手工设置（在必须通过编程来实现的情况下），也可
以使用ＢＯＯＴＰ／ＤＨＣＰ来配置，还可以明确指定。如果增加其他的网络接口，则必须对这些新
的接口进行手工配置。配置所使用的数据包括：

①ＩＰ地址。

② 子网屏蔽。

③ 广播地址。

④ 网关／路由。

⑤ 服务器地址。

１０２ 以太网驱动程序设计

ｅＣｏｓ源码中虽然提供了许多以太网驱动程序，但在进行具体开发时可能会使用各种各样
的网络芯片，这就需要进行驱动程序设计。驱动程序的设计在第８章中有详细介绍，这里将重
点介绍如何进行网络驱动程序的设计。

ｅＣｏｓ的网络驱动程序分为两个层次。其中的一个层次（高层驱动程序）独立于具体硬件，
包含了所有网络协议栈专用程序。另一个层次（底层驱动程序）与平台硬件密切相关，它使用

简单的ＡＰＩ接口与独立于硬件的那一层驱动程序进行通信。如果其他网络协议栈使用同一

３２２

个ＡＰＩ接口，那么它们也可以使用与硬件相关的网络设备驱动程序。ｅＣｏｓ的这种设计方法有
利于开发其他的网络协议栈，使得与硬件相关的程序代码具有可重用性。

与具体硬件没有直接联系的高层驱动程序是网络协议栈的一个组成部分，在其下面有一

个或多个与实际网络硬件相关的底层驱动程序。每一个驱动程序包含了一个或多个驱动程序

实例。底层驱动程序并不了解使用它们的上层网络协议栈的详细信息，同一个驱动程序可以

不加修改地用于ＴＣＰ／ＩＰ协议栈、ＲｅｄＢｏｏｔ等。ｅＣｏｓ网络支持的这种结构如图１０３所示。

图１０３ ｅＣｏｓ网络驱动程序层次结构

１０２１ 底层驱动程序基本框架

底层驱动程序必须提供对硬件进行操作的函数，这些操作包括对硬件进行初始化和启动、

硬件的停止、设备控制、状态查询、数据的发送与接收、中断处理等等。所有这些对硬件操作的

函数都被封装到一个数据结构ｅｔｈ ｈｗｒ ｆｕｎｓ中。这个数据结构的格式如下：

ｓｔｒｕｃｔｅｔｈ ｈｗｒ ｆｕｎｓ｛
／／Ｉｎｉｔｉａｌｉｚｅｈａｒｄｗａｒｅ（ｉｎｃｌｕｄｉｎｇｓｔａｒｔｕｐ）

ｖｏｉｄ（ｓｔａｒｔ）（ｓｔｒｕｃｔｅｔｈ ｄｒｖ ｓｃｓｃ，

ｕｎｓｉｇｎｅｄｃｈａｒｅｎａｄｄｒ，

ｉｎｔｆｌａｇｓ）；
／／Ｓｈｕｔｄｏｗｎｈａｒｄｗａｒｅ
ｖｏｉｄ（ｓｔｏｐ）（ｓｔｒｕｃｔｅｔｈ ｄｒｖ ｓｃｓｃ）；
／／Ｄｅｖｉｃｅｃｏｎｔｒｏｌ（ｉｏｃｔｌｐａｓｓｔｈｒｕ）

ｉｎｔ（ｃｏｎｔｒｏｌ）（ｓｔｒｕｃｔｅｔｈ ｄｒｖ ｓｃｓｃ，

ｕｎｓｉｇｎｅｄｌｏｎｇｋｅｙ，

ｖｏｉｄｄａｔａ，

ｉｎｔｄａｔａ ｌｅｎｇｔｈ）；
／／Ｑｕｅｒｙｃａｎａｐａｃｋｅｔｂｅｓｅｎｔ？

ｉｎｔ（ｃａｎ ｓｅｎｄ）（ｓｔｒｕｃｔｅｔｈ ｄｒｖ ｓｃｓｃ）；
／／Ｓｅｎｄａｐａｃｋｅｔｏｆｄａｔａ
ｖｏｉｄ（ｓｅｎｄ）（ｓｔｒｕｃｔｅｔｈ ｄｒｖ ｓｃｓｃ，

ｓｔｒｕｃｔｅｔｈ ｄｒｖ ｓｇｓｇ ｌｉｓｔ，

４２２

ｉｎｔｓｇ ｌｅｎ，

ｉｎｔｔｏｔａｌｌｅｎ，

ｕｎｓｉｇｎｅｄｌｏｎｇｋｅｙ）；
／／Ｒｅｃｅｉｖｅ［ｕｎｌｏａｄ］ａｐａｃｋｅｔｏｆｄａｔａ
ｖｏｉｄ（ｒｅｃｖ）（ｓｔｒｕｃｔｅｔｈ ｄｒｖ ｓｃｓｃ，

ｓｔｒｕｃｔｅｔｈ ｄｒｖ ｓｇｓｇ ｌｉｓｔ，

ｉｎｔｓｇ ｌｅｎ）；
／／Ｄｅｌｉｖｅｒｄａｔａｔｏ／ｆｒｏｍｄｅｖｉｃｅｆｒｏｍ／ｔｏｓｔａｃｋｍｅｍｏｒｙｓｐａｃｅ
／／（ｍｏｖｅｓｌｏｔｓｏｆｍｅｍｃｐｙ（）ｓｏｕｔｏｆＤＳＲｓｉｎｔｏｔｈｒｅａｄ）

ｖｏｉｄ（ｄｅｌｉｖｅｒ）（ｓｔｒｕｃｔｅｔｈ ｄｒｖ ｓｃｓｃ）；
／／Ｐｏｌｌｆｏｒｉｎｔｅｒｒｕｐｔｓ／ｄｅｖｉｃｅｓｅｒｖｉｃｅ
ｖｏｉｄ（ｐｏｌｌ）（ｓｔｒｕｃｔｅｔｈ ｄｒｖ ｓｃｓｃ）；
／／Ｇｅｔｉｎｔｅｒｒｕｐｔｉｎｆｏｒｍａｔｉｏｎｆｒｏｍｈａｒｄｗａｒｅｄｒｉｖｅｒ
ｉｎｔ（ｉｎｔ ｖｅｃｔｏｒ）（ｓｔｒｕｃｔｅｔｈ ｄｒｖ ｓｃｓｃ）；
／／Ｌｏｇｉｃａｌｄｒｉｖｅｒｉｎｔｅｒｆａｃｅ
ｓｔｒｕｃｔｅｔｈ ｄｒｖ ｆｕｎｓｅｔｈ ｄｒｖ，ｅｔｈ ｄｒｖ ｏｌｄ；
｝；

一个驱动程序实例（ｉｎｓｔａｎｃｅ）包含在下面的数据结构ｅｔｈ ｄｒｖ ｓｃ内：

ｓｔｒｕｃｔｅｔｈ ｄｒｖ ｓｃ｛

ｓｔｒｕｃｔｅｔｈ ｈｗｒ ｆｕｎｓｆｕｎｓ；

ｖｏｉｄ ｄｒｉｖｅｒ ｐｒｉｖａｔｅ；

ｃｏｎｓｔｃｈａｒ ｄｅｖ ｎａｍｅ；

ｉｎｔ ｓｔａｔｅ；

ｓｔｒｕｃｔａｒｐｃｏｍ ｓｃ ａｒｐｃｏｍ；／ｅｔｈｅｒｎｅｔｃｏｍｍｏｎ／
｝；

如果同一硬件设备有两个实例，则只需要提供一个ｅｔｈ ｈｗｒ ｆｕｎｓ结构，同一硬件设备的
不同驱动程序实例可以共享该结构。

上面的ｅｔｈ ｈｗｒ ｆｕｎｓ结构只提供了对设备进行操作的函数，为了能使驱动程序与网络
协议栈的其余部分通信（高层驱动程序），还应该提供包括这些通信函数在内的另一个数据结

构ｅｔｈ ｄｒｖ ｆｕｎｓ：

ｓｔｒｕｃｔｅｔｈ ｄｒｖ ｆｕｎｓ｛
／／Ｌｏｇｉｃａｌｄｒｉｖｅｒｉｎｉｔｉａｌｉｚａｔｉｏｎ
ｖｏｉｄ（ｉｎｉｔ）（ｓｔｒｕｃｔｅｔｈ ｄｒｖ ｓｃｓｃ，

ｕｎｓｉｇｎｅｄｃｈａｒｅｎａｄｄｒ）；
／／Ｌｏｇｉｃａｌｄｒｉｖｅｒｉｎｃｏｍｉｎｇｐａｃｋｅｔｎｏｔｉｆｉｅｒ
ｖｏｉｄ（ｒｅｃｖ）（ｓｔｒｕｃｔｅｔｈ ｄｒｖ ｓｃｓｃ，

ｉｎｔｔｏｔａｌｌｅｎ）；

／／Ｌｏｇｉｃａｌｄｒｉｖｅｒｏｕｔｇｏｉｎｇｐａｃｋｅｔｎｏｔｉｆｉｅｒ
ｖｏｉｄ（ｔｘ ｄｏｎｅ）（ｓｔｒｕｃｔｅｔｈ ｄｒｖ ｓｃｓｃ，

ＣＹＧ ＡＤＤＲＥＳＳｋｅｙ，

５２２

ｉｎｔｓｔａｔｕｓ）；
｝；

底层驱动程序中不需要产生该结构的实例。头文件ｅｔｈ ｄｒｖ．ｈ具有该结构的定义，驱动
程序可以直接使用它。

与网络协议栈进行通信所需要的另外一个ＡＰＩ函数是：

ｅｘｔｅｒｎｖｏｉｄｅｔｈ ｄｒｖ ｄｓｒ（ｃｙｇ ｖｅｃｔｏｒ ｔｖｅｃｔｏｒ，

ｃｙｇ ｕｃｏｕｎｔ３２ｃｏｕｎｔ，

ｃｙｇ ａｄｄｒｗｏｒｄ ｔｄａｔａ）；

该函数被当作中断处理程序的ＤＳＲ（滞后服务程序）被注册，它将唤醒“网络传输线程”来
调用驱动程序的传输程序。

使用宏ＥＴＨ ＤＲＶ ＳＣ（）可以产生数据结构ｅｔｈ ｄｒｖ ｓｃ的一个实例，该结构包括了一些
函数原型。如果要对以太网驱动程序进行修改，比如需要增加新的函数时，在对驱动程序进行更

新之前不需要对原来的驱动程序进行重新编译，其他所有函数不会因为接口的变化而受到影响。

以太网驱动程序的启动类似于ＩＯ子系统。使用宏ＮＥＴＳＥＶＴＡＢ ＥＮＴＲＹ（）可以启动
其驱动程序，该宏定义了一个初始化函数和底层驱动程序的基本数据结构。宏的定义如下：

ｔｙｐｅｄｅｆｓｔｒｕｃｔｃｙｇ ｎｅｔｄｅｖｔａｂ ｅｎｔｒｙ｛

ｃｏｎｓｔｃｈａｒ ｎａｍｅ；

ｂｏｏｌ （ｉｎｉｔ）（ｓｔｒｕｃｔｃｙｇ ｎｅｔｄｅｖｔａｂ ｅｎｔｒｙｔａｂ）；

ｖｏｉｄ ｄｅｖｉｃｅｉｎｓｔａｎｃｅ；

ｕｎｓｉｇｎｅｄｌｏｎｇ ｓｔａｔｕｓ；
｝ｃｙｇ ｎｅｔｄｅｖｔａｂ ｅｎｔｒｙ ｔ；

该结构中的ｄｅｖｉｃｅ ｉｎｓｔａｎｃｅ指向前面已经定义的ｅｔｈ ｄｒｖ ｓｃ结构。这种实现方式使得
网络驱动程序可以被设置为任何类型的驱动程序，不仅仅是以太网驱动程序。

综上所述，以太网驱动程序可以使用下述模板来产生其一个实例并挂接到系统上：

＃ｉｎｃｌｕｄｅ＜ｃｙｇ／ｉｎｆｒａ／ｃｙｇ ｔｙｐｅ．ｈ＞
＃ｉｎｃｌｕｄｅ＜ｃｙｇ／ｈａｌ／ｈａｌ ａｒｃｈ．ｈ＞
＃ｉｎｃｌｕｄｅ＜ｃｙｇ／ｉｎｆｒａ／ｄｉａｇ．ｈ＞
＃ｉｎｃｌｕｄｅ＜ｃｙｇ／ｈａｌ／ｄｒｖ ａｐｉ．ｈ＞
＃ｉｎｃｌｕｄｅ＜ｃｙｇ／ｉｏ／ｅｔｈ／ｎｅｔｄｅｖ．ｈ＞
＃ｉｎｃｌｕｄｅ＜ｃｙｇ／ｉｏ／ｅｔｈ／ｅｔｈ ｄｒｖ．ｈ＞
ＥＴＨ ＤＲＶ ＳＣ（ＤＲＶ ｓｃ，

０， ／／Ｎｏｄｒｉｖｅｒｓｐｅｃｉｆｉｃｄａｔａｎｅｅｄｅｄ
″ｅｔｈ０″， ／／Ｎａｍｅｆｏｒｔｈｉｓｉｎｔｅｒｆａｃｅ
ＨＲＤＷＲ ｓｔａｒｔ，

ＨＲＤＷＲ ｓｔｏｐ，

ＨＲＤＷＲ ｃｏｎｔｒｏｌ，

ＨＲＤＷＲ ｃａｎ ｓｅｎｄ
ＨＲＤＷＲ ｓｅｎｄ，

ＨＲＤＷＲ ｒｅｃｖ，

６２２

ＨＲＤＷＲ ｄｅｌｉｖｅｒ，

ＨＲＤＷＲ ｐｏｌｌ，

ＨＲＤＷＲ ｉｎｔ ｖｅｃｔｏｒ
）；

ＮＥＴＤＥＶＴＡＢ ＥＮＴＲＹ（ＤＲＶ ｎｅｔｄｅｖ，

″ＤＲＶ″，

ＤＲＶ ＨＲＤＷＲ ｉｎｉｔ，

＆ＤＲＶ ｓｃ）；

这样，剩下的工作是实现驱动程序中所涉及的对设备进行具体操作的函数，下一节将介绍

这些函数的实现方法。

如果要使用同一个底层驱动程序来处理多个类似的硬件接口，则必须多次使用这两个宏：

ＥＴＨ ＤＲＶ ＳＣ（）、ＮＥＴＤＥＶＴＡＢ ＥＮＴＲＹ（）。如果具有与该实例相关的专用数据（如基地
址、中断号等），可以在上面模板中ＥＴＨ ＤＲＶ ＳＣ（）的第二个参数处（上例为０）加一个指向
专用数据的指针。

１０２２ 驱动程序内部函数的实现

使用上面的模板只是形成一个以太网驱动程序的基本框架，还必须实现对设备进行具体

操作的函数。下面将介绍各种函数的实现功能，在具体实现时要使用具体设备相应的函数名，

避免系统中出现相同的函数定义。

ｉｎｉｔ函数
函数原型：

ｓｔａｔｉｃｂｏｏｌＤＲＶ ＨＲＤＷＲ ｉｎｉｔ（ｓｔｒｕｃｔｃｙｇ ｎｅｔｄｅｖｔａｂ ｅｎｔｒｙｔａｂ）

该函数作为系统初始化的一部分，在系统初始化期间被调用。其主要功能是判断设备是

否正在工作，确定是否需要将设备接口变为可用的状态。如果需要，那么该函数必须以下面的

形式调用以太网驱动程序的内部ｉｎｉｔ函数：

ｓｔｒｕｃｔｅｔｈ ｄｒｖ ｓｃｓｃ＝（ｓｔｒｕｃｔｅｔｈ ｄｒｖ ｓｃ）ｔａｂ＞ｄｅｖｉｃｅｉｎｓｔａｎｃｅ；

．．．．ｉｎｉｔｉａｌｉｚａｔｉｏｎｃｏｄｅ．．．．
／／Ｉｎｉｔｉａｌｉｚｅｕｐｐｅｒｌｅｖｅｌｄｒｉｖｅｒ
（ｓｃ＞ｆｕｎｓ＞ｅｔｈ ｄｒｖ＞ｉｎｉｔ）（ｓｃ，ｕｎｓｉｇｎｅｄｃｈａｒｅｎａｄｄｒ）；

其中参数ｅｎａｄｄｒ为网卡的ＭＡＣ地址指针，用于通知上层网络协议栈该设备已经准备就
绪。ＭＡＣ地址是标识网卡的惟一地址，一般保存在网卡的ＲＯＭ内。某些平台的ＲｅｄＢｏｏｔ提
供了对其进行设置的ｆｃｏｎｆｉｇ命令，另外在ＣＤＬ脚本或ＥＰＲＯＭ中也可以对它进行指定。驱
动程序一般先选择ＲｅｄＢｏｏｔ运行时指定的ＭＡＣ地址。如果ＲｅｄＢｏｏｔ没有指定，则选用ＣＤＬ
指定的地址，最后才选择ＥＰＲＯＭ设定的地址。

ｓｔａｒｔ函数
函数原型：

ｓｔａｔｉｃｖｏｉｄＨＲＤＷＲ ｓｔａｒｔ（ｓｔｒｕｃｔｅｔｈ ｄｒｖ ｓｃｓｃ，

ｕｎｓｉｇｎｅｄｃｈａｒｅｎａｄｄｒ，

７２２

ｉｎｔｆｌａｇｓ）

在系统初始化完成后，通常在系统或应用程序准备激活网络接口的时候调用该函数。其

目的是对硬件接口进行设置，以便启动网络数据包的接收和发送。在调用该函数之前，不应该

使能网络硬件接收器。

在网络接口逻辑发生变化时，该函数也将被调用。当ＩＰ地址被改变的时候，或者在应用程
序通过ｉｏｃｔｌ（）对方式进行选择的时候都需要调用此函数。这种调用在系统中可能会多次发生。

ｓｔｏｐ函数
函数原型：

ｓｔａｔｉｃｖｏｉｄＨＲＤＷＲ ｓｔｏｐ（ｓｔｒｕｃｔｅｔｈ ｄｒｖ ｓｃｓｃ）

该函数所进行的操作与ｓｔａｒｔ函数相反，它关闭网络接口硬件，阻止系统与网络设备之间
的交互通信。

ｃｏｎｔｒｏｌ函数
函数原型：

ｓｔａｔｉｃｉｎｔＨＲＤＷＲ ｃｏｎｔｒｏｌ（

ｓｔｒｕｃｔｅｔｈ ｄｒｖ ｓｃｓｃ，

ｕｎｓｉｇｎｅｄｌｏｎｇｋｅｙ，

ｖｏｉｄｄａｔａ，

ｉｎｔｌｅｎ）

该函数用于对网络设备接口进行底层的控制操作。这种操作通常由ｉｏｃｔｌ（）函数（ＢＳＤ协
议栈内）启动，可以改变对硬件的设置。其参数ｋｅｙ指定所选择的操作，ｄａｔａ和ｌｅｎ是该操作所
需的数据和数据长度。

ｋｅｙ值可选择如下操作：

ＥＴＨ ＤＲＶ ＳＥＴ ＭＡＣ ＡＤＤＲＥＳＳ

设置网络设备的ＭＡＣ地址。该地址是惟一的，通常保存在非易失性内存中。进行该操
作时，该函数必须使用新的ＭＡＣ地址对网络接口进行设置，可以根据硬件的需要对非易失性
内存进行更新。

ＥＴＨ ＤＲＶ ＧＥＴ ＩＦ ＳＴＡＴＳ ＵＤ，

ＥＴＨ ＤＲＶ ＧＥＴ ＩＦ ＳＴＡＴＳ

这两个操作用于获取网络接口的统计信息，并将这些信息写入ｄａｔａ指定的内存内。
“ＵＤ”指明获取最新的统计消息。这种统计操作的完成可能需要一定的时间。

ＥＴＨ ＤＲＶ ＳＥＴ ＭＣ ＬＩＳＴ

这种操作对设备进行设置，使其对多点传送（ｍｕｌｔｉｃａｓｔ）的网络数据进行筛选，只接收那些
对参数ｄａｔａ中所列的多点发送ＭＡＣ地址进行寻址的数据包。ｄａｔａ包含了所列ＭＡＣ地址的
数目和具体的ＭＡＣ地址，其格式定义如下：

＃ｄｅｆｉｎｅＥＴＨ ＤＲＶ ＭＡＸ ＭＣ８

８２２

ｓｔｒｕｃｔｅｔｈ ｄｒｖ ｍｃｌｉｓｔ｛

ｉｎｔｌｅｎ；

ｕｎｓｉｇｎｅｄｃｈａｒａｄｄｒｓ［ＥＴＨ ＤＲＶ ＭＡＸ ＭＣ］［ＥＴＨＥＲ ＡＤＤＲ ＬＥＮ］；
｝；

ＥＴＨ ＤＲＶ ＳＥＴ ＭＣ ＡＬＬ

这种操作指示网络设备接收所有的多点发送数据包，不使用筛选机制。

如果指定的操作成功完成，该函数返回０，否则将返回一个非０值。

ｃａｎ ｓｅｎｄ函数
函数原型：

ｓｔａｔｉｃｉｎｔＨＲＤＷＲ ｃａｎ ｓｅｎｄ（ｓｔｒｕｃｔｅｔｈ ｄｒｖ ｓｃｓｃ）

该函数用于判断网络接口是否可以启动一个数据包的发送。有些网络接口允许多个数据

包排队等待，这一函数可以用于这种方式。

该函数的返回值表示可接受的包的个数，返回０时表示网络接口处于忙（饱和）状态。

ｓｅｎｄ函数
函数原型：

ｓｔａｔｉｃｖｏｉｄＨＲＤＷＲ ｓｅｎｄ（

ｓｔｒｕｃｔｅｔｈ ｄｒｖ ｓｃｓｃ，

ｓｔｒｕｃｔｅｔｈ ｄｒｖ ｓｇｓｇ ｌｉｓｔ，

ｉｎｔｓｇ ｌｅｎ，

ｉｎｔｔｏｔａｌｌｅｎ，

ｕｎｓｉｇｎｅｄｌｏｎｇｋｅｙ）

其中ｅｔｈ ｄｒｖ ｓｇ结构定义为：

ｓｔｒｕｃｔｅｔｈ ｄｒｖ ｓｇ｛

ＣＹＧ ＡＤＤＲＥＳＳｂｕｆ；

ＣＹＧ ＡＤＤＲＷＯＲＤｌｅｎ；
｝；

该函数用于发送一个网络数据包。具体如何向网络发送数据包正是该函数所需要做的工

作。大部分硬件在进行发送操作时只需要被传送数据块的地址和长度值。

网络驱动程序支持数据的ｓｃａｔｔｅｒｇａｔｈｅｒ操作。被发送和接收的所有数据都通过一个

ｓｃａｔｔｅｒｇａｔｈｅｒ表来指定，ｓｃａｔｔｅｒｇａｔｈｅｒ表是一个描述多段被传送数据的表，是一个包含数据块
地址和长度的数组。上面定义的ｅｔｈ ｄｒｖ ｓｇ就是该数组元素的定义。
一旦数据发送成功或者发生错误，驱动程序都将调用（ｓｃ＞ｆｕｎｓ＞ｅｔｈ ｄｒｖ＞ｔｘ ｄｏｎｅ）

（），调用时将使用指定的ｋｅｙ值。只有在高层驱动程序释放该数据包的资源时才能启动下一
次发送操作。

ｄｅｌｉｖｅｒ函数
函数原型：

ｓｔａｔｉｃｖｏｉｄＨＲＤＷＲ ｄｅｌｉｖｅｒ（ｓｔｒｕｃｔｅｔｈ ｄｒｖ ｓｃｓｃ）

９２２

网络传输线程调用该函数使设备驱动程序接收数据包。数据包的接收是一种耗时的操

作，通常要从硬件或指定的某个内存区将整个包复制到网络栈内存区。在对输入包或者悬挂

的发送状态进行处理之后，它可以解除对设备中断的屏蔽并释放相关的资源，从而可以对更多

的包进行处理。

网络设备中断处理程序调用ｅｔｈ ｄｒｖ ｄｓｒ（ｖｅｃｔｏｒ，ｃｏｕｎｔ，（ｃｙｇ ａｄｄｒｗｏｒｄ ｔ）ｓｃ）函数提
醒系统对某些事情进行关注时，将调用ｄｅｌｉｖｅｒ函数。ｅｔｈ ｄｒｖ ｄｓｒ函数的调用必须是在中断
处理程序的ＤＳＲ内，不能在ＩＳＲ内。ｅｔｈ ｄｒｖ ｄｓｒ函数的第三个参数ｓｃ必须是一个有效的

ｅｔｈ ｄｒｖ ｓｃ结构的指针。
为了将一个新收到的包交付给网络栈，ｄｅｌｉｖｅｒ函数必须调用（ｓｃ＞ｆｕｎｓ＞ｅｔｈ ｄｒｖ＞

ｒｅｃｖ）（ｓｃ，ｌｅｎ）函数，这个函数又将调用ｒｅｃｅｉｖｅ函数。

ｒｅｃｅｉｖｅ函数
函数原型：

ｓｔａｔｉｃｖｏｉｄＨＲＤＷＲ ｒｅｃｖ（

ｓｔｒｕｃｔｅｔｈ ｄｒｖ ｓｃｓｃ，

ｓｔｒｕｃｔｅｔｈ ｄｒｖ ｓｇｓｇ ｌｉｓｔ，

ｉｎｔｓｇ ｌｅｎ）

这是一个回调函数，只有在ｄｅｌｉｖｅｒ函数知道网络接口中有可用的数据包时，在调用高层
函数（ｓｃ＞ｆｕｎｓ＞ｅｔｈ ｄｒｖ＞ｒｅｃｖ）（ｓｔｒｕｃｔｅｔｈ ｄｒｖ ｓｃｓｃ，ｉｎｔｔｏｔａｌｌｅｎ）之后才调用这个函
数。ｓｃ＞ｆｕｎｓ＞ｅｔｈ ｄｒｖ＞ｒｅｃｖ）（）函数在为数据准备好网络传输ｂｕｆｆｅｒ和相关数据结构之
后，调用ＨＲＤＷＲ ｒｅｃｖ（）从网络接口读取数据。
在使用该函数时，也可以实现ｓｃａｔｔｅｒｇａｔｈｅｒ操作，ｓｃａｔｔｅｒ ｇａｔｈｅｒ表的结构ｅｔｈ ｄｒｖ ｓｇ

将被使用多次。

ｐｏｌｌ函数
函数原型：

ｓｔａｔｉｃｖｏｉｄＨＲＤＷＲ ｐｏｌｌ（ｓｔｒｕｃｔｅｔｈ ｄｒｖ ｓｃｓｃ）

该函数用于中断被完全禁止的系统，它允许驱动程序以查询方式来确定是否需要进行数据

的发送和接收操作，或者是否需要进行其他的处理操作。该函数的一种比较好的实现方法如下：

ｓｔａｔｉｃｖｏｉｄ
ＨＲＤＷＲ ｐｏｌｌ（ｓｔｒｕｃｔｅｔｈ ｄｒｖ ｓｃｓｃ）
｛

ｍｙ ｉｎｔｅｒｒｕｐｔ ＩＳＲ（ｓｃ）；

ＨＲＤＷＲ ｄｅｌｉｖｅｒ（ｓｔｒｕｃｔｅｔｈ ｄｒｖ ｓｃｓｃ）；
｝

中断向量函数

函数原型：

ｓｔａｔｉｃｉｎｔＨＲＤＷＲ ｉｎｔ ｖｅｃｔｏｒ（ｓｔｒｕｃｔｅｔｈ ｄｒｖ ｓｃｓｃ）

该函数将返回接收网络中断所使用的中断向量。主要用于ＧＤＢ对网络的调试。ＧＤＢ在

０３２

对中断进行屏蔽操作时，需要知道以太网设备所使用的是哪个中断。

１０２３ 高层驱动程序函数

驱动程序在进行包的接收和发送时需要调用高层驱动程序函数。高层驱动程序与硬件没

有直接联系，它所提供的函数可以不加修改地用于不同的网络协议栈。这些函数都需要有一

个对网络接口进行描述的ｅｔｈ ｄｒｖ ｓｃ结构的指针。底层硬件驱动程序拥有该指针，在适当
的时候把该指针传送到高层驱动程序。

ｉｎｉｔ回调函数
函数原型：

ｖｏｉｄ（ｓｃ＞ｆｕｎｓ＞ｅｔｈ ｄｒｖ＞ｉｎｉｔ）（

ｓｔｒｕｃｔｅｔｈ ｄｒｖ ｓｃｓｃ，

ｕｎｓｉｇｎｅｄｃｈａｒｅｎａｄｄｒ）

该函数在初始化期间对设备进行设置。对于每一个设备实例，它只能被初始化函数调用

一次。该函数在被调用的时候，硬件应该已经完成了全部的初始化工作。

ｔｘ ｄｏｎｅ回调函数
函数原型：

ｖｏｉｄ（ｓｃ＞ｆｕｎｓ＞ｅｔｈ ｄｒｖ＞ｔｘ ｄｏｎｅ）（

ｓｔｒｕｃｔｅｔｈ ｄｒｖ ｓｃｓｃ，

ｕｎｓｉｇｎｅｄｌｏｎｇｋｅｙ，

ｉｎｔｓｔａｔｕｓ）

在一个包的发送操作完成后，该函数将被调用。其中参数ｋｅｙ必须是上一节介绍的

ＨＲＤＷＲ ｓｅｎｄ（）函数所提供的ｋｅｙ值。如果发送操作有错误，则ｓｔａｔｕｓ为非０值，如果发送
成功，其值则为０。
底层驱动程序函数ｄｅｌｉｖｅｒ和ｐｏｌｌ将调用该函数。

ｒｅｃｅｉｖｅ回调函数
函数原型：

ｖｏｉｄ（ｓｃ＞ｆｕｎｓ＞ｅｔｈ ｄｒｖ＞ｒｅｃｖ）（

ｓｔｒｕｃｔｅｔｈ ｄｒｖ ｓｃｓｃ，

ｉｎｔｌｅｎ）

该函数被调用时，说明长度为ｌｅｎ的包已经到达了网络接口。前面介绍的ＨＤＲＷＲ ｒｅｃｖ
（）函数将这些数据从该接口读入到高层驱动程序所使用的ｂｕｆｆｅｒ。

１０２４ 数据的发送和接收过程

进行网络驱动程序设计时，必须详细了解数据发送和接收的整个控制过程。在对数据发

送和接收进行控制的过程中，驱动程序将使用中断。在发生异步事件时，中断滞后服务程序

ＤＳＲ将这些异步事件通知前台，请求对这些事件进行相应的处理。

１发送过程
在前台运行的任务可以使用网络协议栈来发送数据包，这些前台任务包括应用程序、ＳＮ

１３２

ＭＰ的ｄａｅｍｏｎ程序、ＤＨＣＰ管理线程等等，它们也可以使用网络协议栈来发送诸如“ｐｉｎｇ”和
“ＡＲＰ”这样的请求应答包。驱动程序在进行包的发送时，其主要流程如下：

１）驱动程序调用底层ＨＲＤＷＲ ｃａｎ ｓｅｎｄ（）函数，确定是否可以进行发送操作。

２）ＨＲＤＷＲ ｃａｎ ｓｅｎｄ（）返回可用的“ｓｌｏｔｓ”数目，一个“ｓｌｏｔｓ”可以存放一个未发送的包。
如果此时不能发送，该包将在硬件驱动程序外排队等待。在这种情况下，硬件正处于发送忙状

态，因此希望在当前包流出时有中断产生。

３）如果此时可以发送包，则调用ＨＲＤＷＲ ｓｅｎｄ（）函数将数据复制到指定的硬件ｂｕｆｆｅｒ
内，或者指示硬件将其发送。此时要记住该发送请求的ｋｅｙ值。

４）在发送完成后，硬件发出一个异步中断。中断服务程序ＩＳＲ响应中断，识别硬件中断
源，并请求相应的中断滞后服务程序ＤＳＲ运行。

５）ＤＳＲ调用ｅｔｈ ｄｒｖ ｄｓｒ（）函数（它可能就是ＤＳＲ本身）。

６）ｅｔｈ ｄｒｖ ｄｓｒ（）函数唤醒网络传输线程，该线程调用ＨＲＤＷＲ ｄｅｌｉｖｅｒ（）发送函数。

７）发送函数得知一个发送请求完成后，调用ｔｘｄｏｎｅ回调函数（ｓｃ＞ｆｕｎｓ＞ｅｔｈ ｄｒｖ＞ｔｘ
ｄｏｎｅ）（），使用第３步所使用的ｋｅｙ值。

８）ｔｘｄｏｎｅ回调函数使用ｋｅｙ值来查找此次发送请求相关的信息。这样，网络栈可以知道
此次发送已经完成，并释放其资源。

９）ｔｘｄｏｎｅ回调函数还将调用ＨＲＤＷＲ ｃａｎ ｓｅｎｄ（）函数询问此时是否可以进行发送操
作，如果可以，则从队列中取下一个发送请求。然后再调用ＨＲＤＷＲ ｓｅｎｄ（）函数将数据复制
到硬件ｂｕｆｆｅｒ或指示硬件进行发送，这一过程正是前面步骤的重复。这些调用最后都将返回
到网络传输线程，在包的发送操作完成后，该线程将进入睡眠状态，等待下一个异步事件的发

生。

２接收过程
当网络上有包从外部进入硬件ｂｕｆｆｅｒ的时候，将产生一个异步中断，宣告接收ｂｕｆｆｅｒ中有

接收数据。中断服务程序ＩＳＲ在对中断源进行处理后，将请求运行中断滞后服务程序ＤＳＲ。
包的接收过程如下：

１）ＩＳＲ请求ＤＳＲ运行，ＤＳＲ将调用ｅｔｈ ｄｒｖ ｄｓｒ（）函数（它可能就是ＤＳＲ本身）。

２）ｅｔｈ ｄｒｖ ｄｓｒ（）函数唤醒网络传输线程，该线程调用ＨＲＤＷＲ ｄｅｌｉｖｅｒ（）传送函数。

３）传送函数识别出已准备就绪的数据，然后调用ｒｅｃｅｉｖｅ回调函数（ｓｃ＞ｆｕｎｓ＞ｅｔｈ ｄｒｖ
＞ｒｅｃｖ）（），告诉它有多少字节已经准备好。

４）ｒｅｃｅｉｖｅ回调函数在栈内分配内存，并为包的接收准备一组ｓｃａｔｔｅｒｇａｔｈｅｒ缓冲区。

５）然后调用ＨＲＤＷＲ ｒｅｃｖ（）函数将数据从硬件ｂｕｆｆｅｒ复制到第４步操作所提供的ｓｃａｔ
ｔｅｒｇａｔｈｅｒ缓冲区，并返回。

６）至此，网络栈已经得到了接收数据，此后它可以进行其他的工作。这些工作包括用于
发送一个响应包的一组递归调用（包的发送过程）。当所有这些工作完成后，网络传输线程将

再次进入睡眠状态，等待下一次异步事件的发生。

１０３ ＴＣＰ／ＩＰ协议栈支持

ｅＣｏｓ完全支持ＴＣＰ／ＩＰ网络协议栈。这种支持来源于ＦｒｅｅＢＳＤ和ＯｐｅｎＢＳＤ的ＴＣＰ／ＩＰ
２３２

协议栈，具有相当强的完整性和稳健性。ｅＣｏｓ使用两个软件包分别实现ＦｒｅｅＢＳＤ和ＯｐｅｎＢＳＤ
的ＴＣＰ／ＩＰ协议栈，它们分别是“ＦｒｅｅＢＳＤＳｔａｃｋ”包（“ｎｅｔ”模板）和“ＯｐｅｎＢＳＤＳｔａｃｋ”包（“ｏｌｄ
ｎｅｔ”模板）。在使用ｅＣｏｓ图形配置工具进行配置时，可以根据需要选择这两个包。

１０３１ 特性支持与配置

ｅＣｏｓ提供的两个ＴＣＰ／ＩＰ网络协议栈包对ＴＣＰ／ＩＰ的支持有一定的区别，对它们的配置
操作也略有不同。

１ＦｒｅｅＢＳＤＳｔａｃｋ
ＦｒｅｅＢＳＤＳｔａｃｋ对下述协议提供支持：

①ＩＰｖ４。

②ＵＤＰ。

③ＴＣＰ。

④ＩＣＭＰ。

⑤ 原始信报接口（ＲａｗＰａｃｋｅｔＩｎｔｅｒｆａｃｅ）。

⑥ 多点广播（Ｍｕｌｔｉｃａｓｔ）寻址。

⑦ＩＰｖ６（包括ＵＤＰ、ＴＣＰ、ＩＣＭＰ）。
出现在ＦｒｅｅＢＳＤＳｔａｃｋ包内但不支持的特性有：

①ＢｅｒｋｅｌｅｙＰａｃｋｅｔ筛选器。

② 点点传送（ｕｎｉｃａｓｔ）。

③ 多点广播路由（ｒｏｕｔｉｎｇ）。
在使用配置工具对ＦｒｅｅＢＳＤＳｔａｃｋ进行配置时，在配置工具中选择“Ｂｕｉｌｄ→Ｐａｃｋａｇｅｓ”，将

出现一个“Ｐａｃｋａｇｅｓ”操作对话框，如图１０４所示。

图１０４ 对ＴＣＰ／ＩＰ协议栈的配置

３３２

在配置中选择并增加“Ｎｅｔｗｏｒｋｉｎｇ”、“ＦｒｅｅＢＳＤＳｔａｃｋ”和“ＣｏｍｍｏｎＥｔｈｅｒｎｅｔＳｕｐｐｏｒｔ”三个
包，它们的名字分别是ＣＹＧＰＫＧ ＮＥＴ，ＣＹＧＰＫＧ ＮＥＴ ＦＲＥＥＢＳＤ ＳＴＡＣＫ和ＣＹＧＰＫＧ
ＮＥＴ ＥＴＨ ＤＲＩＶＥＲＳ。所有这些操作可以使用一种简捷的方式实现，这种简捷方式就是
选择“ｎｅｔ”模板（使用配置工具的菜单选项“Ｂｕｉｌｄ→ｔｅｍｐｌａｔｅｓ”），如图１０５所示。这种模板已
经包含了网络支持所需要的软件包，另外可能还包含了典型的网络设备驱动程序和相应的

ＰＣＩＩ／Ｏ子系统。如果是新的网络设备，则应将相应的驱动程序加入到配置中。

图１０５ 选择包含ＴＣＰ／ＩＰ支持的模板

２ＯｐｅｎＢＳＤＳｔａｃｋ
ＯｐｅｎＢＳＤＳｔａｃｋ包所支持的协议有：

①ＩＰｖ４。

②ＵＤＰ。

③ＴＣＰ。

④ＩＣＭＰ。

⑤ 原始信报接口。
它还包含了其他一些目前还不支持的特性：

①ＢｅｒｋｅｌｅｙＰａｃｋｅｔ筛选器。

② 多点广播和点点传送，包括多点广播路由。

③ＩＰｖ６。

ＯｐｅｎＢＳＤＳｔａｃｋ包的配置与ＦｒｅｅＢＳＤＳｔａｃｋ类似。只是在“Ｐａｃｋａｇｅｓ”对话框中选择的是
“ＯｐｅｎＢＳＤＳｔａｃｋ”包，它的名字是ＣＹＧＰＫＧ ＮＥＴ ＯＰＥＮＢＳＤ ＳＴＡＣＫ。在选择模板时要选
择“ｏｌｄ ｎｅｔ”模板，而不是“ｎｅｔ”。

１０３２ ＡＰＩ函数

ｅＣｏｓ对ＴＣＰ／ＩＰ协议栈的支持来源于ＦｒｅｅＢＳＤ和ＯｐｅｎＢＳＤ，因此它所提供的也是标准的

ＡＰＩ函数。在使用这些ＡＰＩ函数进行网络编程时，应该注意对它们进行定义的头文件位置。
头文件位置也符合传统的编程习惯。下面是程序中包含这些头文件的举例：

４３２

ｉｎｓｔａｌｌ／ｉｎｃｌｕｄｅ／ａｒｐａ／ｔｆｔｐ．ｈ
ｉｎｓｔａｌｌ／ｉｎｃｌｕｄｅ／ｎｅｔｉｎｅｔ／ｔｃｐｉｐ．ｈ
ｉｎｓｔａｌｌ／ｉｎｃｌｕｄｅ／ｓｙｓ／ｓｏｃｋｅｔ．ｈ
ｉｎｓｔａｌｌ／ｉｎｃｌｕｄｅ／ｓｙｓ／ｓｏｃｋｅｔｖａｒ．ｈ
ｉｎｓｔａｌｌ／ｉｎｃｌｕｄｅ／ｓｙｓ／ｓｏｃｋｉｏ．ｈ

下面是部分标准ＴＣＰ／ＩＰ网络协议ＡＰＩ函数的简单介绍，读者可以参考其他相关书籍或
资料对它们进行详细了解。

ａｃｃｅｐｔ 接受ｓｏｃｋｅｔ上的连接

ｂｉｎｄ 给ｓｏｃｋｅｔ绑定一个名字

ｃｌｏｓｅ 关闭ｓｏｃｋｅｔ
ｃｏｎｎｅｃｔ 初始化Ｓｏｃｋｅｔ连接

ｇｅｔｈｏｓｔｂｙｎａｍｅ，ｇｅｔｈｏｓｔｂｙａｄｄｒ 获取主机信息

ｇｅｔｐｅｅｒｎａｍｅ 获取ｓｏｃｋｅｔ另一端的名字

ｇｅｔｐｒｏｔｏｂｙｎａｍｅ，ｇｅｔｐｒｏｔｏｂｙｎｕｍｂｅｒ 获取网络协议信息

ｇｅｔｓｅｒｖｂｙｎａｍｅ，ｇｅｔｓｅｒｖｂｙｐｏｒｔ 获取ｓｅｒｖｅｒ信息

ｇｅｔｓｏｃｋｎａｍｅ 获取ｓｏｃｋｅｔ的名字

ｇｅｔｓｏｃｋｏｐｔ 获取ｓｏｃｋｅｔ相关选项信息

ｉｎｅｔ ａｔｏｎ，ｉｎｅｔ ａｄｄｒ，ｉｎｅｔ ａｄｄｒ Ｉｎｔｅｒｎｅｔ地址操作函数

ｉｏｃｔｌ 对设备进行控制

ｌｉｓｔｅｎ 监听ｓｏｃｋｅｔ上的连接

ｒｅａｄ 从ｓｏｃｋｅｔ接收信息

ｒｅｃｖｆｒｏｍ 从ｓｏｃｋｅｔ接收信息

ｓｅｌｅｃｔ 多路Ｉ／Ｏ同步

ｓｅｎｄｔｏ 从ｓｏｃｋｅｔ发送信息

ｓｅｔｓｏｃｋｏｐｔ 对ｓｏｃｋｅｔ相关的选项进行设置

ｓｈｕｔｄｏｗｎ 关闭全双工连接

ｓｏｃｋｅｔ 建立一个通信端点

ｗｒｉｔｅ 向ｓｏｃｋｅｔ发送信息

ｅＣｏｓ对标准的ｓｅｌｅｃｔ（）函数做了扩展。标准ｓｅｌｅｃｔ（）函数不支持重启（ｒｅｓｔａｒｔ）功能，ｅＣｏｓ
提供的扩展函数允许所有正在等待的线程即使在ｓｅｌｅｃｔ条件未被满足时也可以被重启。这个
被扩展的函数是：

ｉｎｔｃｙｇｓｅｌｅｃｔ ｗｉｔｈ ａｂｏｒｔ（

ｉｎｔｎｆｄ，

ｆｄ ｓｅｔｉｎ，

ｆｄ ｓｅｔｏｕｔ，

ｆｄ ｓｅｔｅｘ，

ｓｔｒｕｃｔｔｉｍｅｖａｌｔｖ）

该函数完全具备标准ｓｅｌｅｃｔ（）函数的功能。此外，它还提供另一个功能，即调用下面的函
数：

ｖｏｉｄｃｙｇ ｓｅｌｅｃｔ ａｂｏｒｔ（ｖｏｉｄ）

５３２

该函数引起所有在ｃｙｇ ｓｅｌｅｃｔ ｗｉｔｈ ａｂｏｒｔ（）函数调用中正在等待的线程终止等待过程，
开始继续执行。

１０４ ＦＴＰ客户端

ｅＣｏｓ的网络包实现了一个ＦＴＰ客户端。它提供了一些ＦＴＰ客户端ＡＰＩ函数，这些ＡＰＩ
函数定义于头文件ｉｎｓｔａｌｌ／ｉｎｃｌｕｄｅ／ｆｔｐｃｌｉｅｎｔ．ｈ内。使用这些ＡＰＩ时，应该包含下述头文件：

＃ｉｎｃｌｕｄｅ＜ｎｅｔｗｏｒｋ．ｈ＞
＃ｉｎｃｌｕｄｅ＜ｆｔｐｃｌｅｎｔ．ｈ＞

ｆｔｐｃｌｉｅｎｔ．ｈ定义了三个ＦＴＰ客户端ＡＰＩ函数，它们分别是ｆｔｐ ｇｅｔ、ｆｔｐ ｐｕｔ和ｆｔｐｃｌｉｅｎｔ
ｐｒｉｎｔｆ。

ｉｎｔｆｔｐ ｇｅｔ（ｃｈａｒｈｏｓｔｎａｍｅ，

ｃｈａｒｕｓｅｒｎａｍｅ，

ｃｈａｒｐａｓｓｗｄ，

ｃｈａｒｆｉｌｅｎａｍｅ，

ｃｈａｒｂｕｆ，

ｕｎｓｉｇｎｅｄｂｕｆ ｓｉｚｅ，

ｆｔｐ ｐｒｉｎｔｆｔｆｔｐ ｐｒｉｎｔｆ）；

ｆｔｐ ｇｅｔ函数使用ＦＴＰ协议从某个服务器获取文件，它只支持二进制方式。ｈｏｓｔｎａｍｅ是

ＦＴＰ服务器名字或ＩＰ地址，ｕｓｅｒｎａｍｅ是连接ＦＴＰ服务器的用户名，ｐａｓｓｗｄ为登录口令。参
数ｆｉｌｅｎａｍｅ指定了文件名，它可以包含文件的目录路径，但只能使用ＵＮＩＸ文件隔离符“／”，不
能使用“＼”。ｆｔｐ ｐｒｉｎｔｆ为输出信息时调用的函数。文件被存放到参数ｂｕｆ指定的缓冲区内，
参数ｂｕｆ ｓｉｚｅ指定了最大ｂｕｆ值。如果文件比ｂｕｆ大，文件传输将失败，该函数返回ＦＴＰ
ＴＯＯＢＩＧ。如果文件传输成功，则返回接收到的字节数。

ｉｎｔｆｔｐ ｐｕｔ（ｃｈａｒｈｏｓｔｎａｍｅ，

ｃｈａｒｕｓｅｒｎａｍｅ，

ｃｈａｒｐａｓｓｗｄ，

ｈａｒｆｉｌｅｎａｍｅ，

ｃｈａｒｂｕｆ，

ｕｎｓｉｇｎｅｄｂｕｆ ｓｉｚｅ，

ｆｔｐ ｐｒｉｎｔｆｔｆｔｐ ｐｒｉｎｔｆ）；

ｆｔｐ ｐｕｔ函数用于向某个ＦＴＰ服务器发送文件，只支持二进制方式。与ｆｔｐ ｇｅｔ函数一
样，ｈｏｓｔｎａｍｅ是ＦＴＰ服务器名字或ＩＰ地址，ｕｓｅｒｎａｍｅ是连接ＦＴＰ服务器的用户名，ｐａｓｓｗｄ为
登录口令。参数ｆｉｌｅｎａｍｅ指定了文件名，它可以包含文件的目录路径，但只能使用ＵＮＩＸ文件
隔离符“／”，不能使用“＼”。ｂｕｆ内容为传送给服务器的文件内容。ｆｔｐ ｐｒｉｎｔｆ为输出信息时
调用的函数。如果文件传送失败，将返回一个错误码，如果成功则返回０。

ｖｏｉｄｆｔｐｃｌｉｅｎｔ ｐｒｉｎｔｆ（ｕｎｓｉｇｎｅｄｅｒｒｏｒ，

ｃｏｎｓｔｃｈａｒｆｍｔ，．．．）；

６３２

ｆｔｐ ｇｅｔ和ｆｔｐ ｐｕｔ两个函数都具有一个函数指针参数ｆｔｐ ｐｒｉｎｔｆ，它用于输出诊断信息
和错误信息，ｆｔｐｃｌｉｅｎｔ ｐｒｉｎｔｆ就是这种函数的具体实现。ｅＣｏｓ提供的该函数只是一种参考实
现，如果需要，开发人员可以根据实际情况修改这一函数。当输出错误消息时，它的第一个参

数ｅｒｒｏｒ为ｔｒｕｅ。

ＦＴＰ客户端程序编程例子可以参阅ｅＣｏｓ源码提供的ＦＴＰ测试程序ｐａｃｋａｇｅｓ＼ｎｅｔ＼ｆｔｐ
ｃｌｉｅｎｔ＼ｖ２ ０＼ｔｅｓｔｓ＼ｆｔｐｃｌｉｅｎｔ１．ｃ。

１０５ ＤＮＳ客户端

ｅＣｏｓ和ＲｅｄＢｏｏｔ都可以使用ＤＮＳ包提供的ＤＮＳＡＰＩ函数来寻找网络名字。ＤＮＳ客户端
使用标准ＢＳＤＡＰＩ函数ｇｅｔｈｏｓｔｂｙｎａｍｅ（）和ｇｅｔｈｏｓｔｂｙａｄｄｒ（）。这两个函数的使用具有下面的
限制：

① 只支持ＩＰｖ４，不能查找ＩＰｖ６地址。

② 如果ＤＮＳ服务器返回一个主机名的多条记录，那么ｈｏｓｔｅｎｔ结构只包含第一条记录。

③ 这些函数具有线程安全性，可以多个线程调用ｇｅｔｈｏｓｔｂｙｎａｍｅ（）函数。同一个线程都
调用这两个函数则是不安全的，一个函数调用返回的结果将破坏在该函数之前使用另一个函

数返回的结果。

在使用ＤＮＳ服务时，首先要使用下述方式对ＤＮＳ客户端进行初始化：

＃ｉｎｃｌｕｄｅ＜ｎｅｔｗｏｒｋ．ｈ＞
ｉｎｔｃｙｇ ｄｎｓ ｒｅｓｉｎｉｔ（ｓｔｒｕｃｔｉｎ ａｄｄｒｄｎｓ ｓｅｒｖｅｒ）

其中ｄｎｓ ｓｅｒｖｅｒ为ＤＮＳ服务器的地址。当有错误发生时将返回１，否则返回０。在该初
始化函数之前调用的查找函数将失败并返回ＮＵＬＬ。
在默认情况下，通过ＣＤＬ选项ＣＹＧＤＡＴ ＮＳ ＤＮＳ ＤＥＦＡＵＬＴ ＳＥＲＶＥＲ可以强制指

定ＤＮＳ服务器的地址。配置选项ＣＹＧＰＫＧ ＮＳ ＤＮＳ ＤＥＦＡＵＬＴ用于控制该地址的使
用，当该选项被使能时，ｉｎｉｔ ａｌｌ ｎｅｔｗｏｒｋ ｉｎｔｅｒｆａｃｅｓ将使用指定的ＤＮＳ服务器进行初始化。

ＤＨＣＰ客户端和用户程序可以使用ｃｙｇ ｄｎｓ ｒｅｓ ｉｎｉｔ函数来重新指定ＤＮＳ服务器的地
址。

ＤＮＳ客户端认为目标系统是在同一个域（ｄｏｍａｉｎ）内，默认情况下不使用域。Ｈｏｓｔ名字的
查找使用的是全名。域名的设置和提取可以使用下面的函数：

ｉｎｔｇｅｔｄｏｍａｉｎｎａｍｅ（ｃｈａｒｎａｍｅ，ｓｉｚｅ ｔｌｅｎ）；

ｉｎｔｓｅｔｄｏｍａｉｎｎａｍｅ（ｃｏｎｓｔｃｈａｒｎａｍｅ，ｓｉｚｅ ｔｌｅｎ）；

此外，还可以使用ＣＤＬ来强制指定域名。配置选项ＣＹＧＰＫＧ ＮＳ ＤＮＳ ＤＯＭＡＩＮ
ＮＡＭＥ将使能这种ＣＤＬ指定的域名，而域名可以从ＣＹＧＰＫＧ ＮＳ ＤＮＳ ＤＯＭＡＩＮＮＡＭＥ
ＮＡＭＥ选项中获取。这种方式可以使用图形配置工具进行ＤＮＳ客户端的设置，如图１０６
所示。

７３２

图１０６ ＤＮＳ客户端设置

１０６ ｅＣｏｓ网络编程实例

ｅＣｏｓ源码中提供了许多对网络通信进行测试的程序。这些测试程序不仅仅是为了测试
目标平台网络通信的正确性，它的另一个主要目的是提供应用程序网络编程的框架和实例。

在编写网络应用程序时，可以参考相应的测试例子程序。另外它还提供了一组性能测试程序，

可以用于对嵌入式ｅＣｏｓ系统的网络吞吐率和延迟进行测试。

１０６１ 网络通信测试程序

在对ｅＣｏｓ进行网络配置并编译后，需要运行测试程序来测试网络通信的正确性。下面将
按照对一个新的ｅＣｏｓ系统进行网络通信验证的顺序简要介绍一些主要的测试程序。
值得注意的是，在默认配置中不会对这些测试程序进行编译。如果要编译这些测试程序，

必须在配置工具中使能ＣＹＧＰＫＧ ＮＥＴ ＢＵＩＬＤ ＴＥＳＴＳ配置选项，并在配置工具中选择
“Ｂｕｉｌｄ→Ｔｅｓｔｓ”菜单对它们进行编译。另外，这些测试程序还要求硬件接口被配置为使用

ＢＯＯＴＰ或静态配置的初始化方式。

ｍｂｕｆ ｔｅｓｔ．ｃ
这是在新系统中运行的第一个测试程序。它的测试内容是网络系统能否正确初始化、协

议栈使用的内部内存管理功能是否正确。

ｓｏｃｋｅｔ ｔｅｓｔ．ｃ
该测试程序对基本的网络ＡＰＩ函数接口进行测试。

ｓｅｒｖｅｒ ｔｅｓｔ．ｃ
该测试程序在目标平台上产生一个服务器程序，监听ＴＣＰ端口７７３４。为验证其是否能

正常工作，可以在其他主机上尝试对它进行连接。例如，在Ｌｉｎｕｘ主机上执行命令“ｔｅｌｎｅｔｅＣｏｓ
７７３４”，其中“ｅＣｏｓ”是目标系统的名字。一旦连接成功，ｅＣｏｓ应用程序将发出一个“Ｈｅｌｌｏ”的响
应消息，并等待输入一行命令，命令行将显示在目标系统的调试通道（通常为串口）上。

ｐｉｎｇ ｔｅｓｔ．ｃ
该测试程序将给另外一台“服务器”主机发出一个ＩＣＭＰ请求包“ｅｃｈｏ”。其输出信息类似

于Ｌｉｎｕｘ的“ｐｉｎｇ”命令。另外，该测试程序还将对另一个伪造的ＩＰ地址进行ｐｉｎｇ测试，该地
址是服务器ＩＰ＋３２（假设该ＩＰ地址不存在），这种测试的主要目的是验证ＩＣＭＰ的超时机制。

８３２

ｆｔｐ ｔｅｓｔ．ｃ
该测试程序尝试与另一台ＦＴＰ服务器进行连接。它用于验证基本的ＴＣＰ功能。

ｎｃ ｔｅｓｔ ｍａｓｔｅｒ．ｃ和ｎｃ ｔｅｓｔ ｓｌａｖｅ．ｃ
这两个测试程序可以用于对目标系统的网络吞吐率和延迟进行测试。它们分别运行于

ｅＣｏｓ目标系统和Ｌｉｎｕｘ主机上（分别在各自环境下进行编译），一般在Ｌｉｎｕｘ主机上运行ｍａｓ
ｔｅｒ程序，ｅＣｏｓ目标系统上运行ｓｌａｖｅ程序。在这种测试环境下，ｍａｓｔｅｒ程序将尝试与ｓｌａｖｅ程
序进行连接，并使用ＵＤＰ和ＴＣＰ协议进行各种测试。另外，在ｅＣｏｓ目标系统上运行的ｓｌａｖｅ
程序还测试ＣＰＵ在网络通信上的利用率。在Ｌｉｎｕｘ主机上进行编译时，可以在ｅＣｏｓ的源码
目录（不能在安装目录ｉｎｓｔａｌｌ）下执行下面的命令进行编译：

ｍａｋｅｆｍａｋｅ．ｌｉｎｕｘ

ｔｃｐ ｅｃｈｏ．ｃ、ｔｃｐ ｓｉｎｋ．ｃ和ｔｃｐ ｓｏｕｒｃｅ．ｃ
这一组测试程序类似于上面介绍的ｎｃ ｔｅｓｔ ＸＸＸ程序。它们对ｅＣｏｓ系统进行全面的

吞吐率测试。这一组测试需要两台Ｌｉｎｕｘ主机，一台Ｌｉｎｕｘ主机运行“ｔｃｐ ｓｏｕｒｃｅｅＣｏｓ”，另一
台运行“ｔｃｐ ｓｉｎｋｅＣｏｓ”，而ｅＣｏｓ目标平台上运行“ｔｃｐ ｅｃｈｏ”程序。这种测试环境将测试从一
台Ｌｉｎｕｘ主机上发送ＴＣＰ数据到ｅＣｏｓ、再由ｅＣｏｓ将数据转发到另一台主机的吞吐率和延迟。
也可以使用同一台Ｌｉｎｕｘ主机，这时将变成单向ｅｃｈｏ测试。这种测试环境是实际网络通信环
境的一种模拟。

ｄｈｃｐ ｔｅｓｔ．ｃ
这是一个简单的ｐｉｎｇ测试，但可以进行ＤＨＣＰ出租操作。它非常类似于ｐｉｎｇ测试程序，

用于对ＤＨＣＰ操作的外部ＡＰＩ函数进行测试。

ｔｆｔｐ ｃｌｉｅｎｔ ｔｅｓｔ．ｃ和ｔｆｔｐ ｓｅｒｖｅｒ ｔｅｓｔ．ｃ
ｔｆｔｐ是一个简单的文件传输协议。这一组测试程序用于进行ｔｆｔｐ测试。一般ｔｆｐｔ ｓｅｒｖｅｒ

ｔｅｓｔ．ｃ运行于Ｌｉｎｕｘ主机上，ｔｆｔｐ ｃｌｉｅｎｔ ｔｅｓｔ．ｃ运行在ｅＣｏｓ目标系统上。在进行测试前，必
须对ｔｆｔｐ服务器进行设置，使其能正常工作。ｔｆｔｐ服务器通常在Ｌｉｎｕｘ的／ｔｆｔｐｂｏｏｔ／目录下操
作，在该目录下准备一个用来进行传输测试的文件ｔｆｔｐ ｇｅｔ（包含任意数据），并产生一个空文
件ｔｆｔｐ ｐｕｔ。运行在ｅＣｏｓ上的ｔｆｔｐ ｃｌｉｅｎｔｔｅｓｔ．ｃ将从服务器上获取文件ｔｆｔｐ ｇｅｔ，并将其更
名为ｔｆｔｐ ｐｕｔ传送到Ｌｉｎｕｘ主机。Ｌｉｎｕｘ主机上原来的空文件ｔｆｔｐ ｐｕｔ将被其覆盖。

１０６２ 编程实例———ｐｉｎｇ程序

本节通过一个简单的ｐｉｎｇ程序例子来介绍ｅＣｏｓ的网络编程方法。这是ｅＣｏｓ源码中的一
个例子程序，读者可以参考其他更多的程序实例。

／／＝＝
／／ＰＩＮＧｔｅｓｔｃｏｄｅ

＃ｉｎｃｌｕｄｅ＜ｎｅｔｗｏｒｋ．ｈ＞

（注：使用单个ｎｅｔｗｏｒｋ．ｈ头文件，它包含了所有需要的网络支持和配置信息。）

＃ｄｅｆｉｎｅＳＴＡＣＫ ＳＩＺＥＣＹＧＮＵＭ ＨＡＬ ＳＴＡＣＫ ＳＩＺＥ ＴＹＰＩＣＡＬ
ｓｔａｔｉｃｃｈａｒｓｔａｃｋ［ＳＴＡＣＫ ＳＩＺＥ］；

９３２

ｓｔａｔｉｃｃｙｇ ｔｈｒｅａｄｔｈｒｅａｄ ｄａｔａ；

ｓｔａｔｉｃｃｙｇ ｈａｎｄｌｅ ｔｔｈｒｅａｄ ｈａｎｄｌｅ；

＃ｄｅｆｉｎｅＮＵＭ ＰＩＮＧＳ１６
＃ｄｅｆｉｎｅＭＡＸ ＰＡＣＫＥＴ４０９６
ｓｔａｔｉｃｕｎｓｉｇｎｅｄｃｈａｒｐｋｔ１［ＭＡＸ ＰＡＣＫＥＴ］，ｐｋｔ２［ＭＡＸ ＰＡＣＫＥＴ］；

＃ｄｅｆｉｎｅＵＮＩＱＵＥＩＤ０ｘ１２３４
ｖｏｉｄｃｙｇ ｔｅｓｔ ｅｘｉｔ（ｖｏｉｄ）｛

ｄｉａｇ ｐｒｉｎｔｆ（″．．．Ｄｏｎｅ＼ｎ″）；

ｗｈｉｌｅ（１）；
｝

ｖｏｉｄｐｅｘｉｔ（ｃｈａｒｓ）｛

ｐｅｒｒｏｒ（ｓ）；

ｃｙｇ ｔｅｓｔ ｅｘｉｔ（）；
｝

／／计算ＩＮＥＴ校验和

ｉｎｔｉｎｅｔ ｃｋｓｕｍ（ｕ ｓｈｏｒｔａｄｄｒ，ｉｎｔｌｅｎ）｛

ｒｅｇｉｓｔｅｒｉｎｔｎｌｅｆｔ＝ｌｅｎ；

ｒｅｇｉｓｔｅｒｕ ｓｈｏｒｔｗ＝ａｄｄｒ；

ｒｅｇｉｓｔｅｒｕ ｓｈｏｒｔａｎｓｗｅｒ；

ｒｅｇｉｓｔｅｒｕ ｉｎｔｓｕｍ＝０；

ｕ ｓｈｏｒｔｏｄｄ ｂｙｔｅ＝０；
／Ｏｕｒａｌｇｏｒｉｔｈｍｉｓｓｉｍｐｌｅ，ｕｓｉｎｇａ３２ｂｉｔａｃｃｕｍｕｌａｔｏｒ（ｓｕｍ），

ｗｅａｄｄｓｅｑｕｅｎｔｉａｌ１６ｂｉｔｗｏｒｄｓｔｏｉｔ，ａｎｄａｔｔｈｅｅｎｄ，ｆｏｌｄ
ｂａｃｋａｌｌｔｈｅｃａｒｒｙｂｉｔｓｆｒｏｍｔｈｅｔｏｐ１６ｂｉｔｓｉｎｔｏｔｈｅｌｏｗｅｒ
１６ｂｉｔｓ．

／

ｗｈｉｌｅ（ｎｌｅｆｔ＞１）｛

ｓｕｍ＋＝ ｗ＋＋；

ｎｌｅｆｔ＝２；
｝

／ｍｏｐｕｐａｎｏｄｄｂｙｔｅ，ｉｆｎｅｃｅｓｓａｒｙ／

ｉｆ（ｎｌｅｆｔ＝＝１）｛

（ｕ ｃｈａｒ）（＆ｏｄｄ ｂｙｔｅ）＝ （ｕ ｃｈａｒ）ｗ；

ｓｕｍ＋＝ｏｄｄ ｂｙｔｅ；
｝

／ａｄｄｂａｃｋｃａｒｒｙｏｕｔｓｆｒｏｍｔｏｐ１６ｂｉｔｓｔｏｌｏｗ１６ｂｉｔｓ／

ｓｕｍ＝（ｓｕｍ＞＞１６）＋（ｓｕｍ＆０ｘ００００ｆｆｆｆ）；／ａｄｄｈｉ１６ｔｏｌｏｗ１６／

ｓｕｍ＋＝（ｓｕｍ＞＞１６）； ／ａｄｄｃａｒｒｙ／

ａｎｓｗｅｒ＝ ～ｓｕｍ； ／ｔｒｕｎｃａｔｅｔｏ１６ｂｉｔｓ／

ｒｅｔｕｒｎ（ａｎｓｗｅｒ）；
｝

ｓｔａｔｉｃｉｎｔ
ｓｈｏｗ ｉｃｍｐ（ｕｎｓｉｇｎｅｄｃｈａｒｐｋｔ，ｉｎｔｌｅｎ，

０４２

ｓｔｒｕｃｔｓｏｃｋａｄｄｒｉｎｆｒｏｍ，ｓｔｒｕｃｔｓｏｃｋａｄｄｒｉｎｔｏ）
｛

ｃｙｇ ｔｉｃｋ ｃｏｕｎｔ ｔｔｐ，ｔｖ；

ｓｔｒｕｃｔｉｐｉｐ；

ｓｔｒｕｃｔｉｃｍｐｉｃｍｐ；

ｔｖ＝ｃｙｇ ｃｕｒｒｅｎｔ ｔｉｍｅ（）；

ｉｐ＝（ｓｔｒｕｃｔｉｐ）ｐｋｔ；

ｉｆ（（ｌｅｎ＜ｓｉｚｅｏｆ（ｉｐ））｜｜ｉｐ＞ｉｐ ｖ！＝ＩＰＶＥＲＳＩＯＮ）｛

ｄｉａｇ ｐｒｉｎｔｆ（″％ｓ：ＳｈｏｒｔｐａｃｋｅｔｏｒｎｏｔＩＰ！Ｌｅｎ：％ｄ，Ｖｅｒｓｉｏｎ：％ｄ＼ｎ″，

ｉｎｅｔ ｎｔｏａ（ｆｒｏｍ＞ｓｉｎ ａｄｄｒ），ｌｅｎ，ｉｐ＞ｉｐ ｖ）；

ｒｅｔｕｒｎ０；
｝

ｉｃｍｐ＝（ｓｔｒｕｃｔｉｃｍｐ）（ｐｋｔ＋ｓｉｚｅｏｆ（ｉｐ））；

ｌｅｎ＝（ｓｉｚｅｏｆ（ｉｐ）＋８）；

ｔｐ＝（ｃｙｇ ｔｉｃｋ ｃｏｕｎｔ ｔ）＆ｉｃｍｐ＞ｉｃｍｐ ｄａｔａ；

ｉｆ（ｉｃｍｐ＞ｉｃｍｐ ｔｙｐｅ！＝ＩＣＭＰ ＥＣＨＯＲＥＰＬＹ）｛

ｄｉａｇ ｐｒｉｎｔｆ（″％ｓ：ＩｎｖａｌｉｄＩＣＭＰｔｙｐｅ：％ｄ＼ｎ″，

ｉｎｅｔ ｎｔｏａ（ｆｒｏｍ＞ｓｉｎ ａｄｄｒ），ｉｃｍｐ＞ｉｃｍｐ ｔｙｐｅ）；

ｒｅｔｕｒｎ０；
｝

ｉｆ（ｉｃｍｐ＞ｉｃｍｐ ｉｄ！＝ＵＮＩＱＵＥＩＤ）｛

ｄｉａｇ ｐｒｉｎｔｆ（″％ｓ：ＩＣＭＰｒｅｃｅｉｖｅｄｆｏｒｗｒｏｎｇｉｄｓｅｎｔ：％ｘ，ｒｅｃｖｄ：％ｘ＼ｎ″，

ｉｎｅｔ ｎｔｏａ（ｆｒｏｍ＞ｓｉｎ ａｄｄｒ），ＵＮＩＱＵＥＩＤ，ｉｃｍｐ＞ｉｃｍｐ ｉｄ）；
｝

ｄｉａｇ ｐｒｉｎｔｆ（″％ｄｂｙｔｅｓｆｒｏｍ％ｓ：″，ｌｅｎ，ｉｎｅｔ ｎｔｏａ（ｆｒｏｍ＞ｓｉｎ ａｄｄｒ））；

ｄｉａｇ ｐｒｉｎｔｆ（″ｉｃｍｐ ｓｅｑ＝％ｄ″，ｉｃｍｐ＞ｉｃｍｐ ｓｅｑ）；

ｄｉａｇ ｐｒｉｎｔｆ（″，ｔｉｍｅ＝％ｄｍｓ＼ｎ″，（ｉｎｔ）（ｔｖｔｐ）１０）；

ｒｅｔｕｒｎ（ｆｒｏｍ＞ｓｉｎ ａｄｄｒ．ｓ ａｄｄｒ＝＝ｔｏ＞ｓｉｎ ａｄｄｒ．ｓ ａｄｄｒ）；
｝

ｓｔａｔｉｃｖｏｉｄ

ｐｉｎｇ ｈｏｓｔ（ｉｎｔｓ，ｓｔｒｕｃｔｓｏｃｋａｄｄｒｉｎｈｏｓｔ）｛

ｓｔｒｕｃｔｉｃｍｐｉｃｍｐ＝（ｓｔｒｕｃｔｉｃｍｐ）ｐｋｔ１；

ｉｎｔｉｃｍｐ ｌｅｎ＝６４；

ｉｎｔｓｅｑ，ｏｋ ｒｅｃｖ，ｂｏｇｕｓ ｒｅｃｖ；

ｃｙｇ ｔｉｃｋ ｃｏｕｎｔ ｔｔｐ；

ｌｏｎｇｄｐ；

ｓｔｒｕｃｔｓｏｃｋａｄｄｒｉｎｆｒｏｍ；

ｉｎｔｉ，ｌｅｎ，ｆｒｏｍｌｅｎ；

ｏｋ ｒｅｃｖ＝０；

ｂｏｇｕｓ ｒｅｃｖ＝０；

ｄｉａｇ ｐｒｉｎｔｆ（″ＰＩＮＧｓｅｒｖｅｒ％ｓ＼ｎ″，ｉｎｅｔ ｎｔｏａ（ｈｏｓｔ＞ｓｉｎ ａｄｄｒ））；

（注：ｉｎｅｔ ｎｔｏａ函数将ＩＰ地址转换为字符串，可用于输出ＩＰ地址。）

１４２

ｆｏｒ（ｓｅｑ＝０；ｓｅｑ＜ＮＵＭ ＰＩＮＧＳ；ｓｅｑ＋＋）｛／／ＢｕｉｌｄＩＣＭＰｐａｃｋｅｔ
ｉｃｍｐ＞ｉｃｍｐ ｔｙｐｅ＝ＩＣＭＰ ＥＣＨＯ；

ｉｃｍｐ＞ｉｃｍｐ ｃｏｄｅ＝０；

ｉｃｍｐ＞ｉｃｍｐ ｃｋｓｕｍ＝０；

ｉｃｍｐ＞ｉｃｍｐ ｓｅｑ＝ｓｅｑ；

ｉｃｍｐ＞ｉｃｍｐ ｉｄ＝０ｘ１２３４；
／／Ｓｅｔｕｐｐｉｎｇｄａｔａ
ｔｐ＝（ｃｙｇ ｔｉｃｋ ｃｏｕｎｔ ｔ）＆ｉｃｍｐ＞ｉｃｍｐ ｄａｔａ；

ｔｐ＋＋ ＝ｃｙｇ ｃｕｒｒｅｎｔ ｔｉｍｅ（）；

ｄｐ＝（ｌｏｎｇ）ｔｐ；

ｆｏｒ（ｉ＝ｓｉｚｅｏｆ（ｔｐ）；ｉ＜ｉｃｍｐ ｌｅｎ；ｉ＋＝ｓｉｚｅｏｆ（ｄｐ））｛

ｄｐ＋＋ ＝ｉ；
｝

／／Ａｄｄｃｈｅｃｋｓｕｍ
ｉｃｍｐ＞ｉｃｍｐ ｃｋｓｕｍ＝ｉｎｅｔ ｃｋｓｕｍ（（ｕ ｓｈｏｒｔ）ｉｃｍｐ，ｉｃｍｐ ｌｅｎ＋８）；
／／Ｓｅｎｄｉｔｏｆｆ

ｉｆ（ｓｅｎｄｔｏ（ｓ，ｉｃｍｐ，ｉｃｍｐ ｌｅｎ＋８，０，（ｓｔｒｕｃｔｓｏｃｋａｄｄｒ）ｈｏｓｔ，ｓｉｚｅｏｆ（ｈｏｓｔ））＜０）
｛

（注：ｓｅｎｄｔｏ函数在此处使用ＩＣＭＰ协议发送一个包，目的地址由参数ｈｏｓｔ指定。）

ｐｅｒｒｏｒ（″ｓｅｎｄｔｏ″）；

ｃｏｎｔｉｎｕｅ；
｝

／／Ｗａｉｔｆｏｒａｒｅｓｐｏｎｓｅ
ｆｒｏｍｌｅｎ＝ｓｉｚｅｏｆ（ｆｒｏｍ）；

ｌｅｎ＝ｒｅｃｖｆｒｏｍ（ｓ，ｐｋｔ２，ｓｉｚｅｏｆ（ｐｋｔ２），０，（ｓｔｒｕｃｔｓｏｃｋａｄｄｒ）＆ｆｒｏｍ，＆ｆｒｏｍｌｅｎ）；

（注：ｒｅｃｖｆｒｏｍ函数等待包被发送到此接口。如果在给定时间范围内没有收到包，操作将
失败，超时值由ｐｉｎｇ ｔｅｓｔ（）函数指定。）

ｉｆ（ｌｅｎ＜０）｛

ｐｅｒｒｏｒ（″ｒｅｃｖｆｒｏｍ″）；
｝ｅｌｓｅ｛

ｉｆ（ｓｈｏｗ ｉｃｍｐ（ｐｋｔ２，ｌｅｎ，＆ｆｒｏｍ，ｈｏｓｔ））｛

ｏｋ ｒｅｃｖ＋＋；
｝ｅｌｓｅ｛

ｂｏｇｕｓ ｒｅｃｖ＋＋；
｝

｝

｝

ｄｉａｇ ｐｒｉｎｔｆ（″Ｓｅｎｔ％ｄｐａｃｋｅｔｓ，ｒｅｃｅｉｖｅｄ％ｄＯＫ，％ｄｂａｄ＼ｎ″，ＮＵＭ ＰＩＮＧＳ，ｏｋ ｒｅｃｖ，ｂｏｇｕｓ
ｒｅｃｖ）；
｝

ｓｔａｔｉｃｖｏｉｄｐｉｎｇ ｔｅｓｔ（ｓｔｒｕｃｔｂｏｏｔｐｂｐ）｛

２４２

ｓｔｒｕｃｔｐｒｏｔｏｅｎｔｐ；

ｓｔｒｕｃｔｔｉｍｅｖａｌｔｖ；

ｓｔｒｕｃｔｓｏｃｋａｄｄｒｉｎｈｏｓｔ；

ｉｎｔｓ；

ｉｆ（（ｐ＝ｇｅｔｐｒｏｔｏｂｙｎａｍｅ（″ｉｃｍｐ″））＝＝（ｓｔｒｕｃｔｐｒｏｔｏｅｎｔ）０）｛

（注：ｇｅｔｐｒｏｔｏｂｙｎａｍｅ函数获取ＩＣＭＰ协议的信息，在设置ｓｏｃｋｅｔ时将使用这些信息。）

ｐｅｒｒｏｒ（″ｇｅｔｐｒｏｔｏｂｙｎａｍｅ″）；

ｒｅｔｕｒｎ；
｝

ｓ＝ｓｏｃｋｅｔ（ＡＦ ＩＮＥＴ，ＳＯＣＫ ＲＡＷ，ｐ＞ｐ ｐｒｏｔｏ）；

（注：产生ｓｏｃｋｅｔ“ｓ”，ｓｏｃｋｅｔ是一个抽象的对象，也称为句柄或端点。ｓｏｃｋｅｔ有多种类型，

ＳＯＣＫ ＲＡＷ 用于非结构性协议通信，ＳＯＣＫ ＤＡＴＡＧＲＡＭ 用于包的导向协议如ＵＤＰ，

ＳＯＣＫ ＳＴＲＥＡＭ用于可靠而有序的字节流，如ＴＣＰ。）

ｉｆ（ｓ＜０）｛

ｐｅｒｒｏｒ（″ｓｏｃｋｅｔ″）；

ｒｅｔｕｒｎ；
｝

ｔｖ．ｔｖ ｓｅｃ＝１；

ｔｖ．ｔｖ ｕｓｅｃ＝０；

ｓｅｔｓｏｃｋｏｐｔ（ｓ，ＳＯＬ ＳＯＣＫＥＴ，ＳＯ ＲＣＶＴＩＭＥＯ，＆ｔｖ，ｓｉｚｅｏｆ（ｔｖ））；

（注：ｓｅｔｓｏｃｋｏｐｔ函数在此要求进行接收操作的系统（上面的ｐｉｎｇ ｈｏｓｔ（））必须在１ｓ内完
成操作或发出一个超时错误。）

／／Ｓｅｔｕｐｈｏｓｔａｄｄｒｅｓｓ
ｈｏｓｔ．ｓｉｎ ｆａｍｉｌｙ＝ＡＦ ＩＮＥＴ；

ｈｏｓｔ．ｓｉｎ ａｄｄｒ＝ｂｐ＞ｂｐ ｓｉａｄｄｒ；

ｈｏｓｔ．ｓｉｎ ｐｏｒｔ＝０；

ｐｉｎｇ ｈｏｓｔ（ｓ，＆ｈｏｓｔ）；
／／Ｎｏｗｔｒｙａｂｏｇｕｓｈｏｓｔ
ｈｏｓｔ．ｓｉｎ ａｄｄｒ．ｓ ａｄｄｒ＝ｈｔｏｎｌ（ｎｔｏｈｌ（ｈｏｓｔ．ｓｉｎ ａｄｄｒ．ｓ ａｄｄｒ）＋３２）；

ｐｉｎｇ ｈｏｓｔ（ｓ，＆ｈｏｓｔ）；
｝

（注：下面的函数开始进行ｐｉｎｇ测试。）

ｖｏｉｄｎｅｔ ｔｅｓｔ（ｃｙｇ ａｄｄｒｗｏｒｄ ｔｐ）｛

ｄｉａｇ ｐｒｉｎｔｆ（″ＳｔａｒｔＰＩＮＧｔｅｓｔ＼ｎ″）；

ｉｎｉｔ ａｌｌ ｎｅｔｗｏｒｋ ｉｎｔｅｒｆａｃｅｓ（）；

（注：这是一个对网络进行初始化的调用。它必须在线程环境下执行，因此不能将其放在

下面的ｃｙｇ ｓｔａｒｔ（）函数中。ｉｎｉｔ ａｌｌ ｎｅｔｗｏｒｋ ｉｎｔｅｒｆａｃｅｓ（）函数将引起网络通信系统的初始
化，并对硬件接口进行设置。根据系统的配置信息，硬件接口可以使用ＢＯＯＴＰ启动，或者使

３４２

用预先配置好的静态ＩＰ信息启动。它也可能指明将使用该函数以外的用户程序进行配置。）

＃ｉｆｄｅｆＣＹＧＨＷＲ ＮＥＴ ＤＲＩＶＥＲ ＥＴＨ０
ｉｆ（ｅｔｈ０ ｕｐ）｛

ｐｉｎｇ ｔｅｓｔ（＆ｅｔｈ０ ｂｏｏｔｐ ｄａｔａ）；
｝

＃ｅｎｄｉｆ

（注：所有网络硬件接口共有一个关于ＢＯＯＴＰ信息的数据结构。除非选择手工配置，否
则在调用ｉｎｉｔ ａｌｌ ｎｅｔｗｏｒｋ ｉｎｔｅｒｆａｃｅｓ（）函数时应该产生这样一个数据结构。应用程序使用
这些信息可以了解诸如本地ＩＰ地址、服务器名字之类的信息。）

＃ｉｆｄｅｆＣＹＧＨＷＲ ＮＥＴ ＤＲＩＶＥＲ ＥＴＨ１
ｉｆ（ｅｔｈ１ ｕｐ）｛

ｐｉｎｇ ｔｅｓｔ（＆ｅｔｈ１ ｂｏｏｔｐ ｄａｔａ）；
｝

＃ｅｎｄｉｆ

（注：根据系统硬件的不同配置，系统可以支持多个网络硬件接口。如果系统只使用单个

以太网设备，那么应该定义ＣＹＧＨＷＲ ＮＥＴ ＤＲＩＶＥＲ ＥＴＨ０。如果这是第二个接口，则
应该定义ＣＹＧＨＷＲ ＮＥＴ ＤＲＩＶＥＲ ＥＴＨ１。）

ｃｙｇ ｔｅｓｔ ｅｘｉｔ（）；
｝

下面的函数创建一个运行该程序的初始线程。简单地将ｎｅｔ ｔｅｓｔ（）函数更名为ｍａｉｎ（）
也可以运行此程序。

ｖｏｉｄｃｙｇ ｓｔａｒｔ（ｖｏｉｄ）｛
／／Ｃｒｅａｔｅａｍａｉｎｔｈｒｅａｄ，ｓｏｗｅｃａｎｒｕｎｔｈｅｓｃｈｅｄｕｌｅｒａｎｄｈａｖｅｔｉｍｅ′ｐａｓｓ′
ｃｙｇ ｔｈｒｅａｄ ｃｒｅａｔｅ（１０， ／／Ｐｒｉｏｒｉｔｙｊｕｓｔａｎｕｍｂｅｒ

ｎｅｔ ｔｅｓｔ， ／／ｅｎｔｒｙ
０， ／／ｅｎｔｒｙｐａｒａｍｅｔｅｒ
″Ｎｅｔｗｏｒｋｔｅｓｔ″， ／／Ｎａｍｅ
＆ｓｔａｃｋ［０］， ／／Ｓｔａｃｋ
ＳＴＡＣＫ ＳＩＺＥ， ／／Ｓｉｚｅ
＆ｔｈｒｅａｄ ｈａｎｄｌｅ， ／／Ｈａｎｄｌｅ
＆ｔｈｒｅａｄ ｄａｔａ ／／Ｔｈｒｅａｄｄａｔａｓｔｒｕｃｔｕｒｅ

）；

ｃｙｇ ｔｈｒｅａｄ ｒｅｓｕｍｅ（ｔｈｒｅａｄ ｈａｎｄｌｅ）；／／Ｓｔａｒｔｉｔ
ｃｙｇ ｓｃｈｅｄｕｌｅｒ ｓｔａｒｔ（）；
｝

４４２

第１１章 硬件抽象层与ｅＣｏｓ移植

ｅＣｏｓ是一种可移植的嵌入式操作系统，它可以移植到１６位、３２位以及６４位的各种处理
器和平台上。ｅＣｏｓ由各种组件构成，根据具体硬件平台的需要可以分别将这些组件加入到系
统中来，从而实现各种所需的功能。ｅＣｏｓ的这种层次结构的最底层是硬件抽象层（Ｈａｒｄｗａｒｅ
ＡｂｓｔｒａｃｔｉｏｎＬａｙｅｒ），通常称为ＨＡＬ。硬件抽象层ＨＡＬ对处理器结构和系统硬件平台进行抽
象，当需要在一个新的目标平台上运行ｅＣｏｓ时，只需对底层的硬件抽象层进行修改，便可迅速
地将整个ｅＣｏｓ系统移植到新的平台上。

１１１ 硬件抽象层ＨＡＬ

硬件抽象层处于ｅＣｏｓ层次结构中的最底层。根据所描述的硬件对象的不同，可以将硬件
抽象层分成三个不同的子模块，它们分别是体系结构抽象层（ＡｒｃｈｉｔｅｃｔｕｒｅＨＡＬ）、变体抽象层
（ＶａｒｉａｎｔＨＡＬ）和平台抽象层（ＰｌａｔｆｏｒｍＨＡＬ）。
第一个子模块是体系结构抽象层。ｅＣｏｓ所支持的不同处理器系列都具有不同的体系结

构，如ＡＲＭ系列、ＰｏｗｅｒＰＣ系列、ＭＩＰＳ系列等等。体系结构抽象层对ＣＰＵ的基本结构进行
抽象和定义，此外它还包括中断的交付处理、上下文切换、ＣＰＵ启动以及该类处理器结构的指
令系统等等。

第二个子模块是变体抽象层。变体指的是该处理器在该处理器系列中所具有的特殊性，

这些特殊性包括在Ｃａｃｈｅ、ＭＭＵ（内存管理部件）和ＦＰＵ（浮点部件）等方面与其处理器系列的
基本结构具有的这样或那样的差异。ｅＣｏｓ的变体抽象层就是对这些特殊性进行抽象和封装。
如果处理器具有片内（ｏｎｃｈｉｐ）内存和片内中断控制器，变体抽象层，也必须对它们进行处理。
对于结构性的变体，实际上通常由体系结构抽象层来实现这种变体，变体抽象层只简单地提供

适当的配置定义。

第三个子模块是平台抽象层。平台抽象层对当前系统的硬件平台进行抽象，包括平台的

启动、芯片选择与配置、定时设备、Ｉ／Ｏ寄存器访问以及中断寄存器等等。
硬件抽象层的这三个子模块之间没有很明显的界限。对于不同的目标平台，这种区分具

有一定的模糊性。例如，Ｃａｃｈｅ和ＭＭＵ可能在这个平台上是属于体系结构抽象层的范围，而
在另一个平台上则可能属于变体抽象层的范围。同样，内存和中断控制器有可能是一种片内

设备而属于变体抽象层，也有可能是片外设备而属于平台抽象层。

一般来说，目标系统应该将体系结构抽象层、变体抽象层和平台抽象层分别使用不同的包

来加以实现。在一些早期的目标系统中或者在不需要的情况下，变体抽象层是不存在的。

ｅＣｏｓ在实现硬件抽象层时，采用了下述主要原则：

① 尽管大部分ｅＣｏｓ内核都使用Ｃ＋＋，但其硬件抽象层ＨＡＬ均用Ｃ语言和汇编语言加
以实现。这使得ＨＡＬ的适用范围更为广泛。

② 所有与ＨＡＬ的接口均采用Ｃ＋＋宏（Ｍａｃｒｏｓ）加以实现。采用这种方式的好处是可以

５４２

用内嵌Ｃ程序、内嵌汇编程序、外部Ｃ函数和外部汇编程序的形式对它们进行调用。同时，
这种方式可以选择最有效的实现方法而不会影响到接口。在平台抽象层或变体抽象层需要对

体系结构抽象层的定义进行更换或改进时，还可以采用这种宏定义的方式对它们进行重定

义。

③ 硬件抽象层提供简单而具有可移植的机制来处理广泛范围内的处理器结构和硬件平
台。虽然可以绕过硬件抽象层（不使用硬件抽象层）而直接对硬件进行操作，但这种对硬件直

接操作的方式移植性较差。

ｅＣｏｓ的硬件抽象层提供了许多的配置选项，可以根据具体硬件平台的实际需要进行相应
的配置。图１１１是使用图形配置工具对基于ｉ３８６ＰＣ的目标系统硬件抽象层ＨＡＬ进行配置
的示意图。

图１１１ 硬件抽象层的配置

利用配置工具可以对硬件抽象层进行下面几个方面的配置：

①ＰｌａｔｆｏｒｍｉｎｄｅｐｅｎｄｅｎｔＨＡＬｏｐｔｉｏｎｓ。提供一些与平台硬件无关的配置选项，为所有平
台的ＨＡＬ包所共有。例如，对上下文切换过程中保存的状态量进行控制的选项。对于不同
的体系结构，这些选项的实现不尽相同。

②ＨＡＬｉｎｔｅｒｒｕｐｔｈａｎｄｌｉｎｇ。提供与中断处理相关的一些配置选项，大多数的ＨＡＬ包都
共有这些选项。对于不同的硬件平台，它们的具体实现可能有差异。

③ＨＡＬｃｏｎｔｅｘｔｓｗｉｔｃｈｓｕｐｐｏｒｔ。提供一些与线程上下文相关的配置选项，大多数的ＨＡＬ
包都共有这些选项。对于不同的硬件平台，它们的具体实现可能有差异。

④Ｅｘｐｌｉｃｉｔｃｏｎｔｒｏｌｏｖｅｒｃａｃｈｅｂｅｈａｖｉｏｕｒ。提供一些对Ｃａｃｈｅ进行控制的选项，使得对Ｃａｃｈｅ
行为的控制变得简单。

⑤Ｓｏｕｒｃｅｌｅｖｅｌｄｅｂｕｇｇｉｎｇｓｕｐｐｏｒｔ。对源码级调试工具ＧＤＢ的支持进行配置。

６４２

⑥ＲＯＭｍｏｎｉｔｏｒｓｕｐｐｏｒｔ。对ＲＯＭ监控程序进行配置。

⑦ｉ３８６ａｒｃｈｉｔｅｃｔｕｒｅ。提供对ｉ３８６体系结构的ＨＡＬ包的配置。除了提供该体系结构一般
的配置选项外，它还提供对具体目标平台专用的ＨＡＬ包的配置。

１１２ 硬件抽象层的结构

在开发一个新的ｅＣｏｓ系统时，首先必须对硬件抽象层ＨＡＬ的结构有所了解。开发人员
必须针对目标系统硬件平台的特殊性而对硬件抽象层中相关部分进行必要的修改。同时，还

应该了解ＨＡＬ与系统其他部分之间的相互影响和关系。

１１２１ ＨＡＬ的类型

上一节已经介绍了硬件抽象层的三个子模块。实际上，在具体的实现中通常可以将ＨＡＬ
分为五种类型，即公共抽象层（ＣｏｍｍｏｎＨＡＬ）、体系结构抽象层、变体抽象层、平台抽象层以及
辅助抽象层（ＡｕｘｉｌｉａｒｙＨＡＬ）。公共抽象层包含了所有结构和平台的硬件抽象层所共享的配
置选项和函数，包括常用的调试功能、驱动程序ＡＰＩ、测试程序等等。辅助抽象层包含了处理
器的一些变体所共享的公共模块，如ＭｏｔｏｒｏｌａＰｏｗｅｒＰＣ中的ＱＵＩＣＣ就是这样一个模块。表

１１１对这五种类型的ＨＡＬ进行了描述。

表１１１ ＨＡＬ的五种类型

ＨＡＬ的类型 描 述 功 能

公共抽象层
（所在目录：ｈａｌ／ｃｏｍｍｏｎ）

所有类型的ＨＡＬ共享的配置选项
和函数

常用ｄｅｂｕｇ功能、驱动程序 ＡＰＩ、ｅＣｏｓ／
ＲＯＭ监视调用接口、测试程序

体系结构抽象层
（所在目录：

ｈａｌ／＜ａｒｃｈｉｔｅｃｔｕｒｅ＞／ａｒｃｈ）

该体系结构的特殊功能、在变体抽
象层和平台抽象层中可以对其加以
变化的一些功能的默认实现

体系结构特殊的ｄｅｂｕｇ功能（单步处理、
例外信号转换等）、例外／中断向量的定义和
处理程序、Ｃａｃｈｅ定义和控制、上下文切换程
序、系统初期初始化汇编程序、配置选项、测
试程序等

变体抽象层
（所在目录：

ｈａｌ／＜ａｒｃｈｉｔｅｃｔｕｒｅ＞／＜ｖａｒｉａｎｔ
＞）

体系结构相同的ＣＰＵ系列由一系
列具有变体结构的 ＣＰＵ 组成，如
ＭＩＰＳ系列具有３２位和６４位不同版
本的 ＣＰＵ；另外还有一些嵌入到
ＣＰＵ内核的变体

变体对体系结构进行扩展的程序（Ｃａｃｈｅ、
例外／中断）、配置选项、片内设备的驱动程
序、测试程序

平台抽象层
（所在目录：

ｈａｌ／＜ａｒｃｈｉｔｅｃｔｕｒｅ＞／＜ｐｌａｔ
ｆｏｒｍ＞）

包含平台专有的功能和配置选项 平台初期初始化程序、平台内存布局说
明、配置选项（处理器速度、编译选项）、诊断

ＩＯ函数、ｄｅｂｕｇＩＯ函数、平台用于扩展体系
结构和变体的程序、测试程序

辅助抽象层
（所在目录：

ｈａｌ／＜ａｒｃｈｉｔｅｃｔｕｒｅ＞／＜ｍｏｄｕｌｅ
＞）

一些变体所共享的公共模块（如

ＰｏｗｅｒＰＣＱＵＩＣＣ） 特殊模块功能（中断控制器、简单设备驱
动程序、测试程序）

７４２

１１２２ 硬件抽象层文件描述

在进行ｅＣｏｓ的移植操作时，需要对构成硬件抽象层ＨＡＬ的文件组织结构有所了解。本
节主要对ｅＣｏｓ硬件抽象层源码文件进行简单的介绍。
表１１２所列举的是公共抽象层的文件描述。

表１１２ 公共抽象层文件描述

文 件 描 述

ｉｎｃｌｕｄｅ／ｄｂｇｔｈｒｅａｄｓｙｓｃａｌｌ．ｈ
调试线程的系统调用函数定义。ＲＯＭ监视程序用它访问ＲＡＭ应用
程序中的调试线程ＡＰＩ函数

ｉｎｃｌｕｄｅ／ｄｂｇｔｈｒｅａｄｓａｐｉ．ｈ 调试线程ＡＰＩ定义

ｉｎｃｌｕｄｅ／ｄｒｖ ａｐｉ．ｈ 驱动程序ＡＰＩ定义

ｉｎｃｌｕｄｅ／ｇｅｎｅｒｉｃｓｔｕｂ．ｈ 通用ｓｔｕｂ程序特性定义

ｉｎｃｌｕｄｅ／ｈａｌｉｆ．ｈ ＲＯＭ／ＲＡＭ调用接口ＡＰＩ定义

ｉｎｃｌｕｄｅ／ｈａｌ ｍｉｓｃ．ｈ 整个ＨＡＬ所共享的各种各样的辅助函数

ｉｎｃｌｕｄｅ／ｈａｌｓｔｕｂ．ｈ ＧＤＢｓｔｕｂ程序特性定义

ｓｒｃ／ｄｂｇｔｈｒｅａｄｓｓｙｓｃａｌｌ．ｃ 调试线程的实现

ｓｒｃ／ｄｒｖ ａｐｉ．ｃ 驱动程序ＡＰＩ的实现

ｓｒｃ／ｄｕｍｍｙ．ｃ 空文件，保证编译时能生成ｌｉｂｔａｒｇｅｔ．ａ

ｓｒｃ／ｇｅｎｅｒｉｃｓｔｕｂ．ｃ
通用ＧＤＢｓｔｕｂ程序的实现。提供一个通过串口或网络与ＧＤＢ进行
通信的通信协议

ｓｒｃ／ｈａｌｉｆ．ｃ ＲＯＭ／ＲＡＭ调用接口的实现

ｓｒｃ／ｈａｌ ｍｉｓｃ．ｃ 所有平台和体系结构所共享的各种各样的辅助函数

ｓｒｃ／ｈａｌｓｔｕｂ．ｃ ｅＣｏｓＨＡＬ所提供的通用ＧＤＢｓｔｕｂ程序所需要的功能

ｓｒｃ／ｓｔｕｂｒｏｍ／ｓｔｕｂｒｏｍ．ｃ
用于生成ｅＣｏｓＧＤＢｓｔｕｂ程序映像。它是ＲＯＭＧＤＢｓｔｕｂ主程序，它
简单地设置调试陷阱和断点，从而可以与ＧＤＢ通信

ｓｒｃ／ｔｈｒｅａｄｐａｃｋｅｔｓ．ｃ 为多线程调试提供支持

ｓｒｃ／ｔｈｒｅａｄｐｋｔｓ．ｈ 线程调试相关函数定义

某些体系结构抽象层可能增加了一些源码文件用于支持其体系结构的特殊串口驱动程

序，或者用于其中断和例外的处理。表１１３列举了体系结构抽象层的源码文件说明。这些源
码文件中的许多定义是一种有条件的定义，如果在变体抽象层或平台抽象层中对它们进行了

定义，则将替换体系结构抽象层中的相同定义。

有些变体抽象层可能会为该变体的特殊串口驱动程序或中断和例外的处理增加一些源码

文件。表１１４为变体抽象层源码文件的描述。如果ＣＰＵ的变体可以通过普通的体系结构宏
定义进行控制，那么这些文件有可能大部分都是空文件。这些文件中的定义也是有条件的定

义，如果平台抽象层的头文件也进行了相同的定义，则将替换这些在变体抽象层中的定义。

８４２

表１１３ 体系结构抽象层文件描述

文 件 描 述

ｉｎｃｌｕｄｅ／ａｒｃｈ．ｉｎｃ 系统初始化过程所使用的各种汇编宏定义

ｉｎｃｌｕｄｅ／ｂａｓｅｔｙｐｅ．ｈ
基本类型定义（Ｅｎｄｉａｎ、ｌａｂｌｅ、ａｌｉｇｎｍｅｎｔ、ｔｙｐｅｓｉｚｅ）。覆盖ＣＹＧＰＫＧ

ＩＮＦＲＡ的默认定义

ｎｃｌｕｄｅ／ｈａｌ ａｒｃｈ．ｈ 寄存器格式定义，与线程、寄存器、堆栈相关的宏定义

ｉｎｃｌｕｄｅ／ｈａｌ ｃａｃｈｅ．ｈ Ｃａｃｈｅ定义和Ｃａｃｈｅ控制宏定义

ｉｎｃｌｕｄｅ／ｈａｌｉｎｔｒ．ｈ 例外和中断定义，中断配置和控制宏定义，ｅＣｏｓ实时时钟控制宏定义

ｉｎｃｌｕｄｅ／ｈａｌｉｏ．ｈ ＩＯ设备访问宏定义

ｉｎｃｌｕｄｅ／＜ａｒｃｈ＞ ｒｅｇｓ．ｈ 体系结构寄存器定义

ｉｎｃｌｕｄｅ／＜ａｒｃｈ＞ ｓｔｕｂ．ｈ
体系结构ｓｔｕｂ程序定义。特别是ＧＤＢ所使用的寄存器结构定义，可
能与ｅＣｏｓ所使用的不同

ｉｎｃｌｕｄｅ／＜ａｒｃｈ＞．ｉｎｃ 体系结构宏定义

ｓｒｃ／＜ａｒｃｈ＞．ｌｄ 链接器宏定义

ｓｒｃ／ｃｏｎｔｅｘｔ．Ｓ 上下文处理和ｓｅｔｊｕｍｐ／ｌｏｎｇｊｕｍｐ的函数

ｓｒｃ／ｈａｌ ｍｉｓｃ．ｃ 例外和中断处理程序以及具体各种函数

ｓｒｃ／ｈａｌ ｍｋ ｄｅｆｓ．ｃ 用于将Ｃ头文件的定义输出到汇编头文件

ｓｒｃ／ｈａｌｉｎｔｒ．ｃ 中断处理函数

ｓｒｃ／＜ａｒｃｈ＞ｓｔｕｂ．ｃ
体系结构ｓｔｕｂ程序。某些将ｅＣｏｓ例外转换为ＵＮＩＸ信号的函数，单
步函数

ｓｒｃ／ｖｅｃｔｏｒｓ．Ｓ 例外、中断和早期初始化程序

表１１４ 变体抽象层文件描述

文 件 描 述

ｉｎｃｌｕｄｅ／ｖａｒ ａｒｃｈ．ｈ 寄存器格式，各种与线程、寄存器和堆栈相关的宏定义

ｉｎｃｌｕｄｅ／ｖａｒ ｃａｃｈｅ．ｈ 与Ｃａｃｈｅ相关的宏定义

ｉｎｃｌｕｄｅ／ｖａｒｉｎｔｒ．ｈ 与中断相关的宏定义

ｉｎｃｌｕｄｅ／ｖａｒ ｒｅｇｓ．ｈ ＣＰＵ变体的额外寄存器定义

ｉｎｃｌｕｄｅ／ｖａｒｉａｎｔ．ｉｎｃ 系统初始化时所使用的各种汇编宏定义

ｓｒｃ／ｖａｒｉｎｔｒ．ｃ 中断函数

ｓｒｃ／ｖａｒ ｍｉｓｃ．ｃ ｈａｌ ｖａｒｉａｎｔｉｎｉｔ函数和其他函数

ｓｒｃ／ｖａｒｉａｎｔ．Ｓ 中断处理程序表定义

ｓｒｃ／＜ａｒｃｈ＞ ＜ｖａｒｉａｎｔ＞．ｌｄ 链接器宏定义

平台抽象层也可以增加一些源码文件，用于支持平台特有的串口驱动程序。如果需要，还

可以增加中断和例外处理的文件。表１１５为平台抽象层的源码文件描述。
平台抽象层还包含了一些文件专门用于对目标系统平台的内存布局进行说明。这些文件

位于ｉｎｃｌｕｄｅ／ｐｋｇｃｏｎｆ。

９４２

表１１５ 平台抽象层文件描述

文 件 描 述

ｉｎｃｌｕｄｅ／ｈａｌ ｄｉａｇ．ｈ ＨＡＬ诊断输出函数定义

ｉｎｃｌｕｄｅ／ｐｌａｔｆｏｒｍ．ｉｎｃ
平台初始化程序，包括内存控制器、向量、监视器初始化程序。根据具
体的体系结构，还可以包含其他的定义：中断译码、状态寄存器初始值等

ｉｎｃｌｕｄｅ／ｐｌｆ ｃａｃｈｅ．ｈ 平台专用Ｃａｃｈｅ处理

ｉｎｃｌｕｄｅ／ｐｌｆｉｎｔｒ．ｈ 平台专用中断处理

ｉｎｃｌｕｄｅ／ｐｌｆｉｏ．ｈ
ＰＣＩＩ／Ｏ定义和宏定义，如果平台的字节排列方式与ＣＰＵ不同，这里
还可以定义ＩＯ宏来替换普通ＨＡＬ中ＩＯ宏

ｉｎｃｌｕｄｅ／ｐｌｆ ｓｔｕｂ．ｈ Ｓｔｕｂ初始化程序定义和复位定义

ｓｒｃ／ｈａｌ ｄｉａｇ．ｃ
硬件抽象层诊断输出函数。可以包含低级设备驱动程序，也可以放置
到ｐｌｆ ｓｔｕｂ．ｃ文件

ｓｒｃ／ｐｌａｔｆｏｒｍ．Ｓ 内存控制器设置宏定义。如果需要，可能包含有中断跳转程序

ｓｒｃ／ｐｌｆ ｍｉｓｃ．ｃ 平台初始化程序

ｓｒｃ／ｐｌｆ ｍｋ ｄｅｆｓ．ｃ 用于将Ｃ头文件的定义导出到汇编头文件

ｓｒｃ／ｐｌｆ ｓｔｕｂ．ｃ 平台专用的ｓｔｕｂ初始化程序和低级设备驱动程序

１１３ 硬件抽象层接口

硬件抽象层ＨＡＬ对底层的硬件进行抽象，它提供了对硬件操作的接口，上层系统可以使
用ＨＡＬ提供的接口函数来实现对硬件的操作和访问。ＨＡＬ的接口包括ＣＰＵ体系结构、中断
处理、Ｉ／Ｏ操作、Ｃａｃｈｅ控制、诊断支持、ＳＭＰ支持等各个方面。这一节首先介绍硬件抽象层的
一些基本定义，然后对硬件抽象层接口的各个方面进行介绍。

１１３１ 基本定义

在编译ｅＣｏｓ内核的可移植部分时，需要用到与基本体系结构相关的一些特性定义，如数
据类型、字节排列方式、标号方式等。这些定义位于头文件ｃｙｇ／ｈａｌ／ｂａｓｅｔｙｐｅ．ｈ，属于体系结构
抽象层。该头文件自动包括在头文件ｃｙｇ／ｉｎｆｒａ／ｃｙｇ ｔｙｐｅ．ｈ内。下面简单介绍这些定义。
（１）字节排列方式定义。

ＣＹＧ ＢＹＴＥＯＲＤＥＲ

它对目标系统的字节排列方式进行定义，它的值必须是ＣＹＧ ＬＳＢＦＩＳＴ（ｌｉｔｔｌｅｅｎｄｉａｎ方
式）或ＣＹＧ ＭＳＢＦＩＲＳＴ（ｂｉｇｅｎｄｉａｎ方式）。
（２）标号转换。

ＣＹＧ ＬＡＢＥＬ ＮＡＭＥ（ｎａｍｅ）

在Ｃ和Ｃ＋＋源文件中可以用这种定义方式，它可以使用在汇编程序或链接器脚本中所
定义的标号。只有在ｃｙｇ／ｉｎｆｒａ／ｃｙｇ ｔｙｐｅ．ｈ中的默认实现（不加变化地传送参数ｎａｍｅ）不适
当的情况下才需要这种定义。它与ＣＹＧ ＬＡＢＥＬ ＤＥＦＮ（）相对应。

０５２

ＣＹＧ ＬＡＢＥＬ ＤＥＦＮ（ｎａｍｅ）

这是一个与ＣＹＧ ＬＡＢＥＬ ＮＡＭＥ（）相对应的定义，在汇编源程序和链接器脚本中可以
用它来定义标号。只有在ｃｙｇ／ｉｎｆｒａ／ｃｙｇ ｔｙｐｅ．ｈ中的默认实现（不加变化地传送参数ｎａｍｅ）
不适当的情况下才需要这种定义。

（３）基本类型。

ｃｙｇ ｈａｌｉｎｔ８
ｃｙｇ ｈａｌｉｎｔ１６
ｃｙｇ ｈａｌｉｎｔ３２
ｃｙｇ ｈａｌｉｎｔ６４
ｃｙｇ ｈａｌｃｏｕｎｔ８
ｃｙｇ ｈａｌｃｏｕｎｔ１６
ｃｙｇ ｈａｌｃｏｕｎｔ３２
ｃｙｇ ｈａｌｃｏｕｎｔ６４
ｃｙｇ ｈａｌｂｏｏｌ

这些宏定义了Ｃ的基本类型，用于对给定大小的变量进行定义。只有在ｃｙｇ／ｉｎｆｒａ／ｃｙｇ
ｔｙｐｅ．ｈ中的默认定义不能使用的情况下才需要这种定义。这些定义只给出了基本类型，它们
可以与ｓｉｇｎｅｄ和ｕｎｓｉｇｎｅｄ组合，形成更完整的类型说明。
（４）原子类型。

ｃｙｇ ｈａｌａｔｏｍｉｃＣＹＧ ＡＴＯＭＩＣ

这种类型可以保证其读写操作不会被中断。它的大小与体系结构有关，但必须至少是

１Ｂ。

１１３２ 体系结构描述

硬件抽象层对ＣＰＵ的基本体系结构进行了定义，这些定义包括：ＣＰＵ的上下文保存格
式、上下文切换、位操作、断点、堆栈大小和地址转换等等。这些定义大多数位于头文件ｃｙｇ／

ｈａｌ／ｈａｌ ａｒｃｈ．ｈ内，体系结构抽象层将使用该头文件。如果有变体抽象层或平台抽象层的特
殊定义，则其定义位于ｃｙｇ／ｈａｌ／ｖａｒ ａｒｃｈ．ｈ或ｃｙｇ／ｈａｌ／ｐｌｆ ａｒｃｈ．ｈ文件内。
（１）寄存器保存格式。

ｔｙｐｅｄｅｆｓｔｒｕｃｔＨＡＬ ＳａｖｅｄＲｅｇｉｓｔｅｒｓ
｛

／ 与结构相关的寄存器列表 ／
｝ＨＡＬ ＳａｖｅｄＲｅｇｉｓｔｅｒｓ

该结构对保存在堆栈内的ＣＰＵ状态（ＣＰＵ寄存器）进行描述。在线程上下文切换、中断
和例外处理等过程中将保存ＣＰＵ状态。对这些过程所需保存状态的数量并不相同，一般来
说，中断所需保存的状态是例外所保存状态的一个子集，而线程上下文状态又是中断状态的一

个子集。出于调试目的，这三种情况的ＣＰＵ状态都采用同一个结构。但在所需保存的ＣＰＵ
状态信息有显著区别时，这三种状态可以采用一种联合体的形式包含在该结构中。

（２）线程上下文初始化。

１５２

ＨＡＬ ＴＨＲＥＡＤ ＩＮＩＴ ＣＯＮＴＥＸＴ（ｓｐ，ａｒｇ，ｅｎｔｒｙ，ｉｄ）

该宏定义对线程上下文环境进行初始化，以便ＨＡＬ ＴＨＲＥＡＤ ＳＷＩＴＣＨ ＣＯＮＴＥＸＴ
（）可以实现上下文切换。其参数为：

ｓｐ—线程堆栈的当前指针所在位置。它是一个变量或结构成员。

ａｒｇ—传送给入口函数的第一个参数的值。

ｅｎｔｒｙ—入口函数的地址，根据Ｃ调用约定对其进行调用，ａｒｇ的值将作为它的第一个参
数。该函数原型为：

ｖｏｉｄｅｎｔｒｙ（ＣＹＧ ＡＤＤＲＷＯＲＤａｒｇ）

ｉｄ—线程ｉｄ值，仅用于调试目的。它被或入未使用的寄存器（与寄存器的初始值进行或操
作），有助于从寄存器ｄｕｍｐ值中识别该线程。该值的最低１６位应该为０，为寄存器的标识符
保留空间。

（３）线程上下文切换。

ＨＡＬ ＴＨＲＥＡＤ ＬＯＡＤ ＣＯＮＴＥＸＴ（ｔｏ）

ＨＡＬ ＴＨＲＥＡＤ ＳＷＩＴＣＨ ＣＯＮＴＥＸＴ（ｆｒｏｍ，ｔｏ）

这两个宏用于实现线程的上下文切换。参数为：

ｆｒｏｍ—当前线程堆栈指针存放位置的指针。

ｔｏ—将要读取的下一个线程堆栈指针所在位置的指针。
使用ＨＡＬ ＴＨＲＥＡＤ ＬＯＡＤ ＣＯＮＴＥＸＴ（）时，当前线程的ＣＰＵ状态被丢弃，目的线

程的ＣＰＵ状态被读取。该宏只被使用一次，启动调度器加载系统的第一个线程的时候使用。
使用ＨＡＬ ＴＨＲＥＡＤ ＳＷＩＴＣＨ ＣＯＮＴＥＸＴ（）时，当前线程的ＣＰＵ状态被保存到它的

堆栈（使用当前堆栈指针值和参数ｆｒｏｍ提供的状态存放地址），并从ｔｏ指定的位置加载新线
程的状态。

这两个宏的实现均采用了内嵌汇编程序的形式。ＨＡＬ ＴＨＲＥＡＤ ＳＷＩＴＣＨ ＣＯＮ
ＴＥＸＴ（）保存ＣＰＵ的当前状态，包括当前中断状态。虽然对所有寄存器的值都进行保存有利
于系统调试，但考虑到系统的性能因素，它只保存相关的一些寄存器。配置选项ＣＹＧＤＢＧ
ＨＡＬ ＣＯＭＭＯＮ ＣＯＮＴＥＸＴ ＳＡＶＥ ＭＮＩＵＭ用于控制寄存器被保存的数量。
宏ＨＡＬ ＴＨＲＥＡＤ ＬＯＡＤ ＣＯＮＴＥＸＴ（）用于加载一个新线程的上下文环境，丢弃当

前的上下文环境。在实现时，它可以与ＨＡＬ ＴＨＲＥＡＤ ＳＷＩＴＣＨ ＣＯＮＴＥＸＴ（）共享一些
程序代码。加载一个线程的上下文环境只需将被保存在堆栈内的寄存器值进行恢复，并使用

跳转或返回指令回到被保存的程序计数器ＰＣ。
值得注意的是，在这种上下文切换过程中并没有禁止中断。任何中断的发生都将被递送

到当前ＣＰＵ堆栈指针所指向的堆栈。因此，堆栈指针永远不能失效，也不能加载一个可能引
起被保存的状态被中断所破坏的值。作为线程上下文环境的一部分，中断状态也同时被保存

或恢复。如果某个线程在禁止了中断之后再进行上下文切换，在转换到另一个线程之后，这个

新的线程有可能重新使能中断。一旦原来的线程重新获取了系统控制权后，中断将再一次被

禁止。

（４）位索引操作。

２５２

ＨＡＬ ＬＳＢＩＴ ＩＮＤＥＸ（ｉｎｄｅｘ，ｍａｓｋ）

ＨＡＬ ＭＳＢＩＴ ＩＮＤＥＸ（ｉｎｄｅｘ，ｍａｓｋ）

这两个宏分别计算ｍａｓｋ中的最低有效位和最高有效位的位置，并将结果放置到ｉｎｄｅｘ。
有些ＣＰＵ提供了这样的指令进行位索引操作。如果没有这样的指令，这些宏必须调用Ｃ函
数来完成这种工作。

（５）空闲（ｉｄｌｅ）线程行为。

ＨＡＬ ＩＤＬＥ ＴＨＲＥＡＤ ＡＣＴＩＯＮ（ｃｏｕｎｔ）

在某些环境下，内核空闲线程在其循环过程中可能需要ＨＡＬ执行一些程序代码，例如可
能要其执行处理器的ｈａｌｔ指令。该宏定义为此提供了一种方法。它的参数ｃｏｕｎｔ是空闲线程
循环计数器的一个副本，可以用来触发一种间隔时间比每次循环时间更长的行为。

（６）排序栅栏（ｒｅｏｒｄｅｒｂａｒｒｉｅｒ）。

ＨＡＬ ＲＥＯＲＤＥＲ ＢＡＲＲＩＥＲ（）

在进行编译优化时，编译器可能会对某些程序代码重新排序。这种排序对多线程系统中

的某些部分起着至关重要的作用，有时这种排序可能会导致一些问题的出现。在不需要进行

这种重新排序的地方可以插入宏ＨＡＬ ＲＥＯＲＤＥＲ ＢＡＲＲＩＥＲ（），用来防止编译器进行优化
时的可能的程序代码迁移。该宏应该放置在必须按源程序代码顺序执行的两条语句之间。

（７）断点支持。

ＨＡＬ ＢＲＥＡＫＰＯＩＮＴ（ｌａｂｅｌ）

ＨＡＬ ＢＲＥＡＫＩＮＳＴ
ＨＡＬ ＢＲＥＡＫＩＮＳＴ ＳＩＺＥ

这三个宏定义提供了对断点的支持。ＨＡＬ ＢＲＥＡＫＰＯＩＮＴ（）执行一条断点指令，其参数

ｌａｂｅｌ为断点指令处的标识符，例外处理程序据此可以检测到执行的是哪一个断点。ＨＡＬ
ＢＲＥＡＫＩＮＳＴ包含的是断点指令代码的整型值。ＨＡＬ ＢＲＥＡＫＩＮＳＴ ＳＩＺＥ是断点指令的字
节大小。这三个宏可以一起用来在程序的任何一处设置断点。

（８）ＧＤＢ支持。

ＨＡＬ ＴＨＲＥＡＤ ＧＥＴ ＳＡＶＥＤ ＲＥＧＩＳＴＥＲＳ（ｓｐ，ｒｅｇｓ）

ＨＡＬ ＧＥＴ ＧＤＢ ＲＥＧＩＳＴＥＲＳ（ｒｅｇｖａｌ，ｒｅｇｓ）

ＨＡＬ ＳＥＴ ＧＤＢ ＲＥＧＩＳＴＥＲＳ（ｒｅｇｓ，ｒｅｇｖａｌ）

这些宏为ＧＤＢ到ＨＡＬ的接口提供支持。

ＨＡＬ ＴＨＲＥＡＤ ＧＥＴ ＳＡＶＥＤ ＲＥＧＩＳＴＥＲＳ（）从一个堆栈指针值ｓｐ提取ＨＡＬ
ＳａｖｅｄＲｅｇｉｓｔｅｒｓ结构的指针。参数ｓｐ传来的堆栈指针应该是被线程上下文宏所保存的值。该
宏将ＨＡＬ ＳａｖｅｄＲｅｇｉｓｔｅｒｓ结构的指针赋给第二个参数变量ｒｅｇｓ。

ＨＡＬ ＧＥＴ ＧＤＢ ＲＥＧＩＳＴＥＲＳ（）将ＨＡＬ所保存的寄存器状态以ＧＤＢ所希望的格式
进行ｄｕｍｐ操作。参数ｒｅｇｓ为ＨＡＬ ＳａｖｅｄＲｅｇｉｓｔｅｒｓ结构的指针，参数ｒｅｇｖａｌ为ＧＤＢ寄存器

ｄｕｍｐ内容被保存的目的内存指针。

ＨＡＬ ＳＥＴ ＧＤＢ ＲＥＧＩＳＴＥＲＳ（）将ＧＤＢ格式的寄存器ｄｕｍｐ内容转换为ＨＡＬ所希望

３５２

的格式。参数ｒｅｇｖａｌ为保存ＧＤＢ寄存器ｄｕｍｐ内容的内存指针，参数ｒｅｇｓ为ＨＡＬ Ｓａｖｅ
ｄＲｅｇｉｓｔｅｒｓ结构的指针。
（９）Ｓｅｔｊｍｐ和ｌｏｎｇｊｍｐ支持。

ＣＹＧＡＲＣ ＪＭＰ ＢＵＦ ＳＩＺＥ
ｈａｌｊｍｐ ｂｕｆ［ＣＹＧＡＲＣ ＪＭＰ ＢＵＦ ＳＩＺＥ］

ｈａｌｓｅｔｊｍｐ（ｈａｌｊｍｐ ｂｕｆｅｎｖ）

ｈａｌｌｏｎｇｊｍｐ（ｈａｌｊｍｐ ｂｕｆｅｎｖ，ｉｎｔｖａｌ）

这些函数为Ｃ函数ｓｅｔｊｍｐ（）和ｌｏｎｇｊｍｐ（）提供支持。
（１０）堆栈大小。

ＣＹＧＮＵＭ ＨＡＬ ＳＴＡＣＫ ＳＩＺＥ ＭＩＮＩＭＵＭ
ＣＹＧＮＵＭ ＨＡＬ ＳＴＡＣＫ ＳＩＺＥ ＴＹＰＩＣＡＬ

这两个宏分别定义了线程堆栈大小的最小值和标准值。

ＣＹＧＮＵＭ ＨＡＬ ＳＴＡＣＫ ＳＩＺＥ ＭＩＮＩＭＵＭ对线程堆栈大小的最小值进行了定义。
堆栈空间的最小值应该足够保证其线程功能的正确性，并且能够允许中断的发生，同时还应该

允许进行上下文切换操作。它还应该具有足够的空间来执行简单的线程入口函数以及调用基

本内核操作（如互斥和信号）。除此之外，最小堆栈空间不提供更多的空间。应用程序在为它

们自己的线程创建堆栈时，应该确定为实现其目的所需要的堆栈空间大小，并加到ＣＹＧＮＵＭ
ＨＡＬ ＳＴＡＣＫ ＳＩＺＥ ＭＩＮＩＭＵＭ宏定义上。

ＣＹＧＮＵＭ ＨＡＬ ＳＴＡＣＫ ＳＩＺＥ ＴＹＰＩＣＡＬ定义了堆栈的标准大小，它是在

ＣＹＧＮＵＭ ＨＡＬ ＳＴＡＣＫ ＳＩＺＥ ＭＩＮＩＭＵＭ基础上的一个合理值，通常为１ｋＢ。它可以
满足大多数普通线程的需要。只有数据量非常大的线程以及程序调用层次非常深的线程才需

要更大的堆栈空间。

（１１）地址转换。

ＣＹＧＡＲＣ ＣＡＣＨＥＤ ＡＤＤＲＥＳＳ（ａｄｄｒ）

ＣＹＧＡＲＣ ＵＮＣＡＣＨＥＤ ＡＤＤＲＥＳＳ（ａｄｄｒ）

ＣＹＧＡＲＣ ＰＨＹＳＩＣＡＬ ＡＤＤＲＥＳＳ（ａｄｄｒ）

这些宏提供对内存地址的转换操作。在许多体系结构中，同一位置的内存空间根据视角

的不同可能会有不同的地址值。通过ＣＰＵ的内存管理单元或其他地址转换单元提供给程序
的内存地址可能是与物理地址不同的虚地址。使用ＨＡＬ所提供的这些宏可以进行内存地址
的转换操作。

ＣＹＧＡＲＣ ＣＡＣＨＥＤ ＡＤＤＲＥＳＳ（）将指定的地址转换到ｃａｃｈｅｄｍｅｍｏｒｙ空间。这样的
地址通常是应用程序访问内存的地址。

ＣＹＧＡＲＣ ＵＮＣＡＣＨＥＤ ＡＤＤＲＥＳＳ（）将指定的地址转换到ｕｎｃａｃｈｅｄｍｅｍｏｒｙ空间。这
样的地址通常是驱动程序为了避免出现ｃａｃｈｅ问题而对内存空间进行访问的地址。另外，在
该内存空间全有效之前对ｃａｃｈｅ进行刷新时也需要使用这种地址转换。

ＣＹＧＡＲＣ ＰＨＹＳＩＣＡＬ ＡＤＤＲＥＳＳ（）将指定的地址转换到其物理地址空间（转换为物理
地址）。这些地址通常是需要传递给设备硬件（如ＤＭＡ、网络设备、ＰＣＩ总线桥等）的地址。程

４５２

序所使用的有可能不是物理地址，此时必须通过地址转换对其进行映射。

（１２）全局指针。

ＣＹＧＡＲＣ ＨＡＬ ＳＡＶＥ ＧＰ（）

ＣＹＧＡＲＣ ＨＡＬ ＲＥＳＴＯＲＥ ＧＰ（）

这两个宏在被使用时，将在程序中分别插入一段保存或恢复全局数据指针的代码。在两

个ｅＣｏｓ事例之间进行上下文切换时需要使用它们。例如，在ｅＣｏｓ应用程序和ＲｅｄＢｏｏｔ之间
进行切换时，需要使用这两个宏。

１１３３ 中断处理

ＨＡＬ的接口提供了一些有关中断处理的宏定义，包括例外和中断向量、中断的使能和屏
蔽以及运行时的设置操作等。这些宏定义位于头文件ｃｙｇ／ｈａｌ／ｈａｌ ｉｎｔｒ．ｈ内，属于体系结构
抽象层。变体抽象层和平台抽象层的专用定义位于头文件ｃｙｇ／ｈａｌ／ｖａｒ ｉｎｔｒ．ｈ、ｃｙｇ／ｈａｌ／ｐｌｆ
ｉｎｔｒ．ｈ或ｃｙｇ／ｈａｌ／ｈａｌ ｐｌａｔｆｏｒｍ ｉｎｔｓ．ｈ中。
（１）中断向量。

ＣＹＧＮＵＭ ＨＡＬ ＶＥＣＴＯＲ ＸＸＸＸ
ＣＹＧＮＵＭ ＨＡＬ ＶＳＲ ＭＩＮ
ＣＹＧＮＵＭ ＨＡＬ ＶＳＲ ＭＡＸ
ＣＹＧＮＵＭ ＨＡＬ ＶＳＲ ＣＯＵＮＴ

ＣＹＧＮＵＭ ＨＡＬ ＩＮＴＥＲＲＵＰＴ ＸＸＸＸ
ＣＹＧＮＵＭ ＨＡＬ ＩＳＲ ＭＩＮ
ＣＹＧＮＵＭ ＨＡＬ ＩＳＲ ＭＡＸ
ＣＹＧＮＵＭ ＨＡＬ ＩＳＲ ＣＯＵＮＴ

ＣＹＧＮＵＭ ＨＡＬ ＥＸＣＥＰＴＩＯＮ ＸＸＸＸ
ＣＹＧＮＵＭ ＨＡＬ ＥＸＣＥＰＴＩＯＮ ＭＩＮ
ＣＹＧＮＵＭ ＨＡＬ ＥＸＣＥＰＴＩＯＮ ＭＡＸ
ＣＹＧＮＵＭ ＨＡＬ ＥＸＣＥＰＴＩＯＮ ＣＯＵＮＴ

这里定义了系统中所有可能的ＶＳＲ（向量服务程序）、例外和中断向量，同时还提供了向
量范围的最大值和最小值。有两个向量范围ＶＳＲ和ＩＳＲ，它们之间没有固定的关系，不应将
相同的ＶＳＲ和ＩＳＲ等同起来。ＶＳＲ与例外向量相对应，它们中的大多数是ＣＰＵ的内部例外
陷阱。与ＩＳＲ相对应的是外部中断，它通过中断ＶＳＲ对中断控制器进行译码而得出。
在ＣＰＵ支持同步例外的情况下，这些同步例外向量的范围由ＣＹＧＮＵＭ ＨＡＬ ＥＸ

ＣＥＰＴＩＯＮ ＭＩＮ（最小值）和 ＣＹＧＮＵＭ ＨＡＬ ＥＸＣＥＰＴＩＯＮ ＭＡＸ（最大值）给出。

ＣＹＧＮＵＭ ＨＡＬ ＥＸＣＥＰＴＩＯＮ ＸＸＸＸ是例外的标准名字（ＸＸＸＸ表示对应的例外），与具
体平台结构无关的一段通用程序（适合于所有目标平台）用其来检测具体目标系统是否存在某

一特殊的例外。

ＣＹＧＮＵＭ ＨＡＬ ＩＳＲ ＣＯＵＮＴ、ＣＹＧＮＵＭ ＨＡＬ ＶＳＲ ＣＯＵＮＴ和ＣＹＧＮＵＭ
ＨＡＬ ＥＸＣＥＰＴＩＯＮ ＣＯＵＮＴ分别定义了ＩＳＲ、ＶＳＲ和例外的数目。

５５２

（２）中断状态控制。

ＣＹＧ ＩＮＴＥＲＲＵＰＴ ＳＴＡＴＥ
ＨＡＬ ＤＩＳＡＢＬＥ ＩＮＴＥＲＲＵＰＴＳ（ｏｌｄ）

ＨＡＬ ＲＥＳＴＯＲＥ ＩＮＴＥＲＲＵＰＴＳ（ｏｌｄ）

ＨＡＬ ＥＮＡＢＬＥ ＩＮＴＥＲＲＵＰＴＳ（）

ＨＡＬ ＱＵＥＲＹ ＩＮＴＥＲＲＵＰＴＳ（ｓｔａｔｅ）

这些宏对ＣＰＵ中断屏蔽机制的状态进行控制，它们通常对ＣＰＵ的某个状态寄存器进行
操作，从而实现中断的使能和禁止。它们不直接对中断控制器进行操作。

ＣＹＧ ＩＮＴＥＲＲＵＰＴ ＳＴＡＴＥ是一个数据类型，用于保存ＨＡＬ ＤＩＳＡＢＬＥ ＩＮＴＥＲ
ＲＵＰＴＳ（）和ＨＡＬ ＱＵＥＲＹ ＩＮＴＥＲＲＵＰＴＳ（）两个宏返回的中断状态，或者将中断状态传
递给ＨＡＬ ＲＥＳＴＯＲＥ ＩＮＴＥＲＲＵＰＴＳ（）。

ＨＡＬ ＤＩＳＡＢＬＥ ＩＮＴＥＲＲＵＰＴＳ（）禁止中断，并将原来的中断屏蔽状态保存到参数ｏｌｄ。

ＨＡＬ ＲＥＳＴＯＲＥ ＩＮＴＥＲＲＵＰＴＳ（）将中断屏蔽状态恢复为原来保存在ｏｌｄ内的值。

ＨＡＬ ＥＮＡＢＬＥ ＩＮＴＥＲＲＵＰＴＳ（）使能中断，它不考虑当前的中断屏蔽状态。

ＨＡＬ ＱＵＥＲＹ ＩＮＴＥＲＲＵＰＴＳ（）将中断屏蔽状态保存到参数ｓｔａｔｅ。保存于该参数的
中断屏蔽状态可以在稍后的某个时刻作为ＨＡＬ ＲＥＳＴＯＲＥ ＩＮＴＥＲＲＵＰＴＳ（）的参数来恢
复中断屏蔽状态。

（３）ＩＳＲ和ＶＳＲ的管理。

ＨＡＬ ＩＮＴＥＲＲＵＰＴ ＩＮ ＵＳＥ（ｖｅｃｔｏｒ，ｓｔａｔｅ）

ＨＡＬ ＩＮＴＥＲＲＵＰＴ ＡＴＴＡＣＨ（ｖｅｃｔｏｒ，ｉｓｒ，ｄａｔａ，ｏｂｊｅｃｔ）

ＨＡＬ ＩＮＴＥＲＲＵＰＴ ＤＥＴＡＣＨ（ｖｅｃｔｏｒ，ｉｓｒ）

ＨＡＬ ＶＳＲ ＳＥＴ（ｖｅｃｔｏｒ，ｖｓｒ，ｐｏｌｄｖｓｒ）

ＨＡＬ ＶＳＲ ＧＥＴ（ｖｅｃｔｏｒ，ｐｖｓｒ）

ＨＡＬ ＶＳＲ ＳＥＴ ＴＯ ＥＣＯＳ ＨＡＮＤＬＥＲ（ｖｅｃｔｏｒ，ｐｏｌｄｖｓｒ）

这些宏将中断和例外分别与它们相应的服务程序ＩＳＲ和ＶＳＲ进行连接分配。

ＨＡＬ ＩＮＴＥＲＲＵＰＴ ＩＮ ＵＳＥ（）对参数ｖｅｃｔｏｒ指定的中断向量的状态进行检测，检查
是否已经有中断服务程序ＩＳＲ与其挂接。如果已经分配了ＩＳＲ，则将参数ｓｔａｔｅ设为１，否则设
为０。对于每一个中断向量，ＨＡＬ只允许为其分配一个ＩＳＲ。因此，在使用ＨＡＬ ＩＮＴＥＲ
ＲＵＰＴ ＡＴＴＡＣＨ（）之前，最好先使用ＨＡＬ ＩＮＴＥＲＲＵＰＴ ＩＮ ＵＳＥ（）函数来判断是否已
经分配了ＩＳＲ。

ＨＡＬ ＩＮＴＥＲＲＵＰＴ ＡＴＴＡＣＨ（）给参数ｖｅｃｔｏｒ指定的中断向量分配ＩＳＲ（ｉｓｒ）、数据指
针（ｄａｔａ）和对象指针（ｏｂｊｅｃｔ）。当发生与该中断向量对应的中断时，将调用由此函数分配的中
断服务程序ＩＳＲ，并将向量号和数据指针分别作为ＩＳＲ的第一个参数和第二个参数。

ＨＡＬ ＩＮＴＥＲＲＵＰＴ ＤＥＴＡＣＨ（）将中断服务程序ＩＳＲ与中断向量ｖｅｃｔｏｒ进行分离。

ＨＡＬ ＶＳＲ ＳＥＴ（）将参数ｖｓｒ指定的ＶＳＲ替换原来分配给例外向量ｖｅｃｔｏｒ的ＶＳＲ。原
来的ＶＳＲ由参数ｐｖｓｒ带回。

ＨＡＬ ＶＳＲ ＧＥＴ（）读取例外向量ｖｅｃｔｏｒ相应的ＶＳＲ，由参数ｐｖｓｒ带回。

ＨＡＬ ＶＳＲ ＳＥＴ ＴＯ ＥＣＯＳ ＨＡＮＤＬＥＲ（）用于确保指定例外（ｖｅｃｔｏｒ）的ＶＳＲ是

６５２

ｅＣｏｓ例外ＶＳＲ，而不是ＲｅｄＢｏｏｔ或其他ＲＯＭｍｏｎｉｔｏｒ程序的例外ＶＳＲ。当处于ＲｅｄＢｏｏｔ阶段
时，例外由ＲｅｄＢｏｏｔ处理并传送给ＧＤＢ。该宏定义将例外转向到ｅＣｏｓ，从而使应用程序可以对
它进行处理。参数ｖｅｃｔｏｒ指定需要进行ＶＳＲ转向的例外向量，ｐｏｌｄｖｓｒ用于保存原来的ＶＳＲ
指针，以后还可以用它来恢复原来的ＶＳＲ。
（４）中断控制器的管理。

ＨＡＬ ＩＮＴＥＲＲＵＰＴ ＭＡＳＫ（ｖｅｃｔｏｒ）

ＨＡＬ ＩＮＴＥＲＲＵＰＴ ＵＮＭＡＳＫ（ｖｅｃｔｏｒ）

ＨＡＬ ＩＮＴＥＲＲＵＰＴ ＡＣＫＮＯＷＬＥＤＧＥ（ｖｅｃｔｏｒ）

ＨＡＬ ＩＮＴＥＲＲＵＰＴ ＣＯＮＦＩＧＵＲＥ（ｖｅｃｔｏｒ，ｌｅｖｅｌ，ｕｐ）

ＨＡＬ ＩＮＴＥＲＲＵＰＴ ＳＥＴ ＬＥＶＥＬ（ｖｅｃｔｏｒ，ｌｅｖｅｌ）

这些宏用于对具有优先级控制能力的中断控制器进行控制。如果没有优先级控制器，它

们应该为空。这些宏不具备可重入能力，在中断处于使能状态下对它们的使用应该特别小心。

在中断服务程序ＩＳＲ和中断使能之前的初始化程序中使用它们是安全的。但是在ＤＳＲ和线
程中使用这些宏时必须先禁止中断。下面是ＤＳＲ中的一个使用例子：

．．．
ＨＡＬ ＤＩＳＡＢＬＥ ＩＮＴＥＲＲＵＰＴＳ（ｏｌｄ）；

ＨＡＬ ＩＮＴＥＲＲＵＰＴ ＵＮＭＡＳＫ（ＣＹＧＮＵＭ ＨＡＬ ＩＮＴＥＲＲＵＰＴ ＥＴＨ）；

ＨＡＬ ＲＥＳＴＯＲＥ ＩＮＴＥＲＲＵＰＴＳ（ｏｌｄ）；

．．．

ＨＡＬ ＩＮＴＥＲＲＵＰＴ ＭＡＳＫ（）屏蔽参数ｖｅｃｔｏｒ指定的中断。

ＨＡＬ ＩＮＴＥＲＲＵＰＴ ＵＮＭＡＳＫ（）使能参数ｖｅｃｔｏｒ指定的中断。

ＨＡＬ ＩＮＴＥＲＲＵＰＴ ＡＣＫＮＯＷＬＥＤＧＥ（）对参数ｖｅｃｔｏｒ对应的中断进行中断应答。通
常用在中断服务程序ＩＳＲ内，在其允许响应中断时可以使用该宏。许多中断控制器在允许响
应下一个中断之前要求进行中断应答。

ＨＡＬ ＩＮＴＥＲＲＵＰＴ ＣＯＮＦＩＧＵＲＥ（）对中断的触发方式进行配置。参数定义如下：

ｖｅｃｔｏｒ—指定被配置的中断。

ｌｅｖｅｌ—指定触发方式：ｔｒｕｅ为电平触发，ｆａｌｓｅ为边沿触发。

ｕｐ—如果中断被设置为电平触发方式，则ｕｐ为ｔｒｕｅ时将是高电平触发，ｕｐ为ｆａｌｓｅ时为
低电平触发。

ＨＡＬ ＩＮＴＥＲＲＵＰＴ ＳＥＴ ＬＥＶＥＬ（）设置中断优先级。参数定义如下：

ｖｅｃｔｏｒ—指定要设置的中断。

ｌｅｖｅｌ—中断优先级。一些系统可以通过改变中断优先级来实现中断的屏蔽和使能操作。
（５）时钟控制。

ＨＡＬ ＣＬＯＣＫ ＩＮＩＴＩＡＬＩＺＥ（ｐｅｒｉｏｄ）

ＨＡＬ ＣＬＯＣＫ ＲＥＳＥＴ（ｖｅｃｔｏｒ，ｐｅｒｉｏｄ）

ＨＡＬ ＣＬＯＣＫ ＲＥＡＤ（ｐｖａｌｕｅ）

系统内核在提供超时、延时和调度服务时需要用到时钟和定时设备，上面这些宏可以用于

对这些设备进行控制。时钟的实现可以认为是一种具有某种形式的计数器通过一个外部信号

７５２

源对其进行加或减操作，当该计数器达到一个预定值时就产生一个中断。

ＨＡＬ ＣＬＯＣＫ ＩＮＩＴＩＡＬＩＺＥ（）对定时设备进行初始化，使其周期性地产生中断。

ＨＡＬ ＣＬＯＣＫ ＲＥＳＥＴ（）对定时器重新进行初始化。只有在每次中断后需要对定时设
备进行复位时才使用该宏。

ＨＡＬ ＣＬＯＣＫ ＲＥＡＤ（）读取定时计数器的当前值。读取的值存放在ｐｖａｌｕｅ指定的位
置。

（６）微秒级延时。

ＨＡＬ ＤＥＬＡＹ ＵＳ（ｕｓ）

该宏的实现是可选的，它可实现微秒级的延时。该宏通常在需要很短的延时情况下使用，

如硬件控制、Ｆｌａｓｈ设备编程等等。由于它有可能禁止中断，而且它是采用一种忙循环的方式
实现的，因此在对中断延时或上下文切换延时敏感的地方不要使用它。

１１３４ Ｉ／Ｏ操作

对设备进行访问和控制时需要访问Ｉ／Ｏ寄存器。硬件抽象层提供了一些宏用于Ｉ／Ｏ寄
存器的读写操作。这些宏一般位于头文件ｃｙｇ／ｈａｌ／ｈａｌｉｏ．ｈ内。如果变体抽象层和平台抽象
层有专用宏对Ｉ／Ｏ进行访问，则这些宏位于ｃｙｇ／ｈａｌ／ｖａｒ ｉｏ．ｈ和ｃｙｇ／ｈａｌ／ｐｌｆｉｏ．ｈ内。
（１）寄存器地址。

ＨＡＬ ＩＯ ＲＥＧＩＳＴＥＲ

这是一个存放Ｉ／Ｏ寄存器地址的类型定义，通常是一个内存地址、一个端口地址或者一
个Ｉ／Ｏ空间的偏移地址。在较复杂的体系结构中，它可能是一个地址空间的基地址加一个地
址偏移所组成的一个字，或者是用一个结构体的形式表示寄存器地址。

这种类型的变量和常数的值通常在配置机制或专用的头文件中指定。

（２）寄存器读操作。

ＨＡＬ ＲＥＡＤ ＸＸＸ（ｒｅｇｉｓｔｅｒ，ｖａｌｕｅ）

ＨＡＬ ＲＥＡＤ ＸＸＸ ＶＥＣＴＯＲ（ｒｅｇｉｓｔｅｒ，ｂｕｆｆｅｒ，ｃｏｕｎｔ，ｓｔｒｉｄｅ）

这些宏用于读取各种长度的Ｉ／Ｏ寄存器。其中的 ＸＸＸ可以是 ＵＩＮＴ８、ＵＩＮＴ１６、

ＵＩＮＴ３２。

ＨＡＬ ＲＥＡＤ ＸＸＸ（）从寄存器ｒｅｇｉｓｔｅｒ读取适当长度的值并保存到参数ｖａｌｕｅ。

ＨＡＬ ＲＥＡＤ ＸＸＸ ＶＥＣＴＯＲ（）读取ｃｏｕｎｔ个适当长度的寄存器值并存放到ｂｕｆｆｅｒ指
定的空间。参数ｓｔｒｉｄｅ控制寄存器空间的指针如何移动，为０时表示重复读同一个寄存器，为

１时读连续相邻的寄存器（指针每次加１），为２时隔一个读一个（指针每次加２），依次类推。
（３）寄存器写操作。

ＨＡＬ ＷＲＩＴＥ ＸＸＸ（ｒｅｇｉｓｔｅｒ，ｖａｌｕｅ）

ＨＡＬ ＷＲＩＴＥ ＸＸＸ ＶＥＣＴＯＲ（ｒｅｇｉｓｔｅｒ，ｂｕｆｆｅｒ，ｃｏｕｎｔ，ｓｔｒｉｄｅ）

这些宏用于对寄存器进行各种长度的写操作。其中的ＸＸＸ可以是ＵＩＮＴ８、ＵＩＮＴ１６、

ＵＩＮＴ３２。

８５２

ＨＡＬ ＷＲＩＴＥ ＸＸＸ（）以适当的长度将参数ｖａｌｕｅ的值写到寄存器ｒｅｇｉｓｔｅｒ。

ＨＡＬ ＷＲＩＴＥ ＸＸＸ ＶＥＣＴＯＲ（）以适当的长度将ｂｕｆｆｅｒ指定空间内的值写入ｃｏｕｎｔ个
寄存器。参数ｓｔｒｉｄｅ控制寄存器空间的指针如何移动，为０时表示重复写同一个寄存器，为１
时写连续相邻的寄存器（指针每次加１），为２时隔一个写一个（指针每次加２），依次类推。

１１３５ Ｃａｃｈｅ控制

硬件抽象层提供对Ｃａｃｈｅ控制的支持。Ｃａｃｈｅ控制的宏定义通常位于头文件ｃｙｇ／ｈａｌ／ｈａｌ
ｃａｃｈｅ．ｈ内。不同系统可能在不同的层次实现对Ｃａｃｈｅ的控制，因此该头文件可能相应地位
于体系结构抽象层、变体抽象层或者平台抽象层内。一般来说，体系结构抽象层内有一些普通

的Ｃａｃｈｅ控制宏定义，但变体抽象层和普通抽象层可以覆盖它们，或者解除这些定义。变体抽
象层和普通抽象层对Ｃａｃｈｅ控制的宏定义分别位于头文件ｃｙｇ／ｈａｌ／ｖａｒ ｃａｃｈｅ．ｈ和ｃｙｇ／ｈａｌ／

ｐｌｆ ｃａｃｈｅ．ｈ内。
有些Ｃａｃｈｅ宏定义要分别实现对数据Ｃａｃｈｅ和指令Ｃａｃｈｅ的控制，在宏的名字中使用

ＤＣＡＣＨＥ和ＩＣＡＣＨＥ来对它们加以区别。在某些体系结构中，只使用一个统一的Ｃａｃｈｅ，数
据Ｃａｃｈｅ和指令Ｃａｃｈｅ使用同一个Ｃａｃｈｅ。这种情况下，宏的名字使用 ＵＣＡＣＨＥ，具有

ＤＣＡＣＨＥ和ＩＣＡＣＨＥ名字的宏都将调用ＵＣＡＣＨＥ宏。在后面的介绍中，统一用ＸＣＡＣＨＥ来
表示它们中的任何一个。

一些目标平台对某些Ｃａｃｈｅ宏的使用具有一定的限制，使用时应该加以注意。在使用具
有破坏性的Ｃａｃｈｅ宏时要特别小心。在Ｃａｃｈｅ失效之前进行Ｃａｃｈｅ同步操作是不安全的，这
是因为在同步操作之后到Ｃａｃｈｅ失效前的这一时间段内可能有中断产生，有可能引起中断期
间所产生的脏数据行的状态丢失。解决这一问题的一种方法是在进行同步和失效操作时临时

关闭Ｃａｃｈｅ，这样保证了在中断期间Ｃａｃｈｅ中不会有新的数据。如果目标系统不具备这种能
力，则只能在对Ｃａｃｈｅ进行操作时禁止中断，但这样做显然会耗费较长的一段时间。
对于某些目标平台，ＨＡＬ提供了一对用于查询其Ｃａｃｈｅ状态的宏，它们分别是ＨＡＬ Ｉ

ＣＡＣＨＥ ＩＳ ＥＮＡＢＬＥＤ（ｘ）和ＨＡＬ ＤＣＡＣＨＥ ＩＳ ＥＮＡＢＬＥＤ（ｘ）。如果指令Ｃａｃｈｅ或数
据Ｃａｃｈｅ处于使能状态，则它们分别将其参数ｘ置为１。像其他许多Ｃａｃｈｅ控制宏定义一样，
这两个宏也是可选的。对于具有不同支持能力的目标系统平台来说，这种可选方式为其提供

了很大的选择余地。

（１）Ｃａｃｈｅ粒度。

ＨＡＬ ＸＣＡＣＨＥ ＳＩＺＥ
ＨＡＬ ＸＣＡＣＨＥ ＬＩＮＥ
ＳＩＺＥ
ＨＡＬ ＸＣＡＣＨＥ ＷＡＹＳ
ＨＡＬ ＸＣＡＣＨＥ ＳＥＴＳ

这些宏对指令Ｃａｃｈｅ和数据Ｃａｃｈｅ的大小和粒度进行了定义。

ＨＡＬ ＸＣＡＣＨＥ ＳＩＺＥ定义整个Ｃａｃｈｅ的字节大小。

ＨＡＬ ＸＣＡＣＨＥ ＬＩＮＥ ＳＩＺＥ定义Ｃａｃｈｅ行的字节大小。

ＨＡＬ ＸＣＡＣＨＥ ＷＡＹＳ对每组Ｃａｃｈｅ的组相联数目进行定义。如果是直接映射

Ｃａｃｈｅ，则为１；如果是两路组相联Ｃａｃｈｅ，则为２；如果是４路组相联Ｃａｃｈｅ，则为４。依此类推。

９５２

ＨＡＬ ＸＣＡＣＨＥ ＳＥＴＳ定义Ｃａｃｈｅ组数目，它是根据上面定义的Ｃａｃｈｅ大小和Ｃａｃｈｅ组
相联数目进行计算的结果。其计算方法为：

ＨＡＬ ＸＣＡＣＨＥ ＳＥＴＳ＝ ＨＡＬ ＸＣＡＣＨＥ ＳＩＺＥ
ＨＡＬ ＸＣＡＣＨＥ ＬＩＮＥ ＳＩＺＥＨＡＬ ＸＣＡＣＨＥ ＷＡＹＳ

（２）全局Ｃａｃｈｅ控制。

ＨＡＬ ＸＣＡＣＨＥ ＥＮＡＢＬＥ（）

ＨＡＬ ＸＣＡＣＨＥ ＤＩＳＡＢＬＥ（）

ＨＡＬ ＸＣＡＣＨＥ ＩＮＶＡＬＩＤＡＴＥ ＡＬＬ（）

ＨＡＬ ＸＣＡＣＨＥ ＳＹＮＣ（）

ＨＡＬ ＸＣＡＣＨＥ ＢＵＲＳＴ ＳＩＺＥ（ｓｉｚｅ）

ＨＡＬ ＤＣＡＣＨＥ ＷＲＩＴＥ ＭＯＤＥ（ｍｏｄｅ）

ＨＡＬ ＸＣＡＣＨＥ ＬＯＣＫ（ｂａｓｅ，ｓｉｚｅ）

ＨＡＬ ＸＣＡＣＨＥ ＵＮＬＯＣＫ（ｂａｓｅ，ｓｉｚｅ）

ＨＡＬ ＸＣＡＣＨＥ ＵＮＬＯＣＫ ＡＬＬ（）

这些宏用于改变Ｃａｃｈｅ状态。

ＨＡＬ ＸＣＡＣＨＥ ＥＮＡＢＬＥ（）使能Ｃａｃｈｅ，ＨＡＬ ＸＣＡＣＨＥ ＤＩＳＡＢＬＥ（）关闭Ｃａｃｈｅ。

ＨＡＬ ＸＣＡＣＨＥ ＩＮＶＡＬＩＤＡＴＥ ＡＬＬ（）对整个Ｃａｃｈｅ进行失效操作。有些硬件可能要
求在进行失效操作时关闭Ｃａｃｈｅ，在这种情况下，应该使用ＨＡＬ ＸＣＡＣＨＥ ＩＳ ＥＮＡＢＬＥＤ
（）来保存和恢复前面的Ｃａｃｈｅ状态。在ＨＡＬ ＸＣＡＣＨＥ ＳＹＮＣ（）之后如果使用该宏清

Ｃａｃｈｅ（把脏数据写回内存后失效Ｃａｃｈｅ），则必须在这两个宏之间禁止中断。下面是其使用例
子：

．．．
ＨＡＬ ＤＩＳＡＢＬＥ ＩＮＴＥＲＲＵＰＴＳ（ｏｌｄ）；

ＨＡＬ ＸＣＡＣＨＥ ＳＹＮＣ（）；

ＨＡＬ ＸＣＡＣＨＥ ＩＮＶＡＬＩＤＡＴＥ ＡＬＬ（）；

ＨＡＬ ＲＥＳＴＯＲＥ ＩＮＴＥＲＲＵＰＴＳ（ｏｌｄ）；

．．．

由于这种操作占用时间较长，对系统的实时性具有一定的影响，因此只有在必需的情况下

才进行这种操作，而且这种延时不得对驱动程序和应用程序的操作有影响。

ＨＡＬ ＸＣＡＣＨＥ ＳＹＮＣ（）使Ｃａｃｈｅ内容与内存同步。在某些系统中，它等同于ＨＡＬ
ＸＣＡＣＨＥ ＩＮＶＡＬＩＤＡＴＥ ＡＬＬ（）。
在某些系统中，Ｃａｃｈｅ和内存之间可能采用ｂｕｒｓｔ方式进行数据传输，ＨＡＬ ＸＣＡＣＨＥ

ＢＵＲＳＴ ＳＩＺＥ（）用于对这种ｂｕｒｓｔ方式的数据大小进行控制。该宏只有在Ｃａｃｈｅ具有ｂｕｒｓｔ
功能时才实现。

ＨＡＬ ＤＣＡＣＨＥ ＷＲＩＴＥ ＭＯＤＥ（）对数据Ｃａｃｈｅ行写回内存的方式进行控制。典型的
方式有ＨＡＬ ＤＣＡＣＨＥ ＷＲＩＴＥＢＡＣＫ ＭＯＤＥ（写回）和ＨＡＬ ＤＣＡＣＨＥ ＷＲＩＴＥＴＨＲＵ
ＭＯＤＥ（写穿透）等。只有在具有这种功能的条件下才实现该宏。

ＨＡＬ ＸＣＡＣＨＥ ＬＯＣＫ（）将数据锁定在Ｃａｃｈｅ内。参数ｂａｓｅ和ｓｉｚｅ指定数据被锁的内
存区。一次能否锁定多个内存区以及这种锁定是否会终止其他内存区域的Ｃａｃｈｅ操作都与具

０６２

体的体系结构相关。只有在具有这种功能的条件下才实现该宏。

ＨＡＬ ＸＣＡＣＨＥ ＵＮＬＯＣＫ（）取消对指定内存区域的锁定。只有在具有这种功能的条
件下才实现该宏。

ＨＡＬ ＸＣＡＣＨＥ ＵＮＬＯＣＫ ＡＬＬ（）取消所有对内存区域的锁定。在某些体系结构中，
有可能把它当成Ｃａｃｈｅ初始化时需要完成的一种操作。只有在具有这种功能的条件下才实现
该宏。

（３）Ｃａｃｈｅ行控制。

ＨＡＬ ＤＣＡＣＨＥ ＡＬＬＯＣＡＴＥ（ｂａｓｅ，ｓｉｚｅ）

ＨＡＬ ＤＣＡＣＨＥ ＦＬＵＳＨ（ｂａｓｅ，ｓｉｚｅ）

ＨＡＬ ＸＣＡＣＨＥ ＩＮＶＡＬＩＤＡＴＥ（ｂａｓｅ，ｓｉｚｅ）

ＨＡＬ ＤＣＡＣＨＥ ＳＴＯＲＥ（ｂａｓｅ，ｓｉｚｅ）

ＨＡＬ ＤＣＡＣＨＥ ＲＥＡＤ ＨＩＮＴ（ｂａｓｅ，ｓｉｚｅ）

ＨＡＬ ＤＣＡＣＨＥ ＷＲＩＴＥ ＨＩＮＴ（ｂａｓｅ，ｓｉｚｅ）

ＨＡＬ ＤＣＡＣＨＥ ＺＥＲＯ（ｂａｓｅ，ｓｉｚｅ）

这些宏对所有与参数ｂａｓｅ和ｓｉｚｅ指定的内存区相匹配的Ｃａｃｈｅ行进行某种Ｃａｃｈｅ操作。
只有在具有这种功能的条件下才实现该宏。这些宏并不一定只对这些指定的区域进行操作，

在某些系统中可能是对整个Ｃａｃｈｅ进行操作。

ＨＡＬ ＤＣＡＣＨＥ ＡＬＬＯＣＡＴＥ（）将Ｃａｃｈｅ行分配给指定的内存区，但不从内存读数据，
因此Ｃａｃｈｅ行的内容是不确定的。可用于内存块的复制。

ＨＡＬ ＤＣＡＣＨＥ ＦＬＵＳＨ（）在脏数据行写回内存后失效指定范围的所有Ｃａｃｈｅ行。

ＨＡＬ ＸＣＡＣＨＥ ＩＮＶＡＬＩＤＡＴＥ（）失效所有指定范围内的Ｃａｃｈｅ行。脏数据被失效但
不写回内存。

ＨＡＬ ＤＣＡＣＨＥ ＳＴＯＲＥ（）将指定区域内的所有脏数据行写入内存，但不失效Ｃａｃｈｅ
行。

ＨＡＬ ＤＣＡＣＨＥ ＲＥＡＤ ＨＩＮＴ（）提示指定区域的Ｃａｃｈｅ即将被读。它有可能引起指定
区域的内存进入Ｃａｃｈｅ。

ＨＡＬ ＤＣＡＣＨＥ ＷＲＩＴＥ ＨＩＮＴ（）提示指定区域的Ｃａｃｈｅ即将被写。

ＨＡＬ ＤＣＡＣＨＥ ＺＥＲＯ（）对指定区域分配Ｃａｃｈｅ行并清０，但不读内存。可用于大块内
存的清操作。

１１３６ ＳＭＰ支持

ｅＣｏｓ对ＳＭＰ提供有限的支持，这些支持只适用于某些体系结构和平台。它对ＳＭＰ目标
系统硬件有下面的限制条件：

① 适度多处理：系统支持的ＣＰＵ个数通常为两个到四个，最多不超过八个。

②ＳＭＰ同步支持：硬件必须提供一种机制允许运行在两个ＣＰＵ上的软件进行同步。例
如，可以提供这样一些指令：ｔｅｓｔａｎｄｓｅｔ、ｃｏｍｐａｒｅａｎｄｓｗａｐ、ｌｏａｄ ｌｉｎｋ／ｓｔｏｒｅｃｏｎｄｉｔｉｏｎａｌ等。
另一种方法是提供硬件信号寄存器来实现这些操作的串行化。这些硬件功能用于实现ｅＣｏｓ
的ｓｐｉｎｌｏｃｋ。

③Ｃａｃｈｅ一致性：由硬件实现Ｃａｃｈｅ一致性，软件在访问共享内存时不需做更多的Ｃａｃｈｅ
１６２

一致性工作。

④ 统一编址：所有ＣＰＵ对共享内存的访问使用相同的地址。

⑤ 统一设备编址：所有ＣＰＵ都可以平等访问所有的设备。

⑥ 中断路由：硬件平台必须提供一个能将中断路由到指定ＣＰＵ的中断控制器。可以将
所有中断路由到一个ＣＰＵ，或者将某些中断路由到指定的一些ＣＰＵ。ｅＣｏｓ目前不支持动态
路由，也不支持同时将所有中断路由到所有ＣＰＵ。

⑦ 机间中断：必须提供一个机间中断机制，允许一个ＣＰＵ中断另一个ＣＰＵ。ＣＰＵ的ＩＤ
号通常由ＣＰＵ状态寄存器提供，或者由机间中断机制提供。ＣＰＵ的ＩＤ应该是简单的一个小
的正整数。

硬件抽象层提供了一些操作用于支持ＳＭＰ系统。这些对ＳＭＰ的支持位于头文件ｃｙｇ／

ｈａｌ／ｈａｌ ｓｍｐ．ｈ内。变体抽象层和平台抽象层的一些专用定义分别位于头文件ｃｙｇ／ｈａｌ／ｖａｒ
ｓｍｐ．ｈ和ｃｙｇ／ｈａｌ／ｐｌｆ ｓｍｐ．ｈ内。硬件抽象层对ＳＭＰ的支持包括下述几个方面：
（１）ＣＰＵ控制。
硬件抽象层提供了一些对ＳＭＰ系统中的ＣＰＵ进行描述和管理的宏定义。它们分别是：

ＨＡＬ ＳＭＰ ＣＰＵ ＴＹＰＥ

ＣＰＵＩＤ的类型定义。ＣＰＵＩＤ是一个小的正整数，常用于对某些基于每个ＣＰＵ的数组
变量进行管理。

ＨＡＬ ＳＭＰ ＣＰＵ ＭＡＸ

系统支持的最大ＣＰＵ数目。

ＨＡＬ ＳＭＰ ＣＰＵ ＣＯＵＮＴ（）

返回当前正在运行的ＣＰＵ个数。

ＨＡＬ ＳＭＰ ＣＰＵ ＴＨＩＳ（）

返回当前ＣＰＵ的ＩＤ号。

ＨＡＬ ＳＭＰ ＣＰＵ ＮＯＮＥ

一个不是实际ＣＰＵＩＤ的值。用在ＣＰＵ类型变量必须是空值的地方。

ＨＡＬ ＳＭＰ ＣＰＵ ＳＴＡＲＴ（ｃｐｕ）

启动指定ＣＰＵ在ＨＡＬ的入口点处开始执行。在完成硬件抽象层内的初始化操作后，

ＣＰＵ进入内核启动点ｃｙｇ ｋｅｒｎｅｌ ｃｐｕ ｓｔａｒｔｕｐ（）。

ＨＡＬ ＳＭＰ ＣＰＵ ＲＥＳＣＨＥＤＵＬＥ ＩＮＴＥＲＲＵＰＴ（ｃｐｕ，ｗａｉｔ）

给ＣＰＵ发送一个重新调度（ｒｅｓｃｈｅｄｕｌｅ）的中断。如果ｗａｉｔ为非０值，则等待应答。响应
该中断的ＣＰＵ将在其滞后服务程序ＤＳＲ中调用函数ｃｙｇ ｓｃｈｅｄｕｌｅｒ ｓｅｔ ｎｅｅｄ ｒｅｓｃｈｅｄｕｌｅ
（）来启动重新调度。

ＨＡＬ ＳＭＰ ＣＰＵ ＴＩＭＥＳＬＩＣＥ ＩＮＴＥＲＲＵＰＴ（ｃｐｕ，ｗａｉｔ）

给ＣＰＵ发送时间片（ｔｉｍｅｓｌｉｃｅ）中断。如果ｗａｉｔ为非０值，则等待应答。响应该中断的

２６２

ＣＰＵ将调用ｃｙｇ ｓｃｈｅｄｕｌｅｒ ｔｉｍｅｓｌｉｃｅ ｃｐｕ（）函数处理时间片事件。
（２）ｔｅｓｔａｎｄｓｅｔ支持。

ｔｅｓｔａｎｄｓｅｔ是ＳＭＰ同步机制的基础，它具有下述宏定义：

ＨＡＬ ＴＡＳ ＴＹＰＥ

所有ｔｅｓｔａｎｄｓｅｔ变量的类型定义。ｔｅｓｔａｎｄｓｅｔ宏只支持一位操作，通常是ＨＡＬ ＴＡＳ
ＴＹＰＥ的最低有效位。

ＨＡＬ ＴＡＳ ＳＥＴ（ｔａｓ，ｏｌｄｂ）

在ｔａｓ位置形成一个测试和设置操作。如果该位置已经被设置，则由ｏｌｄｂ返回ｔｒｕｅ，否则
返回ｆａｌｓｅ。

ＨＡＬ ＴＡＳ ＣＬＥＡＲ（ｔａｓ，ｏｌｄｂ）

在ｔａｓ位置形成测试和清操作。如果该位置已经被设置，则由ｏｌｄｂ返回ｔｒｕｅ，如果它被清
则由ｏｌｄｂ返回ｆａｌｓｅ。
（３）Ｓｐｉｎｌｏｃｋ。

Ｓｐｉｎｌｏｃｋ为ＣＰＵ之间提供一种锁机制。它通常实现在ｔｅｓｔａｎｄｓｅｔ机制基础之上，但有时
也可以通过其他方法实现，比如由硬件直接提供Ｓｐｉｎｌｏｃｋ支持。ＨＡＬ提供了下述用于Ｓｐｉｎ
ｌｏｃｋ的数据类型、值和函数的宏定义：

ＨＡＬ ＳＰＩＮＬＯＣＫ ＴＹＰＥ

Ｓｐｌｉｎｌｏｃｋ变量类型。

ＨＡＬ ＳＰＩＮＬＯＣＫ ＩＮＩＴ ＣＬＥＡＲ

初始化Ｓｐｉｎｌｏｃｋ清操作的值。

ＨＡＬ ＳＰＩＮＬＯＣＫ ＩＮＩＴ ＳＥＴ

初始化Ｓｐｉｎｌｏｃｋ所设置的值。

ＨＡＬ ＳＰＩＮＬＯＣＫ ＳＰＩＮ（ｌｏｃｋ）

调用者处于忙循环状态等待清ｌｏｃｋ。当ｌｏｃｋ被清后，它对ｌｏｃｋ进行设置并跳出循环继续
执行。这种处理是自动进行的，ＣＰＵ之间不会出现空转情况。

ＨＡＬ ＳＰＩＮＬＯＣＫ ＣＬＥＡＲ（ｌｏｃｋ）

调用者清ｌｏｃｋ。等待该ｌｏｃｋ的所有ＣＰＵ中的一个ＣＰＵ将跳出等待状态。

ＨＡＬ ＳＰＩＮＬＯＣＫ ＴＲＹ（ｌｏｃｋ，ｖａｌ）

尝试对ｌｏｃｋ进行设置。如果对ｌｏｃｋ的声称成功，则将ｖａｌ设置为ｔｒｕｅ，否则为ｆａｌｓｅ。

ＨＡＬ ＳＰＩＮＬＯＣＫ ＴＥＳＴ（ｌｏｃｋ，ｖａｌ）

对ｌｏｃｋ的当前值进行测试。如果ｌｏｃｋ可以被声称，则将ｖａｌ设置为ｔｒｕｅ，如果ｌｏｃｋ处于清
状态则ｖａｌ设置为ｆａｌｓｅ。

３６２

（４）调度锁（ＳｃｈｅｄｕｌｅｒＬｏｃｋ）。
调度锁是所有内核数据结构的一个主要保护措施。在默认情况下，内核自己使用一个

Ｓｐｉｎｌｏｃｋ来实现调度锁。如果硬件不支持Ｓｐｉｎｌｏｃｋ或者有其他更为有效的实现方法，则可以
由ＨＡＬ提供一些宏来实现调度锁。这些宏包括：

ＨＡＬ ＳＭＰ ＳＣＨＥＤＬＯＣＫ ＤＡＴＡ ＴＹＰＥ

数据类型（可能是一个结构体）宏定义，它包含实现调度锁所需要的任何数据。Ｃｙｇ
Ｓｃｈｅｄｕｌｅｒ ＳｃｈｅｄＬｏｃｋ类的静态成员是这种类型的一个变量例子。下面介绍的每个宏都要用
到它。

ＨＡＬ ＳＭＰ ＳＣＨＥＤＬＯＣＫ ＩＮＩＴ（ｌｏｃｋ，ｄａｔａ）

初始化调度锁。参数ｌｏｃｋ是调度锁计数器，参数ｄａｔａ是一个ＨＡＬ ＳＭＰ ＳＣＨＥＤＬＯＣＫ
ＤＡＴＡ ＴＹＰＥ类型的变量。

ＨＡＬ ＳＭＰ ＳＣＨＥＤＬＯＣＫ ＩＮＣ（ｌｏｃｋ，ｄａｔａ）

调度锁ｌｏｃｋ加１。引起调度锁ｌｏｃｋ从０加到１的ＣＰＵ将处于等待状态直到另一个ＣＰＵ
将其清０。调度锁ｌｏｃｋ从１以后的加１操作的时间开销较小，因为ＣＰＵ已经拥有了该锁。

ＨＡＬ ＳＭＰ ＳＣＨＥＤＬＯＣＫ ＺＥＲＯ（ｌｏｃｋ，ｄａｔａ）

调度锁ｌｏｃｋ清０。该操作将清调度锁ｌｏｃｋ，使其他ＣＰＵ可以对ｌｏｃｋ进行声称。

ＨＡＬ ＳＭＰ ＳＣＨＥＤＬＯＣＫ ＳＥＴ（ｌｏｃｋ，ｄａｔａ，ｎｅｗ）

将调度锁ｌｏｃｋ设置一个不同的值ｎｅｗ。只有在已经知道当前ＣＰＵ拥有该ｌｏｃｋ的时候才
可以调用此宏。不能使用此宏对ｌｏｃｋ清０或将ｌｏｃｋ从０加到１。
（５）中断路由。

ＳＭＰ系统需要将中断分配给指定的ＣＰＵ进行处理，硬件抽象层为此提供了一些中断路
由的宏定义。ｈａｌｉｎｔｒ．ｈ提供两个接口支持用于将中断路由到不同的ＣＰＵ。一旦中断被路
由到一个新的ＣＰＵ，中断屏蔽和配置操作应考虑到ＣＰＵ的中断路由。例如，如果这些屏蔽和
配置操作没有被目的ＣＰＵ所调用，就有可能要求ＨＡＬ将这些操作转换到目的ＣＰＵ。这两个
宏定义分别是：

ＨＡＬ ＩＮＴＥＲＲＵＰＴ ＳＥＴ ＣＰＵ（ｖｅｃｔｏｒ，ｃｐｕ）

将ｖｅｃｔｏｒ指定的中断路由到参数ｃｐｕ指定的ＣＰＵ。

ＨＡＬ ＩＮＴＥＲＲＵＰＴ ＧＥＴ ＣＰＵ（ｖｅｃｔｏｒ，ｃｐｕ）

获取中断ｖｅｃｔｏｒ路由目的ＣＰＵ的ＩＤ号，ＩＤ号由参数ｃｐｕ带回。

１１３７ 诊断支持

硬件抽象层提供对低级诊断ＩＯ操作的支持。这些诊断操作在开发新目标系统的早期过
程中非常有效。在早期开发过程中，通常使用一个ＵＡＲＴ和其他串行ＩＯ设备作为调试端口，
也可以使用带输出通道的模拟器、ＲＯＭ模拟器、ＬＣＤ等等输出设备。硬件抽象层对这些调试

４６２

用ＩＯ设备提供了相应的函数支持。这些函数包括：

ＨＡＬ ＤＩＡＧ ＩＮＩＴ（）

对输出诊断信息的设备进行初始化。对于ＵＡＲＴ，这种初始化包括对波特率、停止位、奇
偶位等参数的设置。对其他的设备可能要对相应的控制器进行初始化，或者建立与远程设备

的连接。

ＨＡＬ ＤＩＡＧ ＷＲＩＴＥ ＣＨＡＲ（ｃ）

对诊断输出设备写一个字符。

ＨＡＬ ＤＩＡＧ ＲＥＡＤ ＣＨＡＲ（ｃ）

从诊断设备读取一个字符。该函数不一定支持所有的诊断设备。

头文件ｃｙｇ／ｈａｌ／ｈａｌ ｄｉａｇ．ｈ对这些宏进行了定义，一般位于变体抽象层和平台抽象层内。

１１３８ 链接脚本

ｅＣｏｓ应用程序在进行编译链接时要受到链接脚本的控制。链接脚本定义了程序代码和
数据在内存区域中的内存地址和大小，并对编译器所产生的各种区段进行分配。

对应用程序进行链接时，实际使用的链接脚本是位于安装目录ｉｎｓｔａｌｌ的ｌｉｂ／ｔａｒｇｅｔ．ｌｄ文
件。它的产生来源于两个文件：一个基本链接脚本文件和一个由内存布局工具产生的．ｌｄｉ文
件。基本链接脚本文件通常由体系结构抽象层或变体抽象层提供，它由一组以Ｃ预处理宏形
式表示的链接脚本段组成，这些脚本段对链接操作所产生的主要输出段（ｓｅｃｔｉｏｎ）进行定义。
基本链接脚本文件中包含了一个．ｌｄｉ文件，该文件使用基本链接脚本文件中的宏定义给这些
输出段分配所需的内存区和链接地址。

．ｌｄｉ文件由平台抽象层提供，它包含了目标平台的内存布局信息。这些文件的名称一般
都符合标准命名约定，具有如下格式：

ｐｋｇｃｏｎｆ／ｍｌｔ ＜ａｒｃｈｉｔｅｃｔｕｒｅ＞ ＜ｖａｒｉａｎｔ＞ ＜ｐｌａｔｆｏｒｍ＞ ＜ｓｔａｒｔｕｐ＞．ｌｄｉ

其中＜ａｒｃｈｉｔｅｃｔｕｒｅ＞、＜ｖａｒｉａｎｔ＞和＜ｐｌａｔｆｏｒｍ＞是相应的ＨＡＬ名字。＜ｓｔａｒｔｕｐ＞是启动
类型，通常是ＲＯＭ、ＲＡＭ或ＲＯＭＲＡＭ。
除了．ｌｄｉ文件外，还有一些．ｈ文件可以被应用程序用来访问．ｌｄｉ文件中的信息。它包含

了内存布局信息和用户自定义的一些信息，如堆空间、ＰＣＩ总线内存访问窗口等。

．ｌｄｉ文件由内存布局工具ＭＬＴ生成。ＭＬＴ将内存配置信息保存到平台抽象层中的一个
具有下述名字格式的文件内：

ｉｎｃｌｕｄｅ／ｐｋｇｃｏｎｆ／ｍｌｔ ＜ａｒｃｈｉｔｅｃｔｕｒｅ＞ ＜ｖａｒｉａｎｔ＞ ＜ｐｌａｔｆｏｒｍ＞ ＜ｓｔａｒｔｕｐ＞．ｍｌｔ

ＭＴＬ工具使用该文件生成．ｌｄｉ文件和．ｈ文件。如果直接修改了这两个文件，再次运行

ＭＴＬ时重新生成的文件将覆盖所作的修改。ｐｋｇｃｏｎｆ／ｓｙｓｔｅｍ．ｈ中的宏定义对．ｌｄｉ和．ｈ文件
的名字进行了定义，分别为ＣＹＧＨＷＲ ＭＥＭＯＲＹ ＬＡＹＯＵＴ ＬＤＩ和ＣＹＧＨＷＲ ＭＥＭＯ
ＲＹ ＬＡＹＯＵＴ Ｈ。

５６２

１１４ 例外处理

前面介绍的硬件抽象层的大部分操作都是对硬件进行访问然后返回的操作。这一节将介

绍硬件抽象层对例外的处理，包括同步硬件陷阱和异步设备中断。对例外的处理首先是由

ＨＡＬ进行相应的处理，然后再将控制权交给ｅＣｏｓ或其应用。在ｅＣｏｓ完成对它的处理后，控制
权又交还给ＨＡＬ，并从例外发生处恢复正常的程序处理。
硬件抽象层的例外处理程序通常位于体系结构抽象层中的文件ｖｅｃｔｏｒ．ｓ文件内。ｖｅｃｔｏｒ．

ｓ通常包含了ｒｅｓｅｔ入口点，它对系统的启动进行处理。例外处理程序一般要完成的功能如下：

① 系统启动和初始化。

② 硬件例外的交付处理。

③ 同步例外的默认处理。

④ 异步中断的默认处理。

１１４１ ＨＡＬ的启动处理

系统启动时通常从复位向量处开始执行程序。硬件抽象层从复位向量开始就必须保证系

统能够正常运行，它负责建立程序执行环境，并最后调用应用程序的入口点函数。下面是系统

启动时复位向量处理程序所需要完成的工作。在某些系统配置中，有些工作是不需要的。

（１）对硬件进行初始化。这种初始化涉及到体系结构抽象层、变体抽象层以及平台抽象
层，可能要对多个子系统进行初始化。它们包括：

①ＣＰＵ寄存器初始化，最为重要的是要对ＣＰＵ的中断屏蔽进行设置，禁止中断。

② 如果使用了存储管理部件ＭＭＵ，则对其进行初始化。在许多系统中，只能通过ＭＭＵ
对某些地址范围的Ｃａｃｈｅ能力进行控制。另外，在访问ＲＡＭ和设备寄存器时需要通过ＭＭＵ
进行地址映射。为简单起见，这种映射应该尽可能地接近一对一的虚实转换方式。

③ 对存储控制器进行初始化设置，使ＲＡＭ、ＲＯＭ和Ｉ／Ｏ设备能够被访问。在此之前，

ＲＡＭ是不能访问的。如果是ＲＯＭＲＡＭ启动，此时可以将程序代码从ＲＯＭ搬移到ＲＡＭ，并
转到ＲＡＭ继续执行程序的其他部分。

④ 对总线桥及芯片进行初始化设置。在需要通过它们输出早期诊断信息的平台中这一
步工作特别重要。

⑤ 对诊断机制进行初始化。

⑥ 初始化浮点部件和其他的扩展部件，如ＳＩＭＤ（单指令多数据流）和多媒体部件。

⑦ 初始化中断控制器。初始化工作至少应该对其进行配置，屏蔽所有的中断。针对具体
硬件的实际需要，有可能要建立从中断控制器的向量表空间到ＣＰＵ的例外表空间的映射关
系。在主、从中断控制器之间也需要建立类似的映射关系。

⑧Ｃａｃｈｅ的禁止与初始化。在系统启动的最初阶段通常不要使能Ｃａｃｈｅ，但可能需要清

Ｃａｃｈｅ并对它们进行初始化，以便它们在后面的操作中可以被使能。

⑨ 初始化定时器、时钟。
上述这些初始化操作的执行顺序与具体平台结构有关，某些系统可能不需要其中的某些

部分。初始化工作的主要目的是使系统能够正常运行，并能够进行Ｃ函数的调用。难以用汇

６６２

编语言编写的更为复杂的初始化可以延缓到ｈａｌ ｖａｒｉａｎｔｉｎｉｔ（）函数或ｈａｌ ｐｌａｔｆｏｒｍ ｉｎｉｔ（）
函数执行完成后再进行。

（２）建立堆栈指针，使后续的初始化程序可以进行适当的过程调用。中断堆栈通常用于
此目的。

（３）对访问全局变量所需要的全局指针ＧＰ进行初始化，使后续初始化程序能够访问全
局变量。

（４）如果系统从ＲＯＭ启动，则将ＲＯＭ中的程序代码复制到ＲＡＭ。
（５）对．ｂｓｓ（未初始化数据段）清０。
（６）产生一个适合于Ｃ函数调用的栈结构。
（７）调用ｈａｌ ｖａｒｉａｎｔｉｎｉｔ（）函数和ｈａｌ ｐｌａｔｆｏｒｍ ｉｎｉｔ（）函数，对平台的其他部分进行初
始化。通常包括对中断控制器、ＰＣＩ总线桥、基本ＩＯ设备进行更详细的初始化，并对Ｃａｃｈｅ进
行使能。

（８）调用ｃｙｇ ｈａｌｉｎｖｏｋｅ ｃｏｎｓｔｒｕｃｔｏｒｓ（）函数运行静态构造程序。
（９）调用ｃｙｇ ｓｔａｒｔ（）函数，启动应用程序。如果ｃｙｇ ｓｔａｒｔ（）函数返回，则进入死循环。

１１４２ 同步例外与异步中断的处理

无论是同步例外还是异步中断，ＣＰＵ将所有的例外都交付给一组向量服务程序ＶＳＲ处
理。所有的例外都分别对应于一个例外向量，每一个例外向量都有一个服务程序对其进行处

理。由于体系结构的多样性，不可能采用一个通用的机制来对例外向量进行直接处理。ｅＣｏｓ
使用一种可移植的程序代码来对例外向量进行处理。对于不同体系结构的平台系统，只需对

与具体硬件相关的部分进行移植就可以使用ｅＣｏｓ提供的例外向量处理机制。

ｅＣｏｓ所采取的例外向量处理机制是在每一个硬件向量上都加有一小段跳转程序，该跳转
程序使用了一个表，通过该表间接跳转到相应的例外处理程序。这种例外处理程序称为向量

服务程序ＶＳＲ，该表称为ＶＳＲ表。跳转程序只进行最简单的例外识别处理，当知道所发生的
是哪一个例外时，就跳转到相应的ＶＳＲ。ＶＳＲ负责保存ＣＰＵ的状态，并采取相应的措施对例
外和中断进行处理。图１１２是ｅＣｏｓ的例外处理机制示意图。

图１１２ ｅＣｏｓ的例外处理机制

７６２

在默认情况下，大多数同步例外的ＶＳＲ表项都指向同一个默认的例外ＶＳＲ，该ＶＳＲ以一
种通用的方式对所有的例外进行处理。它简单地保存ＣＰＵ的状态，对ＣＰＵ状态进行一定的
改变后再调用ｃｙｇ ｈａｌ ｅｘｃｅｐｔｉｏｎ ｈａｎｄｌｅ（）函数进行进一步的处理。ｃｙｇ ｈａｌ ｅｘｃｅｐｔｉｏｎ
ｈａｎｄｌｅ（）函数然后再将例外交给其他一些处理程序，它的最终目的有两个：进入ＧＤＢ或者将
例外交给ｅＣｏｓ应用程序。具体进入到哪一个目的程序与具体配置有关，当ｅＣｏｓ包含有ＧＤＢ
ｓｔｕｂ程序时，例外将交给ＧＤＢ，否则的话，将交给ｅＣｏｓ应用程序进行处理。
如果ｅＣｏｓ应用程序是通过ＲｅｄＢｏｏｔ加载的，ＶＳＲ表项将指向ＲｅｄＢｏｏｔ的例外ＶＳＲ，此时

发生的例外将进入ＧＤＢ。如果ｅＣｏｓ应用程序要求自己对某个例外进行处理，则它必须将相应
的ＶＳＲ表项进行替换，使其指向它自己提供的ＶＳＲ服务程序。可以使用宏ＨＡＬ ＶＳＲ
ＳＥＴ ＴＯ ＥＣＯＳ ＨＡＮＤＬＥＲ（）来实现这种替换操作。
在默认情况下，大多数的异步中断向量都将指向同一个默认的中断ＶＳＲ进行处理。中断

ＶＳＲ对从中断控制器来的中断进行译码，并调用相应的中断服务程序ＩＳＲ进行处理。如果要
求与内核进行交互以及允许中断引起线程的抢先，则这种默认的中断ＶＳＲ必须实现相当多的
功能。为支持这种ＶＳＲ，需要使用ＩＳＲ向量表。每一个有效的中断向量都具有三个指针与其
相对应，这三个指针分别是ＩＳＲ指针、数据指针和ＨＡＬ不可见的中断对象指针（内核所需）。
这三个指针可以合用一个表，也可以用三个独立的表来存放，具体采用哪种实现方式可根据具

体情况来决定。

中断ＶＳＲ按照顺序所需要完成的操作如下：

① 保存ＣＰＵ状态。在ｎｏｄｅｂｕｇ配置中，可以不保存ＣＰＵ的全部状态。在某些目标平台
中，可以使用配置选项ＣＹＧＤＢＧ ＨＡＬ ＣＯＭＭＯＮ ＩＮＴＥＲＲＵＰＴＳ ＳＡＶＥ ＭＩＮＩＭＵＭ
ＣＯＮＴＥＸＴ来实现这种最小状态的保存。

② 使内核调度锁加１。调度锁是Ｃｙｇ Ｓｃｈｅｄｕｌｅｒ类型的一个成员，为了使汇编程序可以
对其进行访问，它使用别名ｃｙｇ ｓｃｈｅｄｕｌｅｒ ｓｃｈｅｄ ｌｏｃｋ。

③ 中断堆栈的处理。这是一个可选的操作，由配置选项ＣＹＧＩＭＰ ＨＡＬ ＣＯＭＭＯＮ
ＩＮＴＥＲＲＵＰＴＳ ＵＳＥ ＩＮＴＥＲＲＵＰＴ ＳＴＡＣＫ来决定是否进行这种处理。

④ 对中断控制器递交的外部中断进行译码，产生ＩＳＲ向量号。

⑤ 重新使能中断，允许中断嵌套，允许更高优先级的中断产生。

⑥ 根据ＩＳＲ向量号从ＩＳＲ向量表中找回ＩＳＲ指针和数据指针。

⑦ 建立Ｃ调用栈结构。包括栈空间、参数、返回指针等。

⑧ 调用ＩＳＲ，将向量号和数据指针传递给ＩＳＲ。在调用过程中将保存向量号和状态保存
区的指针。

⑨ 如果是非嵌套的中断并且使用一个单独的中断堆栈，则切换到被中断的线程的堆栈。

⑩ 用保存的ＩＳＲ向量号从ＩＳＲ向量表中获得中断对象指针。

瑏瑡 调用ｉｎｔｅｒｒｕｐｔ ｅｎｄ（），将ＩＳＲ的返回值、中断对象指针和ＣＰＵ状态保存区指针传递给
它。该函数由内核实现，负责中断处理的结束工作。根据ＩＳＲ的返回值，它可能要求运行

ＤＳＲ，并将调度锁减１。如果调度锁被其归零，则将调用它所要求运行的ＤＳＲ，这时又有可能
引起线程上下文切换的产生。

瑏瑢ｉｎｔｅｒｒｕｐｔ ｅｎｄ（）函数 可能在其被调用之后的一段时间后返回。在此期间可能执行其
他的线程。根据具体体系结构的要求，可能需要再一次禁止中断。

８６２

上述操作的详细步骤根据体系结构的不同而可能有轻微的区别，特别是中断使能和中断

禁止的时机。

１１５ 虚拟向量

一些平台本身就具有通过ＣｙｇＭｏｎ进行调试的能力，但有些体系结构的平台（如Ｐｏｗｅｒ
ＰＣ、ＡＲＭ、ＳＨ等）只有在具有ＧＤＢｓｔｕｂ时才支持这种调试功能。ｅＣｏｓ通过提供一个ＲＯＭ／

ＲＡＭ调用接口可以使所有的平台都具有这种调试功能，这种调用接口就是虚拟向量（Ｖｉｒｔｕａｌ
Ｖｅｃｔｏｒ）。
虚拟向量是一个位于目标系统静态内存空间的表格，它包含６４个向量，每一个向量都指

向相应的服务程序。基于ＲＯＭ和ＲＡＭ的启动配置都可以访问虚拟向量。虚拟向量的使用
使得ＲＯＭ启动配置所提供的服务也可以被ＲＡＭ启动配置中的应用所使用。如果没有虚拟
向量，基于ＲＡＭ和ＲＯＭ启动配置的应用是不可能共同使用这些服务的。由于这两种配置都
被单独编译和链接，它们具有不同的名字空间，因此不能进行相互间的直接调用。虚拟向量所

指向的服务可以实现于ＲＯＭ监控程序，也可以实现于ＲＡＭ应用程序，而且在运行时可以在
它们之间进行切换。通过将向量指向一个虚构函数的方法可以禁止这种服务。

公共硬件抽象层内的ｈａｌｉｆ．ｈ文件对所有可用的服务进行了定义，它和ｈａｌｉｆ．ｃ文件提
供了虚拟向量服务的调用接口ＡＰＩ。这些ＡＰＩ提供了一组服务，不同平台或同一平台中不同
版本的ＲＯＭ监控程序所实现的服务可能有多有少，虚拟向量表中不支持的服务应该映射到
一个ＮＯＰ（空）服务，ＮＯＰ服务在被调用时将返回０（即ＦＡＬＳＥ）。
虚拟向量提供的服务有：

ＶＥＲＳＩＯＮ

虚拟向量表的版本，用于检查虚拟向量表提供支持的程度。

ＫＩＬＬ ＶＥＣＴＯＲ

该向量定义了一个当系统收到一个ｋｉｌｌ信号时调用的函数。

ＣＯＮＳＯＬＥ ＰＲＯＣＳ

控制台ＩＯ使用的通信程序表。

ＤＥＢＵＧ ＰＲＯＣＳ

调试器使用的通信程序表。

ＦＬＵＳＨ ＤＣＡＣＨＥ

Ｆｌｕｓｈ指定区域的数据Ｃａｃｈｅ。

ＦＬＵＳＨ ＩＣＡＣＨＥ

Ｆｌｕｓｈ（失效）指定区域的指令Ｃａｃｈｅ。

ＳＥＴ ＤＥＢＵＧ ＣＯＭＭ

９６２

改变ｄｅｂｕｇ通信通道。

ＳＥＴ ＣＯＮＳＯＬＥ ＣＯＭＭ

改变控制台通信通道。

ＤＢＧ ＳＹＳＣＡＬＬ

用于ＲＯＭ内的调试器函数和ＲＡＭ内的调试器函数之间通信的向量。ＲＡＭ配置的ｅ
Ｃｏｓ可以在此放置一个函数指针，ＲＯＭ监控程序使用该函数指针从运行在ＲＡＭ中的内核获
取相关线程信息。

ＲＥＳＥＴ

对系统进行复位。如果不能从软件复位系统，它将跳转至产生软复位的ＲＯＭ入口点。

ＣＯＮＳＯＬＥ ＩＮＴＥＲＲＵＰＴ ＦＬＡＧ

在处理控制台ＩＯ时，如果检测到一个ｄｅｂｕｇｅｒ中断，则对其进行设置。它允许在返回到

ＲＡＭ程序时还可以对断点进行处理。

ＤＥＬＡＹ ＵＳ

微秒级延时。

ＦＬＡＳＨ ＣＦＧ ＯＰ

用于访问保存在ＦＬＡＳＨ内存内的配置信息。

ＩＮＳＴＡＬＬ ＢＰＴ ＦＮ

在指定地址处设置断点。可用于异步断点的支持。

虚拟向量的使用既有其有利的一面，也有其不利的一面。在某些场合中，它利大于弊，而

在另一些场合中可能是弊大于利。在使用虚拟向量的时候，要根据具体情况进行取舍。

虚拟向量有利的方面包括：

① 可以在没有ｓｔｕｂ时进行调试。

② 可以使用任意通道开始调试工作。

③ 由于是ＲＯＭ监控程序提供相应的服务，因此应用程序映像更小。
虚拟向量的不利因素包括：

① 虚拟向量的使用增加了一个间接层，从而增加了应用程序代码量，降低了系统性能。

② 间接层增加了系统故障的可能性。如果虚拟向量表被破坏，将导致系统崩溃。

③ 间接层增加了硬件抽象层ＨＡＬ的复杂度。

１１６ ｅＣｏｓ的移植

ｅＣｏｓ的硬件抽象层在不同层次上对目标系统的平台硬件和ＣＰＵ体系结构的具体操作进
行了描述，这种层次结构使得ｅＣｏｓ可以很容易地移植到新的平台上。通过硬件抽象层的移
植，ｅＣｏｓ的核心功能（基本构架、内核、μＩＴＲＯＮ等等）能够运行在新的平台上。另外，新的平

０７２

台可能还需要一些平台专用的程序，如串口驱动程序、显示驱动程序、网络驱动程序等。

前面已经介绍了硬件抽象层的结构，它主要由三个方面组成，即平台抽象层、变体抽象层

和体系结构抽象层。ｅＣｏｓ的移植也将从这三个方面进行，分别为平台抽象层的移植、变体抽
象层的移植和体系结构抽象层的移植。下面分别对这三个方面的移植工作进行介绍。

１１６１ 平台抽象层的移植

在三种硬件抽象层的移植中，平台抽象层移植的工作量是最小的。平台抽象层主要包括

内存的布局、平台早期初始化程序、中断控制器以及简单串口驱动程序等等。在进行平台抽象

层移植的时候，要求已经完成了体系结构抽象层的移植和变体抽象层的移植。一般来说，在进

行ｅＣｏｓ开发时，移植的主要工作在于平台抽象层，ｅＣｏｓ的源码中通常已经包含了相应的体系
结构抽象层和变体抽象层。如果要采用当前ｅＣｏｓ源码不支持的一种新的ＣＰＵ体系结构，就
必须进行体系结构抽象层和变体抽象层的移植工作。

１平台抽象层的移植过程
对于一个新的平台系统，构造其硬件抽象层的最简单的方法是利用ｅＣｏｓ源码所提供的具

有相同体系结构和ＣＰＵ型号的参考平台硬件抽象层，将其作为模板，复制并修改所有与新平
台相关的文件。如果ｅＣｏｓ没有提供相应的体系结构或ＣＰＵ型号的硬件抽象层，则可以用另
外一种体系结构或ＣＰＵ型号的类似的硬件抽象层作为其模板。
（１）移植工作的开始。
进行平台硬件抽象层移植的最好途径是从ＲｅｄＢｏｏｔ开始，实现的第一个目标是使Ｒｅｄ

Ｂｏｏｔ能够在新平台上运行。ＲｅｄＢｏｏｔ比ｅＣｏｓ要简单，它没有使用中断和线程机制，但包含了
大部分最基本的启动所需要的功能。ＲｅｄＢｏｏｔ通常运行在Ｆｌａｓｈ或ＲＯＭ之外，提供程序加载
和调试功能。在进行ＨＡＬ的开发过程中，它允许使用ＲＡＭ启动的配置。开发过程可能需要
多次进行程序的加载操作，ＲＡＭ启动配置可以将程序直接加载到ＲＡＭ，而不需要对Ｆｌａｓｈ或

ＲＯＭ进行反复的更新和擦除。
实现这一目标有两种方法。一种方法是在平台开发板上配备有ＲＯＭ监控程序，可以用

其加载并启动运行ＥＬＦ、二进制、Ｓｒｅｃｏｒｄ或其他格式的映像文件。开发ＲｅｄＢｏｏｔ时，可以直
接加载并运行程序代码。如果可能的话，应该在平台上运行一个小的ｓｔｕｂ程序用于检查各种
硬件寄存器，这有助于平台初始化程序的编程和调试。当基于ＲＡＭ启动的ＲｅｄＢｏｏｔ可以正
常工作时，可以将其配置为ＲＯＭ启动方式并加载到Ｆｌａｓｈ或ＲＯＭ。如果条件允许，应该保留
最初的ＲＯＭ监控程序，在需要的时候可以重新使用它。
另外一种方法是在开发板不具备ＲＯＭ监控程序的情况下，首先必须对平台进行初始化

并使其能够运行一小段ｓｔｕｂ程序。这一过程可能需要反复多次对程序进行修改、测试和更新

Ｆｌａｓｈ或ＲＯＭ的操作。如果可能的话，最好使用一些相应的调试工具。将ＲｅｄＢｏｏｔ从ＲＡＭ
启动转到ＲＯＭ启动的最初阶段也可能需要使用这种方法。
（２）建造ＲｅｄＢｏｏｔ。
在进行移植之前，应该对目标系统硬件平台和ｅＣｏｓ源码对应的参考平台之间的差异进行

分析和了解。除了对目标系统硬件有足够的了解外，还应该通读一遍ｅＣｏｓ参考源码中的相应
部分。建立目标平台的ＲｅｄＢｏｏｔ通常按下列步骤进行：

１）从ｅＣｏｓ的源码中复制选定的平台硬件抽象层。根据实际需要对文件进行更名，ＣＤＬ
１７２

（组件定义）和ＭＬＴ（内存布局）相关的文件名应该使用＜ａｒｃｈ＞ ＜ｖａｒｉａｎｔ＞ ＜ｐｌａｔｆｏｒｍ＞的
组合形式。

２）调整ＣＤＬ选项。包括选项的名字、实时时钟／计数器、ＣＹＧＨＷＲ ＭＥＭＯＲＹ ＬＡＹ
ＯＵＴ变量以及其他的一些选项。检查与体系结构和ＣＰＵ型号相关的ＣＤＬ文件，如果在复制
的ＨＡＬ中没有它们所需要的ＣＤＬ选项，则增加相应的选项。

３）在顶层ｅｃｏｓ．ｄｂ文件中加入所需要的包，并增加对目标平台的描述。在最初的ｅｃｏｓ．ｄｂ
文件中，该目标平台的入口可以只包含ＨＡＬ包，其他硬件支持包将在以后陆续加入。

４）对ｉｎｃｌｕｄｅ／ｐｋｇｃｏｎｆ中的ＭＬＴ文件进行修改，使其符合目标平台的内存布局。在最初
的测试阶段，对相应的．ｈ和．ｌｄｉ文件进行手工编辑就可以满足要求，在开发工作进行到一定
阶段后，可以使用配置工具中的内存布局编辑器生成所有的文件。

５）针对所选择的启动类型，对ｍｉｓｃ／ｒｅｄｂｏｏｔ ＜ＳＴＡＲＴＵＰ＞．ｅｃｍ进行编辑。对平台专
用的选项进行改名，删除不需要的选项。

６）如果默认的ＩＯ宏定义不正确，则在ｐｌｔｉｏ．ｈ中对它们进行定义。

７）尽可能删除或注释掉使能Ｃａｃｈｅ和ＭＭＵ的代码。（在初期开发阶段，执行速度并不
重要）

８）实现简单的串口驱动程序（只使用查询方式）。ｅＣｏｓ提供的参考源码实现了其大部分
代码，只需要增加或修改与目标系统硬件访问相关的部分。

９）修改或增加平台初始化程序。如果是建造一个基于ＲＡＭ启动的ＲｅｄＢｏｏｔ，那么可以
使用开发板上的ＲＯＭ监控程序对开发板进行初始化，这一步工作可以延缓实现。

１０）定义ＨＡＬ ＳＴＵＢ ＰＬＡＴＦＯＲＭ ＲＥＳＥＴ和ＨＡＬ ＳＴＵＢ ＰＬＡＴＦＯＲＭ ＲＥＳＥＴ
ＥＮＴＲＹ宏，使ＲｅｄＢｏｏｔ可以进行软复位，不需要每一次加载ＲｅｄＢｏｏｔ都对开发板进行硬复
位操作。

上述工作完成后，接下来的工作就是对ＲｅｄＢｏｏｔ进行编译。以一个ＲＯＭ启动的ＲｅｄＢｏｏｔ
为例，可以通过下面的方法得到ＲｅｄＢｏｏｔ的映像文件：

＄ｅｃｏｓｃｏｎｆｉｇｎｅｗ＜ｔａｒｇｅｔ ｎａｍｅ＞ｒｅｄｂｏｏｔ
＄ｅｃｏｓｃｏｎｆｉｇｉｍｐｏｒｔ＄（ＥＣＯＳ ＲＥＰＯＳＩＴＯＲＹ）／ｈａｌ／＜ａｒｃｈｉｔｅｃｔｕｒｅ＞／

＜ｐｌａｔｆｏｒｍ＞／＜ｖｅｒｓｉｏｎ＞／ｍｉｓｃ／ｒｅｄｂｏｏｔ ＲＯＭ．ｅｃｍ
＄ｅｃｏｓｃｏｎｆｉｇｔｒｅｅ
＄ｍａｋｅ

一旦编译成功，可以增加更多的一些功能和变化。编译完成后生成的ＲｅｄＢｏｏｔ映像文件
位于ｉｎｓｔａｌｌ／ｂｉｎ目录内。通过ｏｂｊｃｏｐｙ命令可以将其转换为可以更新到Ｆｌａｓｈ或ＲＯＭ的适当
格式的映像文件。在将其更新到开发板后，复位并运行新的ＲｅｄＢｏｏｔ，在串口输出终端将出现
下述ＲｅｄＢｏｏｔ界面：

ＲｅｄＢｏｏｔ（ｔｍ）ｂｏｏｔｓｔｒａｐａｎｄｄｅｂｕｇｅｎｖｉｒｏｎｍｅｎｔ［ＲＯＭＲＡＭ］

Ｎｏｎｃｅｒｔｉｆｉｅｄｒｅｌｅａｓｅ，ｖｅｒｓｉｏｎＵＮＫＮＯＷＮｂｕｉｌｔ２３：０２：４１，Ｆｅｂ１８２００３
Ｐｌａｔｆｏｒｍ：＜ＰＬＡＴＦＯＲＭ＞（＜ＡＲＣＨＩＴＥＣＴＵＲＥ＞ ＜ＶＡＲＩＡＮＴ＞）

Ｃｏｐｙｒｉｇｈｔ（Ｃ）２０００，２００１，２００２，ＲｅｄＨａｔ，Ｉｎｃ．
ＲＡＭ：０ｘ０００００００００ｘ０１００００００，０ｘ０００２９３ｅ８０ｘ００ｅｄ１０００ａｖａｉｌａｂｌｅ
ＦＬＡＳＨ：０ｘ２４０００００００ｘ２６００００００，２５６ｂｌｏｃｋｓｏｆ０ｘ０００２００００ｂｙｔｅｓｅａｃｈ．

２７２

ＲｅｄＢｏｏｔ＞

（３）建造平台硬件抽象层。
完成上述步骤的工作之后，目标平台上已经可以运行一个基本的ＲｅｄＢｏｏｔ。这说明目标

平台已经能够正确地完成初始化操作，并且其串口驱动程序也能正常运行。下一步的工作是

对硬件抽象层进行补充，使其形成一个完整的平台硬件抽象层。可以按下面的步骤来完成这

一工作。

１）软复位的实现。前面已经提及到软复位的实现。当ＧＤＢ脱连时，ＧＤＢ将给ＲｅｄＢｏｏｔ
发送一个ｋｉｌｌ包，ＲｅｄＢｏｏｔ首先调用ＨＡＬ ＳＴＵＢ ＰＬＡＴＦＯＲＭ ＲＥＳＥＴ（），尝试进行软复位
操作。如果它不能引起复位，ＲｅｄＢｏｏｔ将跳转到ＨＡＬ ＳＴＵＢ ＰＬＡＴＦＯＲＭ ＲＥＳＥＴ ＥＮ
ＴＲＹ，这是ＣＰＵ在复位后执行程序的起始地址。在完成ｋｉｌｌ包所引起的复位后，目标系统将
再一次准备与ＧＤＢ进行连接。应该注意在使用ＧＤＢ的ｄｅｔａｃｈ命令进行脱连时，有可能不会
引起目标系统的复位。

２）单步、断点支持。在进行调试时，需要使用单步和断点操作。

３）使用实时时钟（ＲＴＣ）中断驱动ｅＣｏｓ的调度器时钟。许多嵌入式ＣＰＵ都具有一个内
部定时器或减计数器用于这种目的，这时将由体系结构抽象层或变体抽象层提供这种支持，平

台抽象层所需要做的工作是计算一个适当的值，让其对平台ＣＤＬ文件中的ＣＹＧＮＵＭ ＨＡＬ
ＲＴＣ ＣＯＮＳＴＡＮＴＳ进行定义。有些目标平台可能需要一个平台专用的时间源来驱动实时
时钟，这种情况下除了也要对ＣＤＬ定义给出一个适当的值外，还必须给ＨＡＬ ＣＬＯＣＫ
ＸＸＸＸ宏定义一个合适的版本。

４）中断的译码。在不同的平台中，由于设备数目和设备类型的不一致，中断的译码方式
也会不一致。应该在ｐｌｔｉｎｔｒ．ｈ文件中对体系结构抽象层或变体抽象层所定义的默认中断向
量进行扩充或替换。另外，还必须对ＨＡＬ ＩＮＴＥＲＲＵＰＴ ＸＸＸＸ的控制宏进行定义。

５）Ｃａｃｈｅ的定义和操作。不同体系结构和ＣＰＵ型号的Ｃａｃｈｅ可能是不一样的，Ｃａｃｈｅ的
大小与粒度可能也有区别。在一些支持多级Ｃａｃｈｅ的平台中，Ｃａｃｈｅ的差异更大。在使用

Ｃａｃｈｅ的系统中，在系统启动到一定阶段时要使能Ｃａｃｈｅ。在开发过程中，首先应该验证系统
在ＲＡＭ启动时的稳定性，然后再生成新的基于ＲＯＭ启动的ＲｅｄＢｏｏｔ，并测试Ｃａｃｈｅ的使能、
同步和Ｆｌｕｓｈ操作的正确性。

６）异步断点支持。使用异步断点可以停止应用程序的执行并进入ｄｅｂｕｇ进行调试工作。
通过上述步骤可以得到一个完整的平台硬件抽象层。此时可以运行ｅＣｏｓ源码提供的所

有测试程序来验证其稳定性和完整性。由于使用了ＲｅｄＢｏｏｔ，因此可以利用它对所有出现的
错误进行调试。

２平台硬件抽象层ＣＤＬ描述
平台ＣＤＬ包含了建立ｅＣｏｓ系统的一些详细信息和平台专用的配置选项。不同平台之间

的选项不完全相同。读者可以参阅第１２章并参考ｅＣｏｓ源码中的ＣＤＬ文件来了解如何使用

ＣＤＬ语言对各种配置选项的表述方法。这里只简单描述一些最普通的选项。
（１）ｅＣｏｓ数据库。

ｅＣｏｓ配置系统通过使用一个数据库文件ｅｃｏｓ．ｄｂ来了解它的包的信息。对于一个新的硬
件平台，必须在ｅｃｏｓ．ｄｂ中增加对该平台相应的包的描述，包括包的名字、说明、包的目录位置
和相应的ＣＤＬ文件。在配置工具选择该包时，配置工具中将会出现该包的名字和相应的描述

３７２

信息。以ＴＸ３９／ＪＭＲ３９０４平台为例，它的ＣＤＬ描述如下：

ｐａｃｋａｇｅＣＹＧＰＫＧ ＨＡＬ ＭＩＰＳ ＴＸ３９ ＪＭＲ３９０４｛

ａｌｉａｓ ｛″ＴｏｓｈｉｂａＪＭＲＴＸ３９０４ｂｏａｒｄ″ｈａｌｔｘ３９ ｊｍｒ３９０４ｔｘ３９ ｊｍｒ３９０４ ｈａｌ｝

ｄｉｒｅｃｔｏｒｙｈａｌ／ｍｉｐｓ／ｊｍｒ３９０４
ｓｃｒｉｐｔ ｈａｌ ｍｉｐｓ ｔｘ３９ ｊｍｒ３９０４．ｃｄｌ
ｈａｒｄｗａｒｅ
ｄｅｓｃｒｉｐｔｉｏｎ″

ＴｈｅＪＭＲ３９０４ＨＡＬｐａｃｋａｇｅｓｈｏｕｌｄｂｅｕｓｅｄｗｈｅｎｔａｒｇｅｔｔｉｎｇｔｈｅ
ａｃｔｕａｌｈａｒｄｗａｒｅ．Ｔｈｅｓａｍｅｐａｃｋａｇｅｃａｎａｌｓｏｂｅｕｓｅｄｗｈｅｎ
ｒｕｎｎｉｎｇｏｎｔｈｅｆｕｌｌｓｉｍｕｌａｔｏｒ，ｓｉｎｃｅｔｈｉｓｐｒｏｖｉｄｅｓａｎ
ａｃｃｕｒａｔｅｓｉｍｕｌａｔｉｏｎｏｆｔｈｅｈａｒｄｗａｒｅｉｎｃｌｕｄｉｎｇＩ／Ｏｄｅｖｉｃｅｓ．
Ｔｏｕｓｅｔｈｅｓｉｍｕｌａｔｏｒｉｎｔｈｉｓｍｏｄｅｔｈｅｃｏｍｍａｎｄ
′ｔａｒｇｅｔｓｉｍｂｏａｒｄ＝ｊｍｒ３９０４’ｓｈｏｕｌｄｂｅｕｓｅｄｆｒｏｍｉｎｓｉｄｅｇｄｂ．″

｝

为了对新平台所进行的配置进行编译和测试，在ｅｃｏｓ．ｄｂ文件中还应该包含一个ｔａｒｇｅｔ
项：

ｔａｒｇｅｔｊｍｒ３９０４｛

ａｌｉａｓ ｛″ＴｏｓｈｉｂａＪＭＲＴＸ３９０４ｂｏａｒｄ″ｊｍｒｔｘ３９｝

ｐａｃｋａｇｅｓ ｛ＣＹＧＰＫＧ ＨＡＬ ＭＩＰＳ
ＣＹＧＰＫＧ ＨＡＬ ＭＩＰＳ ＴＸ３９
ＣＹＧＰＫＧ ＨＡＬ ＭＩＰＳ ＴＸ３９ ＪＭＲ３９０４
ＣＹＧＰＫＧ ＩＯ ＳＥＲＩＡＬ ＴＸ３９ ＪＭＲ３９０４
｝

ｄｅｓｃｒｉｐｔｉｏｎ″Ｔｈｅｊｍｒ３９０４ｔａｒｇｅｔｐｒｏｖｉｄｅｓｔｈｅｐａｃｋａｇｅｓｎｅｅｄｅｄｔｏｒｕｎ
ｅＣｏｓｏｎａＴｏｓｈｉｂａＪＭＲＴＸ３９０４ｂｏａｒｄ．Ｔｈｉｓｔａｒｇｅｔｃａｎａｌｓｏ
ｂｅｕｓｅｄｗｈｅｎｒｕｎｎｉｎｇｉｎｔｈｅｆｕｌｌｓｉｍｕｌａｔｏｒ，ｓｉｎｃｅｔｈｅ
ｓｉｍｕｌａｔｏｒｐｒｏｖｉｄｅｓａｎａｃｃｕｒａｔｅｓｉｍｕｌａｔｉｏｎｏｆｔｈｅｈａｒｄｗａｒｅ
ｉｎｃｌｕｄｉｎｇＩ／Ｏｄｅｖｉｃｅｓ．Ｔｏｕｓｅｔｈｅｓｉｍｕｌａｔｏｒｉｎｔｈｉｓｍｏｄｅｔｈｅ
ｃｏｍｍａｎｄ′ｔａｒｇｅｔｓｉｍｂｏａｒｄ＝ｊｍｒ３９０４′ｓｈｏｕｌｄｂｅｕｓｅｄｆｒｏｍ
ｉｎｓｉｄｅｇｄｂ．″

｝

这里最重要的部分是ｐａｃｋａｇｅｓ段，它定义了用于支持该平台的各种硬件专用包。上面例
子中包含了ＭＩＰＳ体系结构包、ＴＸ３９ＣＰＵ型号包和ＪＭＲＴＸ３９４０平台包。其他包（如串口驱
动程序、网络驱动程序和Ｆｌａｓｈ内存驱动程序）也可以包含在此。
（２）ＣＤＬ文件。
平台的所有选项都包含在一个ＣＤＬ包内，该包的名字是ＣＹＧＰＫＧ ＨＡＬ ＜ａｒｃｈｉｔｅｃｔｕｒｅ

＞ ＜ｖａｒｉａｎｔ＞ ＜ｐｌａｔｆｏｒｍ＞。下面是其一个例子：

ｃｄｌｐａｃｋａｇｅＣＹＧＰＫＧ ＨＡＬ ＭＩＰＳ ＴＸ３９ ＪＭＲ３９０４｛

ｄｉｓｐｌａｙ ″ＪＭＲ３９０４ｅｖａｌｕａｔｉｏｎｂｏａｒｄ″
ｐａｒｅｎｔ ＣＹＧＰＫＧ ＨＡＬ ＭＩＰＳ

４７２

ｒｅｑｕｉｒｅｓ ＣＹＧＰＫＧ ＨＡＬ ＭＩＰＳ ＴＸ３９
ｄｅｆｉｎｅ ｈｅａｄｅｒｈａｌ ｍｉｐｓ ｔｘ３９ ｊｍｒ３９０４．ｈ
ｉｎｃｌｕｄｅ ｄｉｒ ｃｙｇ／ｈａｌ
ｄｅｓｃｒｉｐｔｉｏｎ ″

ＴｈｅＪＭＲ３９０４ＨＡＬｐａｃｋａｇｅｓｈｏｕｌｄｂｅｕｓｅｄｗｈｅｎｔａｒｇｅｔｉｎｇｔｈｅ
ａｃｔｕａｌｈａｒｄｗａｒｅ．Ｔｈｅｓａｍｅｐａｃｋａｇｅｃａｎａｌｓｏｂｅｕｓｅｄｗｈｅｎ
ｒｕｎｎｉｎｇｏｎｔｈｅｆｕｌｌｓｉｍｕｌａｔｏｒ，ｓｉｎｃｅｔｈｉｓｐｒｏｖｉｄｅｓａｎ
ａｃｃｕｒａｔｅｓｉｍｕｌａｔｉｏｎｏｆｔｈｅｈａｒｄｗａｒｅｉｎｃｌｕｄｉｎｇＩ／Ｏｄｅｖｉｃｅｓ．
Ｔｏｕｓｅｔｈｅｓｉｍｕｌａｔｏｒｉｎｔｈｉｓｍｏｄｅｔｈｅｃｏｍｍａｎｄ
′ｔａｒｇｅｔｓｉｍｂｏａｒｄ＝ｊｍｒ３９０４′ｓｈｏｕｌｄｂｅｕｓｅｄｆｒｏｍｉｎｓｉｄｅｇｄｂ．″

ｃｏｍｐｉｌｅ ｐｌａｔｆｏｒｍ．Ｓｐｌｆ ｍｉｓｃ．ｃｐｌｆ ｓｔｕｂ．ｃ
ｄｅｆｉｎｅ ｐｒｏｃ｛

ｐｕｔｓ＄：：ｃｄｌｓｙｓｔｅｍ ｈｅａｄｅｒ″＃ｄｅｆｉｎｅＣＹＧＢＬＤ ＨＡＬ ＴＡＲＧＥＴ Ｈ＼
＜ｐｋｇｃｏｎｆ／ｈａｌ ｍｉｐｓ ｔｘ３９．ｈ＞″

ｐｕｔｓ＄：：ｃｄｌｓｙｓｔｅｍ ｈｅａｄｅｒ″＃ｄｅｆｉｎｅＣＹＧＢＬＤ ＨＡＬ ＰＬＡＴＦＯＲＭ Ｈ＼
＜ｐｋｇｃｏｎｆ／ｈａｌ ｍｉｐｓ ｔｘ３９ ｊｍｒ３９０４．ｈ＞″
｝

．．．
｝

包中内容说明了该平台包属于ＭＩＰＳ包，需要ＴＸ３９的变体抽象层，所有的配置设置被保
存在ｃｙｇ／ｈａｌ／ｈａｌ ｍｉｐｓ ｔｘ３９ ｊｍｔ３９０４．ｈ内。其中的ｃｏｍｐｉｌｅ说明了当使能该包时需要被编
译的文件，ｄｅｆｉｎｅ ｐｒｏｃ定义了一些用于访问ＣＰＵ型号或体系结构和平台配置选项的宏。
（３）启动类型。

ｅＣｏｓ提供了一个配置选项来选择各种启动类型。启动类型通常有ＲＡＭ、ＲＯＭ、ＲＯＭ
ＲＡＭ、ＦＬＯＰＰＹ和Ｇｒｕｂ。启动类型的ＣＤＬ包例子如下：

ｃｄｌｃｏｍｐｏｎｅｎｔＣＹＧ ＨＡＬ ＳＴＡＲＴＵＰ｛

ｄｉｓｐｌａｙ ″Ｓｔａｒｔｕｐｔｙｐｅ″
ｆｌａｖｏｒ ｄａｔａ
ｌｅｇａｌ ｖａｌｕｅｓ ｛″ＲＡＭ″″ＲＯＭ″｝

ｄｅｆａｕｌｔ ｖａｌｕｅ｛″ＲＡＭ″｝

ｎｏ ｄｅｆｉｎｅ
ｄｅｆｉｎｅｆｉｌｅｓｙｓｔｅｍ．ｈＣＹＧ ＨＡＬ ＳＴＡＲＴＵＰ

ｄｅｓｃｒｉｐｔｉｏｎ ″
ＷｈｅｎｔａｒｇｅｔｉｎｇｔｈｅＪＭＲ３９０４ｂｏａｒｄｉｔｉｓｐｏｓｓｉｂｌｅｔｏｂｕｉｌｄ
ｔｈｅｓｙｓｔｅｍｆｏｒｅｉｔｈｅｒＲＡＭｂｏｏｔｓｔｒａｐ，ＲＯＭｂｏｏｔｓｔｒａｐ，ｏｒＳＴＵＢ
ｂｏｏｔｓｔｒａｐ．ＲＡＭｂｏｏｔｓｔｒａｐｇｅｎｅｒａｌｌｙｒｅｑｕｉｒｅｓｔｈａｔｔｈｅｂｏａｒｄ
ｉｓｅｑｕｉｐｐｅｄｗｉｔｈＲＯＭｓｃｏｎｔａｉｎｉｎｇａｓｕｉｔａｂｌｅＲＯＭｍｏｎｉｔｏｒｏｒ
ｅｑｕｉｖａｌｅｎｔｓｏｆｔｗａｒｅｔｈａｔａｌｌｏｗｓＧＤＢｔｏｄｏｗｎｌｏａｄｔｈｅｅＣｏｓ
ａｐｐｌｉｃａｔｉｏｎｏｎｔｏｔｈｅｂｏａｒｄ．ＴｈｅＲＯＭｂｏｏｔｓｔｒａｐｔｙｐｉｃａｌｌｙ
ｒｅｑｕｉｒｅｓｔｈａｔｔｈｅｅＣｏｓａｐｐｌｉｃａｔｉｏｎｂｅｂｌｏｗｎｉｎｔｏＥＰＲＯＭｓｏｒ
ｅｑｕｉｖａｌｅｎｔｔｅｃｈｎｏｌｏｇｙ．″

５７２

｝

上面例子中的ｎｏ ｄｅｆｉｎｅ和ｄｅｆｉｎｅ用于将文件ｓｙｓｔｅｍ．ｈ中出现的该选项的值替换头文件
中的默认值。

（４）编译选项。
在ＣＤＬ组件ＣＹＧＢＬＤ ＧＬＯＢＡＬ ＯＰＴＩＯＮＳ和ＣＹＧＨＷＲ ＭＥＭＯＲＹ ＬＡＹＯＵＴ下

有一组选项，这些选项指定了如何对ｅＣｏｓ进行编译，内容包括编译工具、编译选项、使用哪一
个链接器脚本段等。例如：

ｃｄｌｃｏｍｐｏｎｅｎｔＣＹＧＢＬＤ ＧＬＯＢＡＬ ＯＰＴＩＯＮＳ｛

ｄｉｓｐｌａｙ″Ｇｌｏｂａｌｂｕｉｌｄｏｐｔｉｏｎｓ″
ｆｌａｖｏｒｎｏｎｅ

ｐａｒｅｎｔＣＹＧＰＫＧ ＮＯＮＥ
ｄｅｓｃｒｉｐｔｉｏｎ″
Ｇｌｏｂａｌｂｕｉｌｄｏｐｔｉｏｎｓｉｎｃｌｕｄｉｎｇｃｏｎｔｒｏｌｏｖｅｒ
ｃｏｍｐｉｌｅｒｆｌａｇｓ，ｌｉｎｋｅｒｆｌａｇｓａｎｄｃｈｏｉｃｅｏｆｔｏｏｌｃｈａｉｎ．″
ｃｄｌ ｏｐｔｉｏｎＣＹＧＢＬＤ ＧＬＯＢＡＬ ＣＯＭＭＡＮＤ ＰＲＥＦＩＸ｛

ｄｉｓｐｌａｙ″Ｇｌｏｂａｌｃｏｍｍａｎｄｐｒｅｆｉｘ″
ｆｌａｖｏｒｄａｔａ
ｎｏ ｄｅｆｉｎｅ
ｄｅｆａｕｌｔ ｖａｌｕｅ｛″ｍｉｐｓｔｘ３９ｅｌｆ″｝

ｄｅｓｃｒｉｐｔｉｏｎ″
Ｔｈｉｓｏｐｔｉｏｎｓｐｅｃｉｆｉｅｓｔｈｅｃｏｍｍａｎｄｐｒｅｆｉｘｕｓｅｄｗｈｅｎ
ｉｎｖｏｋｉｎｇｔｈｅｂｕｉｌｄｔｏｏｌｓ．″

｝

ｃｄｌ ｏｐｔｉｏｎＣＹＧＢＬＤ ＧＬＯＢＡＬ ＣＦＬＡＧＳ｛

ｄｉｓｐｌａｙ″Ｇｌｏｂａｌｃｏｍｐｉｌｅｒｆｌａｇｓ″
ｆｌａｖｏｒｄａｔａ
ｎｏ ｄｅｆｉｎｅ
ｄｅｆａｕｌｔ ｖａｌｕｅ｛″ＷａｌｌＷｐｏｉｎｔｅｒａｒｉｔｈＷｓｔｒｉｃｔｐｒｏｔｏｔｙｐｅｓＷｉｎｌｉｎｅＷｕｎｄｅｆＷｏｖｅｒｌｏａｄｅｄ

ｖｉｒｔｕａｌｇＯ２ｆｆｕｎｃｔｉｏｎｓｅｃｔｉｏｎｓｆｄａｔａｓｅｃｔｉｏｎｓｆｎｏｒｔｔｉｆｎｏｅｘｃｅｐｔｉｏｎｓｆｖｔａｂｌｅｇｃｆｉｎｉｔｐｒｉｏｒｉｔｙ″｝

ｄｅｓｃｒｉｐｔｉｏｎ″
Ｔｈｉｓｏｐｔｉｏｎｃｏｎｔｒｏｌｓｔｈｅｇｌｏｂａｌｃｏｍｐｉｌｅｒｆｌａｇｓｗｈｉｃｈ
ａｒｅｕｓｅｄｔｏｃｏｍｐｉｌｅａｌｌｐａｃｋａｇｅｓｂｙ
ｄｅｆａｕｌｔ．Ｉｎｄｉｖｉｄｕａｌｐａｃｋａｇｅｓｍａｙｄｅｆｉｎｅ
ｏｐｔｉｏｎｓｗｈｉｃｈｏｖｅｒｒｉｄｅｔｈｅｓｅｇｌｏｂａｌｆｌａｇｓ．″

｝

ｃｄｌ ｏｐｔｉｏｎＣＹＧＢＬＤ ＧＬＯＢＡＬ ＬＤＦＬＡＧＳ｛

ｄｉｓｐｌａｙ″Ｇｌｏｂａｌｌｉｎｋｅｒｆｌａｇｓ″
ｆｌａｖｏｒｄａｔａ
ｎｏ ｄｅｆｉｎｅ
ｄｅｆａｕｌｔ ｖａｌｕｅ｛″ｇｎｏｓｔｄｌｉｂＷｌ，ｇｃｓｅｃｔｉｏｎｓＷｌ，ｓｔａｔｉｃ″｝

ｄｅｓｃｒｉｐｔｉｏｎ″

６７２

Ｔｈｉｓｏｐｔｉｏｎｃｏｎｔｒｏｌｓｔｈｅｇｌｏｂａｌｌｉｎｋｅｒｆｌａｇｓ．Ｉｎｄｉｖｉｄｕａｌ
ｐａｃｋａｇｅｓｍａｙｄｅｆｉｎｅｏｐｔｉｏｎｓｗｈｉｃｈｏｖｅｒｒｉｄｅｔｈｅｓｅｇｌｏｂａｌｆｌａｇｓ．″
｝

｝

ｃｄｌｃｏｍｐｏｎｅｎｔＣＹＧＨＷＲ ＭＥＭＯＲＹ ＬＡＹＯＵＴ｛

ｄｉｓｐｌａｙ″Ｍｅｍｏｒｙｌａｙｏｕｔ″
ｆｌａｖｏｒｄａｔａ
ｎｏ ｄｅｆｉｎｅ
ｃａｌｃｕｌａｔｅｄ｛ＣＹＧ ＨＡＬ ＳＴＡＲＴＵＰ＝＝″ＲＡＭ″？″ｍｉｐｓ ｔｘ３９ ｊｍｒ３９０４ ｒａｍ″：＼

″ｍｉｐｓ ｔｘ３９ ｊｍｒ３９０４ ｒｏｍ″｝

ｃｄｌ ｏｐｔｉｏｎＣＹＧＨＷＲ ＭＥＭＯＲＹ ＬＡＹＯＵＴ ＬＤＩ｛

ｄｉｓｐｌａｙ″Ｍｅｍｏｒｙｌａｙｏｕｔｌｉｎｋｅｒｓｃｒｉｐｔｆｒａｇｍｅｎｔ″
ｆｌａｖｏｒｄａｔａ
ｎｏ ｄｅｆｉｎｅ
ｄｅｆｉｎｅｆｉｌｅｓｙｓｔｅｍ．ｈＣＹＧＨＷＲ ＭＥＭＯＲＹ ＬＡＹＯＵＴ ＬＤＩ
ｃａｌｃｕｌａｔｅｄ ｛ＣＹＧ ＨＡＬ ＳＴＡＲＴＵＰ＝＝″ＲＡＭ″？＼

″＜ｐｋｇｃｏｎｆ／ｍｌｔ ｍｉｐｓ ｔｘ３９ ｊｍｒ３９０４ ｒａｍ．ｌｄｉ＞″：＼
″＜ｐｋｇｃｏｎｆ／ｍｌｔ ｍｉｐｓ ｔｘ３９ ｊｍｒ３９０４ ｒｏｍ．ｌｄｉ＞″｝

｝

ｃｄｌ ｏｐｔｉｏｎＣＹＧＨＷＲ ＭＥＭＯＲＹ ＬＡＹＯＵＴ Ｈ｛

ｄｉｓｐｌａｙ″Ｍｅｍｏｒｙｌａｙｏｕｔｈｅａｄｅｒｆｉｌｅ″
ｆｌａｖｏｒｄａｔａ
ｎｏ ｄｅｆｉｎｅ
ｄｅｆｉｎｅｆｉｌｅｓｙｓｔｅｍ．ｈＣＹＧＨＷＲ ＭＥＭＯＲＹ ＬＡＹＯＵＴ Ｈ
ｃａｌｃｕｌａｔｅｄ｛ＣＹＧ ＨＡＬ ＳＴＡＲＴＵＰ＝＝″ＲＡＭ″？＼

″＜ｐｋｇｃｏｎｆ／ｍｌｔ ｍｉｐｓ ｔｘ３９ ｊｍｒ３９０４ ｒａｍ．ｈ＞″：＼
″＜ｐｋｇｃｏｎｆ／ｍｌｔ ｍｉｐｓ ｔｘ３９ ｊｍｒ３９０４ ｒｏｍ．ｈ＞″｝

｝

｝

ＣＤＬ文件除了上述内容外，还包括一些公共的目标系统选项。这些选项与实时时钟

ＲＴＣ、输出通道、ＲＯＭ监控程序等相关。在支持ＲｅｄＢｏｏｔ的平台中，还有一些选项用于对

ＲｅｄＢｏｏｔ进行配置。

３内存布局

ｅＣｏｓ使用配置工具中的内存配置窗口对平台的内存布局进行定义。如果不使用窗口配
置工具，也可以手工对．ｈ和．ｌｄｉ文件进行编辑。内存配置的详细信息被保存在下面的三个文
件中：

①ｍｌｔ文件。这是配置工具保存文件，只能被配置工具使用。

②ｌｄｉ文件。链接脚本文件。使用体系结构和ＣＰＵ链接器脚本中的宏定义对内存和段地
址进行定义。

③ｈ文件。该文件使用Ｃ宏定义描述一些内存区的细节，允许ｅＣｏｓ或其应用程序适应指
定配置中的内存布局。

７７２

为满足一些特殊需要，应该为系统保留一些内存区，这些内存区可以为例外向量和各种表

提供空间。基于ＲＡＭ启动的配置还应该在内存空间的底部为ＲＯＭ监控程序保留一部分空
间。这些保留空间的名字都有一个前缀“ｒｅｓｅｒｖｅｄ ”，配置工具将对它们进行特殊的处理。

４串口设备支持
在移植过程中，为支持串口设备的第一步工作就是建立ＣＤＬ定义。有下面的这些配置选

项需要进行设置：

ＣＹＧＮＵＭ ＨＡＬ ＶＩＲＴＵＡＬ ＶＥＣＴＯＲ ＣＯＭＭ ＣＨＡＮＮＥＬＳ

串口通道数，通常为０、１或２；

ＣＹＧＮＵＭ ＨＡＬ ＶＩＲＴＵＡＬ ＶＥＣＴＯＲ ＤＥＢＵＧ ＣＨＡＮＮＥＬ

ＧＤＢ所使用的串口；

ＣＹＧＮＵＭ ＨＡＬ ＶＩＲＴＵＡＬ ＶＥＣＴＯＲ ＤＥＢＵＧ ＣＨＡＮＮＥＬ ＢＡＵＤ

Ｄｅｂｕｇ串口的初始波特率；

ＣＹＧＮＵＭ ＨＡＬ ＶＩＲＴＵＡＬ ＶＥＣＴＯＲ ＣＯＮＳＯＬＥ ＣＨＡＮＮＥＬ

用于控制台的串口通道；

ＣＹＧＮＵＭ ＨＡＬ ＶＩＲＴＵＡＬ ＶＥＣＴＯＲ ＣＯＮＳＯＬＥ ＣＨＡＮＮＥＬ ＢＡＵＤ

串口控制台的初始波特率；

ＣＹＧＮＵＭ ＨＡＬ ＶＩＲＴＵＡＬ ＶＥＣＴＯＲ ＣＯＮＳＯＬＥ ＣＨＡＮＮＥＬ ＤＥＦＡＵＬＴ

默认的控制台串口通道。

文件ｈａｌ ｄｉａｇ．ｃ中的程序代码需要进行修改，使其支持新的串口设备。如果是同样的设
备，则只需对其进行复制。为支持新的串口设备，需要修改的函数和数据类型有：

ｓｔｒｕｃｔｃｈａｎｎｅｌ ｄａｔａ ｔ；

包含所支持的每一个串口设备的基地址、超时时间、ＩＳＲ向量号。如果需要，还可以增加
新的域。

ｘｘｘｘ ｓｅｒ ｃｈａｎｎｅｌｓ［］；

ｃｈａｎｎｅｌ ｄａｔａ ｔ数组，被初始化为每一个串口通道的参数。数组的索引为ＣＤＬ选项中
的通道号。

ｖｏｉｄｃｙｇ ｈａｌ ｐｌｆ ｓｅｒｉａｌｉｎｉｔ ｃｈａｎｎｅｌ（ｖｏｉｄ ｃｈ ｄａｔａ）

对串口设备进行初始化。参数是一个指向ｃｈａｎｎｅｌ ｄａｔａ ｔ的指针。

ｖｏｉｄｃｙｇ ｈａｌ ｐｌｆ ｓｅｒｉａｌ ｐｕｔｃ（ｖｏｉｄ ｃｈ ｄａｔａ，ｃｈａｒｃ）

给串口设备发送一个字符。该函数查询设备发送字符的准备状态，一旦就绪，就给设备发

送一个字符。在实现时，最好还应该使用查询的方式来确认发送操作的完成。

ｂｏｏｌｃｙｇ ｈａｌ ｐｌｆ ｓｅｒｉａｌ ｇｅｔｃ ｎｏｎｂｌｏｃｋ（ｖｏｉｄ ｃｈ ｄａｔａ，ｃｙｇ ｕｉｎｔ８ｃｈ）

８７２

从串口设备读取一个字符。该函数对设备进行检测，如果有一个字符从设备发送过来，则

将其放置到ｃｈ并返回ＴＲＵＥ。如果没有字符出现，则立即返回ＦＡＬＳＥ。

ｉｎｔｃｙｇ ｈａｌ ｐｌｆ ｓｅｒｉａｌｃｏｎｔｒｏｌ（ｖｏｉｄ ｃｈ ｄａｔａ， ｃｏｍｍ ｃｏｎｔｒｏｌｃｍｄ ｔ ｆｕｎｃ，．．．）

这是一个类似ＩＯＣＴＬ的函数，对串口设备的各个方面进行控制。这里所需要做的工作是
在 ＣＯＭＭＣＴＬ ＩＲＱ ＥＮＡＢＬＥ和 ＣＯＭＭＣＴＬ ＩＲＱ ＤＩＳＡＢＬＥ情形下使能和禁止中
断。

ｉｎｔｃｙｇ ｈａｌ ｐｌｆ ｓｅｒｉａｌｉｓｒ（ｖｏｉｄ ｃｈ ｄａｔａ，ｉｎｔ ｃｔｒｌｃ，ＣＹＧ ＡＤＤＲＷＯＲＤ ｖｅｃｔｏｒ，ＣＹＧ
ＡＤＤＲＷＯＲＤ ｄａｔａ）

这是一个伪中断向量调用的中断处理程序，专门处理从ＧＤＢ来的ＣｔｒｌＣ中断。调用该函
数所完成的工作如下：

① 检查输入字符，类似于ｃｙｇ ｈａｌ ｐｌｆ ｓｅｒｉａｌ ｇｅｔｃ ｎｏｎｂｌｏｃｋ（）。

② 读取字符并调用ｃｙｇ ｈａｌｉｓ ｂｒｅａｋ（）。

③ 如果结果为ｔｒｕｅ，设置 ｃｔｒｌｃ为１。

④ 返回ＣＹＧ ＩＳＲ ＨＡＮＤＬＥＤ。

ｖｏｉｄｃｙｇ ｈａｌ ｐｌｆ ｓｅｒｉａｌｉｎｉｔ（）

对每一个串口通道进行初始化。首先对每一个通道调用ｃｙｇ ｈａｌ ｐｌｆ ｓｅｒｉａｌ ｉｎｉｔ
ｃｈａｎｎｅｌ（），然后再对每一个通道调用宏ＣＹＧＡＣＣ ＣＯＭＭ ＩＦ 。后面这一组宏调用对所
有通道都是相同的，因此可以使用已有的例子进行复制和编辑。

１１６２ 变体抽象层的移植

变体抽象层的移植相对来说还是比较简单，但也有一定的工作量。变体抽象层所描述的

是指定ＣＰＵ与同类体系结构的普通ＣＰＵ之间的差异。变体抽象层可以对Ｃａｃｈｅ、ＭＭＵ、中
断和其他一些特性进行重定义，这种重定义将覆盖体系结构抽象层中的默认实现。在进行变

体抽象层的移植之前，应该已经完成了体系结构抽象层的移植。

１变体抽象层的移植过程
与平台抽象层的移植一样，建造一个新的变体抽象层最容易的方法也是复制ｅＣｏｓ源码中

的一个类似的变体抽象层，然后再对所有与新的ＣＰＵ变体相关的文件进行修改。如果是某体
系结构中的第一个变体，要确定变体抽象层中应该包含哪些部分是比较困难的，这需要对其他

的结构变体有所了解。

通常，不同变体之间的Ｃａｃｈｅ、中断以及例外处理可能会有所不同。初始化程序、处理各
种核心部件（ＦＰＵ、ＤＳＰ、ＭＭＵ等）的程序也可能不一致，或者某些变体就根本不存在这些部
件。它们的链接脚本可能也不尽相同。另外，某些ＣＰＵ的变体可能还需要专用的编译器。

２变体抽象层的ＣＤＬ描述
变体抽象层中的ＣＤＬ往往依赖于变体所支持的具体功能。如果它实现了某些在平台抽

象层中描述过的设备，那么这些设备的ＣＤＬ应该位于变体抽象层，而不是在平台抽象层。
在ｅＣｏｓ数据库文件ｅｃｏｓ．ｄｂ中，每一个变体都应该有一个入口。以ＭＩＰＳ的ＶＲ４３００为

例，它在ｅｃｏｓ．ｄｂ中有它的一个入口：

９７２

ｐａｃｋａｇｅＣＹＧＰＫＧ ＨＡＬ ＭＩＰＳ ＶＲ４３００｛

ａｌｉａｓ ｛″ＶＲ４３００ｃｈｉｐＨＡＬ″ｈａｌ ｖｒ４３００ｖｒ４３００ ｈａｌｖｒ４３００ ａｒｃｈ ｈａｌ｝

ｄｉｒｅｃｔｏｒｙｈａｌ／ｍｉｐｓ／ｖｒ４３００／

ｓｃｒｉｐｔ ｈａｌ ｍｉｐｓ ｖｒ４３００．ｃｄｌ
ｈａｒｄｗａｒｅ

ｄｅｓｃｒｉｐｔｉｏｎ″
ＴｈｅＶＲ４３００ｖａｒｉａｎｔＨＡＬｐａｃｋａｇｅｐｒｏｖｉｄｅｓｇｅｎｅｒｉｃｓｕｐｐｏｒｔ
ｆｏｒｔｈｉｓｐｒｏｃｅｓｓｏｒａｒｃｈｉｔｅｃｔｕｒｅ．Ｉｔｉｓａｌｓｏｎｅｃｅｓｓａｒｙｔｏ
ｓｅｌｅｃｔａｓｐｅｃｉｆｉｃｔａｒｇｅｔｐｌａｔｆｏｒｍＨＡＬｐａｃｋａｇｅ．″

｝

可以看出，变体入口非常类似于平台入口。

下面介绍的是变体抽象层的ＣＤＬ文件。
变体ＣＤＬ文件包含一个以体系结构和变体命名的一个包的入口，该包的名字将出现在ｅ

ｃｏｓ．ｄｂ文件内。下面是ＭＩＰＳＶＲ４３００ＣＤＬ文件的开始部分：

ｃｄｌ ｐａｃｋａｇｅＣＹＧＰＫＧ ＨＡＬ ＭＩＰＳ ＶＲ４３００｛

ｄｉｓｐｌａｙ ″ＶＲ４３００ｖａｒｉａｎｔ″

ｐａｒｅｎｔ ＣＹＧＰＫＧ ＨＡＬ ＭＩＰＳ
ｉｍｐｌｅｍｅｎｔｓ ＣＹＧＩＮＴ ＨＡＬ ＭＩＰＳ ＶＡＲＩＡＮＴ
ｈａｒｄｗａｒｅ
ｉｎｃｌｕｄｅ ｄｉｒ ｃｙｇ／ｈａｌ
ｄｅｆｉｎｅ ｈｅａｄｅｒｈａｌ ｍｉｐｓ ｖｒ４３００．ｈ
ｄｅｓｃｒｉｐｔｉｏｎ″

ＴｈｅＶＲ４３００ｖａｒｉａｎｔＨＡＬｐａｃｋａｇｅｐｒｏｖｉｄｅｓｇｅｎｅｒｉｃｓｕｐｐｏｒｔ
ｆｏｒｔｈｉｓｐｒｏｃｅｓｓｏｒａｒｃｈｉｔｅｃｔｕｒｅ．Ｉｔｉｓａｌｓｏｎｅｃｅｓｓａｒｙｔｏ
ｓｅｌｅｃｔａｓｐｅｃｉｆｉｃｔａｒｇｅｔｐｌａｔｆｏｒｍＨＡＬｐａｃｋａｇｅ．″

上面这一部分对包进行了定义，并将其置于 ＭＩＰＳ体系结构包之下。其中的ｉｍｐｌｅｍｅｎｔｓ
指出这是一个ＭＩＰＳ的变体。体系结构包使用它来检查具体被配置的是哪一个变体。
变体定义了一些选项，这些选项使体系结构抽象层对自己进行配置，使其支持该变体。还

是以前面所举的ＣＤＬ文件为例：

ｃｄｌ ｏｐｔｉｏｎＣＹＧＨＷＲ ＨＡＬ ＭＩＰＳ ６４ＢＩＴ｛

ｄｉｓｐｌａｙ ″Ｖａｒｉａｎｔ６４ｂｉｔａｒｃｈｉｔｅｃｔｕｒｅｓｕｐｐｏｒｔ″
ｃａｌｃｕｌａｔｅｄ１
｝

ｃｄｌ ｏｐｔｉｏｎＣＹＧＨＷＲ ＨＡＬ ＭＩＰＳ ＦＰＵ｛

ｄｉｓｐｌａｙ ″ＶａｒｉａｎｔＦＰＵｓｕｐｐｏｒｔ″
ｃａｌｃｕｌａｔｅｄ１
｝

ｃｄｌ ｏｐｔｉｏｎＣＹＧＨＷＲ ＨＡＬ ＭＩＰＳ ＦＰＵ ６４ＢＩＴ｛

ｄｉｓｐｌａｙ ″Ｖａｒｉａｎｔ６４ｂｉｔＦＰＵｓｕｐｐｏｒｔ″
ｃａｌｃｕｌａｔｅｄ１

０８２

｝

上面这些选项告诉体系结构这是一个６４位的ＭＩＰＳ体系结构，它具有一个浮点部件，应
该使用６４位方式而不是３２位方式。

ＣＤＬ文件最后还包含了一些编译选项，例如：

ｄｅｆｉｎｅ ｐｒｏｃ｛

ｐｕｔｓ＄：：ｃｄｌ ｈｅａｄｅｒ″＃ｉｎｃｌｕｄｅ＜ｐｋｇｃｏｎｆ／ｈａｌ ｍｉｐｓ．ｈ＞″
｝

ｃｏｍｐｉｌｅ ｖａｒ ｍｉｓｃ．ｃ
ｍａｋｅ｛

＜ＰＲＥＦＩＸ＞／ｌｉｂ／ｔａｒｇｅｔ．ｌｄ：＜ＰＡＣＫＡＧＥ＞／ｓｒｃ／ｍｉｐｓ ｖｒ４３００．ｌｄ
＄（ＣＣ）ＥＰＷｐ，ＭＤ，ｔａｒｇｅｔ．ｔｍｐＤＥＸＴＲＡＳ＝１ｘｃ＄（ＩＮＣＬＵＤＥ ＰＡＴＨ）＄（ＣＦＬＡＧＳ）ｏ＄
＠ ＄＜
＠ｅｃｈｏ＄＠″：＼＼″＞ ＄（ｎｏｔｄｉｒ＄＠）．ｄｅｐｓ
＠ｔａｉｌ＋２ｔａｒｇｅｔ．ｔｍｐ＞＞ ＄（ｎｏｔｄｉｒ＄＠）．ｄｅｐｓ
＠ｅｃｈｏ＞＞ ＄（ｎｏｔｄｉｒ＄＠）．ｄｅｐｓ
＠ｒｍｔａｒｇｅｔ．ｔｍｐ
｝

ｃｄｌ ｏｐｔｉｏｎＣＹＧＢＬＤ ＬＩＮＫＥＲ ＳＣＲＩＰＴ｛

ｄｉｓｐｌａｙ″Ｌｉｎｋｅｒｓｃｒｉｐｔ″
ｆｌａｖｏｒｄａｔａ
ｎｏ ｄｅｆｉｎｅ
ｃａｌｃｕｌａｔｅｄ｛″ｓｒｃ／ｍｉｐｓ ｖｒ４３００．ｌｄ″｝
｝

其中的ｄｅｆｉｎｅ ｐｒｏｃ为该变体将体系结构配置文件包含到配置文件中。ｃｏｍｐｉｌｅ指出需要
对文件ｖａｒ ｍｉｓｃ．ｃ进行编译。ｍａｋｅ指出了一些编译规则，与链接脚本组合成．ｌｄｉ文件，用以
产生ｔａｒｇｅｔ．ｌｄ。在ＭＩＰＳ体系结构中，主链接脚本是在变体中定义而不是在体系结构中定义，
因此在这里定义了ＣＹＧＢＬＤ ＬＩＮＫＥＲ ＳＣＲＩＰＴ。

３Ｃａｃｈｅ支持
变体抽象层中的主要部分可能是对Ｃａｃｈｅ的支持。ＣＰＵ的变体常常是根据其Ｃａｃｈｅ的大

小粒度进行区分的。在一些体系结构中，大多数的Ｃａｃｈｅ操作都放在体系结构抽象层进行，变
体抽象层只对Ｃａｃｈｅ的粒度进行定义。下面是ＭＩＰＳＶＲ４３００在ｖａｒ ｃａｃｈｅ．ｈ中对Ｃａｃｈｅ的
粒度进行定义的例子：

／／Ｄａｔａｃａｃｈｅ
＃ｄｅｆｉｎｅＨＡＬ ＤＣＡＣＨＥ ＳＩＺＥ （８１０２４） ／／Ｓｉｚｅｏｆｄａｔａｃａｃｈｅｉｎｂｙｔｅｓ
＃ｄｅｆｉｎｅＨＡＬ ＤＣＡＣＨＥ ＬＩＮＥ ＳＩＺＥ１６ ／／Ｓｉｚｅｏｆａｄａｔａｃａｃｈｅｌｉｎｅ
＃ｄｅｆｉｎｅＨＡＬ ＤＣＡＣＨＥ ＷＡＹＳ １ ／／Ａｓｓｏｃｉａｔｉｖｉｔｙｏｆｔｈｅｃａｃｈｅ
／／Ｉｎｓｔｒｕｃｔｉｏｎｃａｃｈｅ
＃ｄｅｆｉｎｅＨＡＬ ＩＣＡＣＨＥ ＳＩＺＥ （１６１０２４） ／／Ｓｉｚｅｏｆｃａｃｈｅｉｎｂｙｔｅｓ
＃ｄｅｆｉｎｅＨＡＬ ＩＣＡＣＨＥ ＬＩＮＥ ＳＩＺＥ ３２ ／／Ｓｉｚｅｏｆａｃａｃｈｅｌｉｎ

１８２

＃ｄｅｆｉｎｅＨＡＬ ＩＣＡＣＨＥ ＷＡＹＳ １ ／／Ａｓｓｏｃｉａｔｉｖｉｔｙｏｆｔｈｅｃａｃｈｅ
＃ｄｅｆｉｎｅＨＡＬ ＤＣＡＣＨＥ ＳＥＴＳ（ＨＡＬ ＤＣＡＣＨＥ ＳＩＺＥ／（ＨＡＬ ＤＣＡＣＨＥ ＬＩＮＥ ＳＩＺＥＨＡＬ
ＤＣＡＣＨＥ ＷＡＹＳ））

＃ｄｅｆｉｎｅＨＡＬ ＩＣＡＣＨＥ ＳＥＴＳ（ＨＡＬ ＩＣＡＣＨＥ ＳＩＺＥ／（ＨＡＬ ＩＣＡＣＨＥ ＬＩＮＥ ＳＩＺＥＨＡＬ
ＩＣＡＣＨＥ ＷＡＹＳ））

在此还可以对其他的一些Ｃａｃｈｅ宏进行定义，或者对默认定义进行覆盖。有些体系结构
具有管理Ｃａｃｈｅ行的一些指令，Ｃａｃｈｅ的使能和禁止操作可能全部通过变体的专用寄存器进
行，在这种情况下ｖａｒ ｃａｃｈｅ．ｈ还应该定义 ＨＡＬ ＸＣＡＣＨＥ ＥＮＡＢＬＥ（）宏和 ＨＡＬ
ＸＣＡＣＨＥ ＤＩＳＡＢＬＥ（）宏。
如果变体不支持某些普通特性，则ｖａｒ ｃａｃｈｅ．ｈ要禁止对某些操作的定义。具体实现方

法与体系结构有关。

１１６３ 体系结构抽象层的移植

对于一个新的体系结构来说，其体系结构抽象层的建立相对比较困难。ｅＣｏｓ源码支持大
部分当前广泛使用的嵌入式ＣＰＵ，它已经具有了支持各种体系结构的硬件抽象层。因此，在
进行ｅＣｏｓ开发时很少需要编写新的体系结构抽象层。这一节主要介绍体系结构硬件抽象层
的移植过程。

１体系结构抽象层的移植过程
进行体系结构抽象层移植的最简单的方法是选择一个体系结构最接近的硬件抽象层，对

其进行复制，然后根据新的体系结构的特点对所有需要改变的源码文件进行修改。ＭＩＰＳ体
系结构抽象层的层次结构和编程约定都比较规范，如果适当的话可以使用它的体系结构抽象

层作为模板。

ｅＣｏｓ采用ＧＣＣ作为它的编译工具，在进行ｅＣｏｓ开发时需要相应的Ｃ／Ｃ＋＋编译器及其适
当版本的支持。值得注意的是Ｃ＋＋不支持８位和１６位的ＣＰＵ。在进行ｅＣｏｓ的移植操作之
前，应该确认有相应的编译器支持。

下面是对一个新的体系结构进行体系结构抽象层移植的一些步骤。对于不同的体系结

构，它们的顺序可能不完全一致。在对体系结构抽象层进行移植测试时，变体抽象层和平台抽

象层的移植工作也应该同时进行。

１）在ｅＣｏｓ源码库的ｈａｌ目录下为新的体系结构建立一个目录，在此目录下创建ａｒｃｈ子目
录，并按标准建立所有的包目录（可仿照其他体系结构抽象层）。

２）从模板ＨＡＬ复制ＣＤＬ文件，改变其名字使其与新的体系结构相匹配。对ＣＤＬ文件
进行编辑，修改选项的名字。删除那些原体系结构专用的选项，增加新体系结构所需要的一些

选项。

３）从模板ＨＡＬ复制文件ｈａｌ ａｒｃｈ．ｈ。对该文件进行下述修改：

① 定义ＨＡＬ ＳａｖｅｄＲｅｇｉｓｔｅｒｓ结构。该结构必须能够体现寄存器的保存顺序、中断和例
外的保存格式以及程序调用约定。可能的话，还必须满足可选的浮点部件ＦＰＵ和其他功能部
件的需要。

② 定义位索引处理程序ＨＡＬ ＬＳＢＩＴ ＩＮＤＥＸ（）和ＨＡＬ ＭＳＢＩＴ ＩＮＤＥＸ（）。如果体
系结构具有这样的指令和相关操作，则应该将其定义为内嵌汇编指令段。

２８２

③ 定义ＨＡＬ ＴＨＲＥＡＤ ＩＮＩＴ ＣＯＮＴＥＸＴ（）。它对一个可恢复的ＣＰＵ上下文环境进
行初始化，使后面的 ＨＡＬ ＴＨＲＥＡＤ ＬＯＡＤ ＣＯＮＴＥＸＴ（）调用和 ＨＡＬ ＴＨＲＥＡＤ
ＳＷＩＴＣＨ ＣＯＮＴＥＸＴ（）调用能够正常执行。

④ 定义上下文切换函数ＨＡＬ ＴＨＲＥＡＤ ＬＯＡＤ ＣＯＮＴＥＸＴ（）和ＨＡＬ ＴＨＲＥＡＤ
ＳＷＩＴＣＨ ＣＯＮＴＥＸＴ（）。

⑤ 定义排序栅栏函数ＨＡＬ ＲＥＯＲＤＥＲ ＢＡＲＲＩＥＲ（）。程序在必须顺序执行的地方可
以用它来防止编译器优化时对程序代码的移动。该宏在所有体系结构中的实现都是相同的，

不需要改动。

⑥ 对断点支持进行定义。宏ＨＡＬ ＢＲＥＡＫＰＯＮＴ（ｌａｂｅｌ）将产生一个断点，它是一个内嵌
汇编指令段。在所有体系结构中，该宏都是相同的，不需要修改。

⑦ 对ＧＤＢ的支持进行定义。ＧＤＢ将目标系统的寄存器当成一个线性数组，每一个寄存
器都有一个已定义好的偏移。该数组可以与ＨＡＬ ＳａｖｅｄＲｅｇｉｓｔｅｒｓ中的顺序不一致。ＨＡＬ
ＧＥＴ ＧＤＢ ＲＥＧＩＳＴＥＲＳ（）和ＨＡＬ ＳＥＴ ＧＤＢ ＲＥＧＩＳＴＥＲＳ（）两个宏用于在ＧＤＢ的寄
存器数组和ＨＡＬ ＳａｖｅｄＲｅｇｉｓｔｅｒ结构之间进行转换。ＨＡＬ ＴＨＲＥＡＤ ＧＥＴ ＳＡＶＥＤ
ＲＥＧＩＳＴＥＲＳ（）用于将上下文切换宏所保存的堆栈指针转换为一个ＨＡＬ ＳａｖｅｄＲｅｇｉｓｔｅｒｓ结构
的指针。

⑧ 对长跳转支持进行定义。类型ｈａｌｊｍｐ ｂｕｆ以及ｈａｌｓｔｊｍｐ（）函数和ｈａｌｌｏｎｇｊｍｐ（）
函数为Ｃ库函数ｓｅｔｊｍｐ（）和ｌｏｎｇｊｍｐ（）提供底层实现。

⑨ 对线程空闲行为（宏ＨＡＬ ＩＤＬＥ ＴＨＲＥＡＤ ＡＣＴＩＯＮ（））进行定义。

⑩ 定义栈空间大小。宏ＣＹＧＮＵＭ ＨＡＬ ＳＴＡＣＫ ＳＩＺＥ ＭＩＮＩＭＵＭ和ＣＹＧＮＵＭ
ＨＡＬ ＳＴＡＣＫ ＳＩＺＥ ＴＹＰＩＣＡＬ定义线程堆栈的最小值和默认值。在ＨＡＬ的一些汇编程
序中可能要用到它们，因此应该使用数字值进行定义。

瑏瑡 定义内存访问宏。这些宏在Ｃａｃｈｅ空间、非Ｃａｃｈｅ空间和物理内存之间进行转换。

瑏瑢 定义全局指针保存／恢复宏。只有在调用约定需要一个全局指针的体系结构（如

ＭＩＰＳ）中才需要对这种宏进行定义，不需要时应该为空。

４）从模板ＨＡＬ中复制文件ｈａｌｉｎｔｒ．ｈ，对其进行如下修改：

① 定义例外向量。ＣＰＵ体系结构的说明文档中有例外向量的详细描述，在进行ｅＣｏｓ移
植之前必须仔细阅读相应的资料。ＣＰＵ的每一个例外入口点在ＶＳＲ表中都应该有对应的一
个表项，ＶＳＲ表项的偏移使用ＣＹＧＮＵＭ ＨＡＬ ＶＥＣＴＯＲ 的形式进行定义。ＶＳＲ表的
大小也应该在此定义。

② 将硬件例外定义一个标准名字，例外向量的名字通常采用ＣＹＧＮＵＭ ＨＡＬ ＥＸ
ＣＥＰＴＩＯＮ 的标准形式。与结构无关的一段通用程序通过检测是否有ＣＹＧＮＵＭ ＨＡＬ
ＥＸＣＥＰＴＩＯＮ 的定义来确定该体系结构是否有这种例外，如果有定义，则其值就是该例外
的向量。这种对应关系可以不是一对一的，几个不同的ＣＹＧＮＵＭ ＨＡＬ ＥＸＣＥＰＴＩＯＮ 
定义可以具有相同的值。中断向量通常在平台和变体抽象层中进行定义。中断号范围和

ＶＳＲ号范围可能是连续的，这时它们共享一个向量表（如ｉ３８６）；它们也可能处于不同的范围，
这种情况要对它们进行译码，ＭＩＰＳ和ＰｏｗｅｒＰＣ就是这种情况。

③ 对硬件抽象层用于处理中断和例外的所有静态数据进行声称。中断通常有三个向量：

ｈａｌｉｎｔｅｒｒｕｐｔ ｈａｎｄｌｅｒｓ［］，ｈａｌｉｎｔｅｒｒｕｐｔ ｄａｔａ［］和ｈａｌｉｎｔｅｒｒｕｐｔ ｏｂｊｅｃｔｓ［］，要根据中断向量

３８２

的定义对它们的大小进行定义。除了ＶＳＲ表外，还应该定义ｈａｌ ｖｓｒ ｔａｂｌｅ［］。这些向量通
常在ｖｅｃｔｏｒｓ．Ｓ或ｈａｌ ｍｉｓｃ．ｃ中进行定义。

④ 定义中断使能／禁止宏。这些宏通常是内嵌汇编指令段，这些程序段对包含有ＣＰＵ中
断使能位的寄存器进行操作或执行相应的指令。

⑤ 许多硬件抽象层还具有在中断堆栈中执行ＤＳＲ的能力。对这种能力的支持并不是必
需的，在移植的最初阶段最好不要实现。如果需要这种特性，应该对宏ＨＡＬ ＩＮＴＥＲＲＵＰＴ
ＳＴＡＣＫ ＣＡＬＬ ＰＥＮＤＩＮＧ ＤＳＲＳ（）进行定义。

⑥ 定义中断和ＶＳＲ的连接。

５）对其他的头文件进行修改：

①ｂａｓｅｔｙｐｅ．ｈ。该文件包含了ｅＣｏｓ使用的基本类型的定义，以及字节排列方式和其他的
一些特性定义。只有在该体系结构与ｃｙｇ ｔｙｐｅ．ｈ中的默认定义不一致时，才需要对该文件
进行修改。

②ｈａｌｉｏ．ｈ。该文件包含了对设备ＩＯ寄存器进行访问的宏定义。如果体系结构采用内
存映射ＩＯ，则可以从另外的体系结构（如ＭＩＰＳ）中复制而不需要修改。如果体系结构使用专
用的ＩＯ指令，则需要将这些宏以内嵌汇编程序段的形式进行定义（可参考ｉ３８６的ＨＡＬ）。访
问ＰＣＩ总线的宏通常在变体抽象层或平台抽象层中定义。

③ｈａｌ ｃａｃｈｅ．ｈ。该文件包含了Ｃａｃｈｅ访问宏定义。如果该体系结构具有Ｃａｃｈｅ访问的
指令或控制寄存器，则应该在此文件中定义这些宏。否则，应该在变体抽象层或平台抽象层中

进行定义。Ｃａｃｈｅ的粒度（整个Ｃａｃｈｅ的大小、Ｃａｃｈｅ行大小、Ｃａｃｈｅ组相联数等等）通常在变体
抽象层中定义。

④ａｒｃｈ．ｉｎｃ和＜ａｒｃｈｉｔｅｃｔｕｒｅ＞．ｉｎｃ。这两个头文件是ｖｅｃｔｏｒ．Ｓ和ｃｏｎｔｅｘｔ．Ｓ所使用的汇编
程序头文件。＜ａｒｃｈｉｔｅｃｔｕｒｅ＞．ｉｎｃ是一个通用头文件，包含了寄存器别名、ＡＢＩ（应用软件二进
制接口）定义和普通汇编程序所使用的宏等内容。如果体系结构中没有这些定义，则不需要提

供这些文件。ａｒｃｈ．ｉｎｃ包含了其他一些宏定义，它们提供了与ｅＣｏｓ相关的各种操作，如ＣＰＵ、

Ｃａｃｈｅ、ＦＰＵ的初始化等。这些文件内所进行的定义有可能在变体抽象层或平台抽象层中被
重新配置或覆盖。

６）编写ｖｅｃｔｏｒ．Ｓ。这是硬件抽象层中最重要的一个文件，它包含了ＣＰＵ初始化程序、例
外和中断处理程序。对于一个新的体系结构来说，该文件的大部分都需要重新编写。该文件

需要提供的主要程序段包括：

① 复位向量程序。复位向量程序通常位于ＲＯＭ或ＦＬＡＳＨ的起始位置，因此在它自己
的链接脚本段中应该体现复位（ｒｅｓｅｔ）向量。通过链接脚本，可以将复位向量放置到正确的位
置。通常复位向量程序很小，可能仅是一条跳转到标号为 ｓｔａｒｔ的语句。

② 例外向量程序。这些例外向量程序是一些跳转程序，根据ＶＳＲ表跳转到硬件例外入
口点。在许多体系结构中，它们处于复位向量邻近的位置，可以使用同一个链接脚本段。跳转

程序提供的支持至少应该是能够将控制权从硬件向量转移给ＶＳＲ，具体实现方法与体系结构
有关。

③ 内核启动程序。这是从复位向量跳转过来的程序。它首先对ＣＰＵ和其他硬件组件进
行初始化，此时最好使用ａｒｃｈ．ｉｎｃ或者变体抽象层和平台抽象层中所提供的宏调用函数。它
所要完成的其他工作有：堆栈指针的初始化、根据需要将数据从ＲＯＭ复制到ＲＡＭ、将ＢＳＳ数

４８２

据段清零、调用变体初始化程序和平台初始化程序、调用ｃｙｇ ｈａｌ ｉｎｖｏｋｅ ｃｏｎｓｔｒｕｃｔｏｒｓ（）函
数、根据需要调用ｉｎｉｔｉａｌｉｚｅ ｓｔｕｂ（）函数。最后它将调用ｃｙｇ ｓｔａｒｔ（）函数。

④ 默认例外ＶＳＲ。该ＶＳＲ被装入到ＶＳＲ表中的所有同步例外向量表项。（见第１１４２
节）

⑤ 默认中断ＶＳＲ。该ＶＳＲ被装入到ＶＳＲ表中的所有与外部中断相关的表项。（见第

１１４２节）

⑥ｈａｌｉｎｔｅｒｒｕｐｔ ｓｔａｃｋ ｃａｌｌ ｐｅｎｄｉｎｇ ｄｓｒｓ（）函数。如果在ｈａｌ．ａｒｃｈ．ｈ中有该函数的定
义，则应该在此实现。该函数的目的是在中断堆栈中调用ＤＳＲ，而不是在当前线程堆栈中调
用。该函数完成如下工作：

● 复制当前堆栈指针ＳＰ，然后转至中断堆栈。
● 在中断堆栈中保存老的堆栈指针ＳＰ、ＣＰＵ状态寄存器（或者任何一个包含中断使能状
态的寄存器）和其他在函数调用中可能会被破坏的寄存器。

● 使能中断。

● 调用ｃｙｇ ｉｎｔｅｒｒｕｐｔ ｃａｌｌ ｐｅｎｄｉｎｇ ｄｓｒｓ（）。这是一个调用正处于悬挂状态的ＤＳＲ的
内核函数。

● 从中断堆栈中恢复被保存的寄存器，并转回到当前线程堆栈。

● 将被保存的ＣＰＵ状态寄存器中的中断使能状态与当前状态寄存器的值进行合并，恢复
以前的使能状态。如果状态寄存器不包含其他任何稳定不变的状态，则只简单地进行

寄存器的恢复。但如果寄存器包含了其他可能已被ＤＳＲ改变的状态位，则应该加以小
心，不要破坏它们。

● 定义所有所需的数据项。ｖｅｃｔｏｒｓ．Ｓ通常包含了ＶＳＲ表、中断表和中断堆栈的定义。

７）编写ｃｏｎｔｅｘｔ．Ｓ。它包含了上下文切换程序。（详细信息见１１３２节）

８）编写ｈａｌ ｍｉｓｃ．ｃ。该文件包含了ＨＡＬ所需要的Ｃ函数和数据，可能包括如下内容：

①ｈａｌｉｎｔｅｒｒｕｐｔ ［］。在某些硬件抽象层中，如果在ｖｅｃｔｏｒ．Ｓ内没有定义这些数组，则
应该在此进行定义。

②ｃｙｇ ｈａｌ ｅｘｃｅｐｔｉｏｎ ｈａｎｄｌｅｒ（）。该函数将被例外ＶＳＲ调用。它通常对例外进行译
码，针对ＦＰＵ陷阱、总线错误或内存例外等事件调用某些专用的处理程序。如果对于某个例
外没有专用的例外程序可调用的话，它将通过 ｈａｎｄｌｅ ｅｘｃｅｐｔｉｏｎ（）调用ＧＤＢｓｔｕｂ程序或者
通过ｃｙｇ ｈａｌ ｄｅｌｉｖｅｒ ｅｘｃｅｐｔｉｏｎ（）对内核进行调用。

③ｈａｌ ａｒｃｈ ｄｅｆａｕｌｔｉｓｒ（）。ｈａｌｉｎｔｅｒｒｕｐｔ ｈａｎｄｌｅｒｓ［］数组被初始化后通常指向默认的
中断服务程序ｈａｌ ｄｅｆａｕｌｔｉｓｒ（），这是公共ＨＡＬ所定义的一个函数，它处理象ＣｔｒｌＣ这样的
一些事件。如果这些事件与该函数不相关，则它将调用ｈａｌ ａｒｃｈ ｄｅｆａｕｌｔ ｉｓｒ（）函数。正常
情况下，该函数应该只返回０。

④ｃｙｇ ｈａｌｉｎｖｏｋｅ ｃｏｎｓｔｒｕｃｔｏｒｓ（）。该函数在程序启动之前为所有的静态对象调用构
造器（ｃｏｎｓｔｒｕｃｔｏｒ）。ｅＣｏｓ依靠这些调用（以正确的顺序）来实现其功能的正确性。不同体系结
构中对构造器的处理可能不一样，大多数系统使用在标号 ＣＴＯＲ ＬＩＳＴ 和 ＣＴＯＲ
ＥＮＤ 之间的一个简单的函数指针表进行处理，必须按自顶向下的顺序进行调用。一般来
说，可以从一个已有的体系结构抽象层中之间复制该函数。

⑤ 位索引函数。如果宏ＨＡＬ ＬＳＢＩＴ ＩＮＤＥＸ（）和ＨＡＬ ＭＳＢＩＴ ＩＮＤＥＸ（）被定义为

５８２

函数调用，则应该在此提供这些函数。

⑥ｈａｌ ｄｅｌａｙ ｕｓ（）。如果在ｈａｌｉｎｔｒ．ｈ中定义了宏ＨＡＬ ＤＥＬＡＹ ＵＳ（），则应该将其
定义为调用该函数。

⑦ｈａｌｉｄｌｅ ｔｈｒｅａｄ ａｃｔｉｏｎ（）。如果调用了宏ＨＡＬ ＩＤＬＥ ＴＨＲＥＡＤ ＡＣＴＩＯＮ（），那
么空闲线程将使用此宏调用该函数。正常情况下该函数不做任何事情，但在开发过程中，可以

在该函数中实现将系统重要信息输出到输出设备。它可以用来监视系统状态并报告系统的异

常。如果体系结构支持ｈａｌｔ指令，可以在此函数中加入内嵌汇编程序段来执行这一指令。此
外，它还是对系统节能行为进行处理的一个理想之处。

９）生成＜ａｒｃｈｉｔｅｃｔｕｒｅ＞．ｌｄ文件。虽然该文件最后可能要被移至变体抽象层内，但应该
先在此对其进行定义，只有在需要的时候才将其移走。该文件定义了一组宏，目标平台的．ｌｄｉ
文件将用这些宏生成链接脚本。由于大多数ＧＣＣ工具非常相似，因此可以从已有的体系结构
抽象层中复制该文件，需要编辑的地方主要是ＯＵＴＰＵＴ ＦＯＲＭＡＴ（）的定向，另外可能还需
要增加一些宏定义。

１０）如果要在ＲｅｄＢｏｏｔ或ｅＣｏｓ中支持ＧＤＢ的ｓｔｕｂ程序，则应该实现这种支持。提供这
种支持的主要有两个文件：ｉｎｃｌｕｄｅ／＜ａｒｃｈｉｔｅｃｔｕｒｅ＞ｓｔｕｂ．ｈ和ｓｒｃ／＜ａｒｃｈｉｔｅｃｔｕｒｅ＞ｓｔｕｂ．ｃ。前
一个文件包含了一些ＧＤＢｓｔｕｂ程序用来描述大小、类型、数字和ＣＰＵ寄存器名字的定义，

ＧＤＢ对该体系结构的支持文档说明提供了相关信息。它还包含了ｓｒｃ／＜ａｒｃｈｉｔｅｃｔｕｒｅ＞ｓｔｕｂ．ｃ
中的一些函数协议，这些函数协议可以从其他ＨＡＬ中复制。后一个文件对其头文件中定义
的函数进行实现。可以参考其他ＨＡＬ来了解在此需要做哪些工作。较为复杂的是对单步的
支持，ＧＤＢ经常要使用单步操作对程序进行调试。

２对ＣＤＬ的要求
体系结构抽象层对ＣＤＬ的要求在很大程度上要依赖于该体系结构的需求。这包括对不

同变体ＣＰＵ的支持以及ＦＰＵ、ＭＭＵ和Ｃａｃｈｅ的使用等等。另外，体系结构抽象层、变体抽象
层和平台抽象层之间的划分也具有一定的模糊性。下面以ｉ３８６为例粗略介绍如何建立一个
体系结构的ＣＤＬ文件。

ＣＤＬ文件首先要对该ＣＤＬ包进行描述，并将其置于主ＨＡＬ包（ＣＹＧＰＫＧ ＨＡＬ）之下。
它必须指出ＣＤＬ包所涉及的包含文件位于ｉｎｃｌｕｄｅ／ｃｙｇ／ｈａｌ目录，ＣＤＬ文件的定义将出现在头
文件ｉｎｃｌｕｄｅ／ｐｋｇｃｏｎｆ／ｈａｌｉ３８６．ｈ内。在对该包进行编译时，ｓｒｃ目录中被编译的文件由ｃｏｍ
ｐｉｌｅ指定。
下面是ｉ３８６体系结构抽象层的ＣＤＬ描述文件：

ｃｄｌ ｐａｃｋａｇｅＣＹＧＰＫＧ ＨＡＬ Ｉ３８６｛

ｄｉｓｐｌａｙ ″ｉ３８６ａｒｃｈｉｔｅｃｔｕｒｅ″

ｐａｒｅｎｔ ＣＹＧＰＫＧ ＨＡＬ
ｈａｒｄｗａｒｅ
ｉｎｃｌｕｄｅ ｄｉｒ ｃｙｇ／ｈａｌ
ｄｅｆｉｎｅ ｈｅａｄｅｒ ｈａｌｉ３８６．ｈ
ｄｅｓｃｒｉｐｔｉｏｎ ″

Ｔｈｅｉ３８６ａｒｃｈｉｔｅｃｔｕｒｅＨＡＬｐａｃｋａｇｅｐｒｏｖｉｄｅｓｇｅｎｅｒｉｃ
ｓｕｐｐｏｒｔｆｏｒｔｈｉｓｐｒｏｃｅｓｓｏｒａｒｃｈｉｔｅｃｔｕｒｅ．Ｉｔｉｓａｌｓｏ

６８２

ｎｅｃｅｓｓａｒｙｔｏｓｅｌｅｃｔａｓｐｅｃｉｆｉｃｔａｒｇｅｔｐｌａｔｆｏｒｍＨＡＬ

ｐａｃｋａｇｅ．″
ｃｏｍｐｉｌｅ ｈａｌ ｍｉｓｃ．ｃｃｏｎｔｅｘｔ．Ｓｉ３８６ ｓｔｕｂ．ｃｈａｌｓｙｓｃａｌｌ．ｃ

完成上面的工作后，需要指明编译规则，用于产生所需的文件。首先是对ｖｅｃｔｏｒ．Ｓ的编
译，它的编译结果不进入库，而是与应用程序直接进行链接。其次是由ｉ３８６．ｌｄ文件和选择启
动类型的．ｌｄｉ文件生成的ｔａｒｇｅｔ．ｌｄ。这些内容可以从模板ＣＤＬ文件中直接复制，再进行适当
的修改。ｉ３８６的这种ＣＤＬ描述为：

ｍａｋｅ｛

＜ＰＲＥＦＩＸ＞／ｌｉｂ／ｖｅｃｔｏｒｓ．ｏ：＜ＰＡＣＫＡＧＥ＞／ｓｒｃ／ｖｅｃｔｏｒｓ．Ｓ
＄（ＣＣ）Ｗｐ，ＭＤ，ｖｅｃｔｏｒｓ．ｔｍｐ＄（ＩＮＣＬＵＤＥ ＰＡＴＨ）＄（ＣＦＬＡＧＳ）ｃｏ＄＠ ＄＜
＠ｅｃｈｏ＄＠″：＼＼″＞ ＄（ｎｏｔｄｉｒ＄＠）．ｄｅｐｓ
＠ｔａｉｌ＋２ｖｅｃｔｏｒｓ．ｔｍｐ＞＞ ＄（ｎｏｔｄｉｒ＄＠）．ｄｅｐｓ
＠ｅｃｈｏ＞＞ ＄（ｎｏｔｄｉｒ＄＠）．ｄｅｐｓ
＠ｒｍｖｅｃｔｏｒｓ．ｔｍｐ

｝

ｍａｋｅ｛

＜ＰＲＥＦＩＸ＞／ｌｉｂ／ｔａｒｇｅｔ．ｌｄ：＜ＰＡＣＫＡＧＥ＞／ｓｒｃ／ｉ３８６．ｌｄ
＄（ＣＣ）ＥＰＷｐ，ＭＤ，ｔａｒｇｅｔ．ｔｍｐＤＥＸＴＲＡＳ＝１ｘｃ＄（ＩＮＣＬＵＤＥ ＰＡＴＨ）＄（ＣＦＬＡＧＳ）

ｏ＄＠ ＄＜
＠ｅｃｈｏ＄＠″：＼＼″＞ ＄（ｎｏｔｄｉｒ＄＠）．ｄｅｐｓ
＠ｔａｉｌ＋２ｔａｒｇｅｔ．ｔｍｐ＞＞ ＄（ｎｏｔｄｉｒ＄＠）．ｄｅｐｓ
＠ｅｃｈｏ＞＞ ＄（ｎｏｔｄｉｒ＄＠）．ｄｅｐｓ
＠ｒｍｔａｒｇｅｔ．ｔｍｐ

｝

如果支持ＳＭＰ，则ＣＤＬ应该使能ＨＡＬ对ＳＭＰ的支持。一般可以在内核中使用ｒｅｑｕｉｒｅｓ
语句进行使能。如：

ｃｄｌｃｏｍｐｏｎｅｎｔＣＹＧＰＫＧ ＨＡＬ ＳＭＰ ＳＵＰＰＯＲＴ｛

ｄｉｓｐｌａｙ ″ＳＭＰｓｕｐｐｏｒｔ″
ｄｅｆａｕｌｔ ｖａｌｕｅ０
ｒｅｑｕｉｒｅｓ｛ＣＹＧＨＷＲ ＨＡＬ Ｉ３８６ ＦＰＵ ＳＷＩＴＣＨ ＬＡＺＹ＝＝０｝

ｃｄｌｏｐｔｉｏｎＣＹＧＰＫＧ ＨＡＬ ＳＭＰ ＣＰＵ ＭＡＸ｛

ｄｉｓｐｌａｙ ″ＭａｘｎｕｍｂｅｒｏｆＣＰＵｓｓｕｐｐｏｒｔｅｄ″
ｆｌａｖｏｒ ｄａｔａ
ｄｅｆａｕｌｔ ｖａｌｕｅ２
｝

｝

ｉ３８６的硬件抽象层对ＦＰＵ的支持是可选的，默认情况下支持ＦＰＵ。也可以禁止ＦＰＵ，这
样可以提高系统的性能。对ＦＰＵ的支持有两个选项：每一次上下文切换都保存和恢复ＦＰＵ
状态、只在需要的时候才转换ＦＰＵ的状态。相应的ＣＤＬ描述如下：

７８２

ｃｄｌｃｏｍｐｏｎｅｎｔＣＹＧＨＷＲ ＨＡＬ Ｉ３８６ ＦＰＵ｛

ｄｉｓｐｌａｙ ″ＥｎａｂｌｅＩ３８６ＦＰＵｓｕｐｐｏｒｔ″
ｄｅｆａｕｌｔ ｖａｌｕｅ１
ｄｅｓｃｒｉｐｔｉｏｎ ″Ｔｈｉｓｃｏｍｐｏｎｅｎｔｅｎａｂｌｅｓｓｕｐｐｏｒｔｆｏｒｔｈｅ

Ｉ３８６ｆｌｏａｔｉｎｇｐｏｉｎｔｕｎｉｔ．″
ｃｄｌｏｐｔｉｏｎＣＹＧＨＷＲ ＨＡＬ Ｉ３８６ ＦＰＵ ＳＷＩＴＣＨ ＬＡＺＹ｛

ｄｉｓｐｌａｙ ″ＵｓｅｌａｚｙＦＰＵｓｔａｔｅｓｗｉｔｃｈｉｎｇ″
ｆｌａｖｏｒ ｂｏｏｌ
ｄｅｆａｕｌｔ ｖａｌｕｅ１
ｄｅｓｃｒｉｐｔｉｏｎ″

ＴｈｉｓｏｐｔｉｏｎｅｎａｂｌｅｓｌａｚｙＦＰＵｓｔａｔｅｓｗｉｔｃｈｉｎｇ．
ＴｈｅｄｅｆａｕｌｔｂｅｈａｖｉｏｕｒｆｏｒｅＣｏｓｉｓｔｏｓａｖｅａｎｄ
ｒｅｓｔｏｒｅＦＰＵｓｔａｔｅｏｎｅｖｅｒｙｔｈｒｅａｄｓｗｉｔｃｈ，ｉｎｔｅｒｒｕｐｔ
ａｎｄｅｘｃｅｐｔｉｏｎ．Ｗｈｉｌｅｓｉｍｐｌｅａｎｄｄｅｔｅｒｍｉｎｉｓｔｉｃ，ｔｈｉｓ
ａｐｐｒｏａｃｈｃａｎｂｅｅｘｐｅｎｓｉｖｅｉｆｔｈｅＦＰＵｉｓｎｏｔｕｓｅｄｂｙ
ａｌｌｔｈｒｅａｄｓ．Ｔｈｅａｌｔｅｒｎａｔｉｖｅ，ｅｎａｂｌｅｄｂｙｔｈｉｓｏｐｔｉｏｎ，

ｉｓｔｏｕｓｅｈａｒｄｗａｒｅｆｅａｔｕｒｅｓｔｈａｔａｌｌｏｗｔｈｅＦＰＵｓｔａｔｅ
ｏｆａｔｈｒｅａｄｔｏｂｅｌｅｆｔｉｎｔｈｅＦＰＵａｆｔｅｒｉｔｈａｓｂｅｅｎ
ｄｅｓｃｈｅｄｕｌｅｄ，ａｎｄｔｏａｌｌｏｗｔｈｅｓｔａｔｅｔｏｂｅｓｗｉｔｃｈｅｄｔｏ
ａｎｅｗｔｈｒｅａｄｏｎｌｙｉｆｉｔａｃｔｕａｌｌｙｕｓｅｓｔｈｅＦＰＵ．Ｗｈｅｒｅ
ｏｎｌｙｏｎｅｏｒｔｗｏｔｈｒｅａｄｓｕｓｅｔｈｅＦＰＵｔｈｉｓｃａｎａｖｏｉｄａ
ｌｏｔｏｆｕｎｎｅｃｅｓｓａｒｙｓｔａｔｅｓｗｉｔｃｈｉｎｇ．″

｝

｝

此外，ｉ３８６的硬件抽象层还支持不同型号的ＣＰＵ，特别是Ｐｅｎｔｉｕｍ类型的ＣＰＵ还具有更
多的功能模块，ＧＤＢ有时可能希望得到更多的寄存器内容。因此必须有一些选项来支持这些
特性。一般可以在变体或平台的ＣＤＬ包或者在．ｅｃｍ文件中使用ｒｅｑｕｉｒｅｓ语句来使能这些特
性。例如：

ｃｄｌｃｏｍｐｏｎｅｎｔＣＹＧＨＷＲ ＨＡＬ Ｉ３８６ ＰＥＮＴＩＵＭ｛

ｄｉｓｐｌａｙ ″ＥｎａｂｌｅＰｅｎｔｉｕｍｃｌａｓｓＣＰＵｆｅａｔｕｒｅｓ″
ｄｅｆａｕｌｔ ｖａｌｕｅ０
ｄｅｓｃｒｉｐｔｉｏｎ ″Ｔｈｉｓｃｏｍｐｏｎｅｎｔｅｎａｂｌｅｓｓｕｐｐｏｒｔｆｏｒｖａｒｉｏｕｓ

ｆｅａｔｕｒｅｓｏｆＰｅｎｔｉｕｍｃｌａｓｓＣＰＵｓ．″
ｃｄｌ ｏｐｔｉｏｎＣＹＧＨＷＲ ＨＡＬ Ｉ３８６ ＰＥＮＴＩＵＭ ＳＳＥ｛

ｄｉｓｐｌａｙ ″Ｓａｖｅ／ＲｅｓｔｏｒｅＳＳＥｒｅｇｉｓｔｅｒｓｏｎｃｏｎｔｅｘｔｓｗｉｔｃｈ″
ｆｌａｖｏｒ ｂｏｏｌ
ｄｅｆａｕｌｔ ｖａｌｕｅ０
ｄｅｓｃｒｉｐｔｉｏｎ″

ＴｈｉｓｏｐｔｉｏｎｅｎａｂｌｅｓＳＳＥｓｔａｔｅｓｗｉｔｃｈｉｎｇ．Ｔｈｅｄｅｆａｕｌｔ
ｂｅｈａｖｉｏｕｒｆｏｒｅＣｏｓｉｓｔｏｉｇｎｏｒｅｔｈｅＳＳＥｒｅｇｉｓｔｅｒｓ．
ＥｎａｂｌｉｎｇｔｈｉｓｏｐｔｉｏｎａｄｄｓＳＳＥｓｔａｔｅｉｎｆｏｒｍａｔｉｏｎｔｏ

８８２

ｅｖｅｒｙｔｈｒｅａｄｃｏｎｔｅｘｔ．″
｝

ｃｄｌ ｏｐｔｉｏｎＣＹＧＨＷＲ ＨＡＬ Ｉ３８６ ＰＥＮＴＩＵＭ ＧＤＢ ＲＥＧＳ｛

ｄｉｓｐｌａｙ″ＳｕｐｐｏｒｔｅｘｔｒａＰｅｎｔｉｕｍｒｅｇｉｓｔｅｒｓｉｎＧＤＢｓｔｕｂ″
ｆｌａｖｏｒｂｏｏｌ
ｄｅｆａｕｌｔ ｖａｌｕｅ０
ｄｅｓｃｒｉｐｔｉｏｎ″

ＴｈｉｓｏｐｔｉｏｎｅｎａｂｌｅｓｓｕｐｐｏｒｔｆｏｒｅｘｔｒａＰｅｎｔｉｕｍｒｅｇｉｓｔｅｒｓ
ｉｎｔｈｅＧＤＢｓｔｕｂ．ＴｈｅｓｅａｒｅｒｅｇｉｓｔｅｒｓｓｕｃｈａｓＣＲ０ＣＲ４，ａｎｄ
ａｌｌＭＳＲｓ．ＮｏｔａｌｌＧＤＢｓｓｕｐｐｏｒｔｔｈｅｓｅｒｅｇｉｓｔｅｒｓ，ｓｏｔｈｅ
ｄｅｆａｕｌｔｂｅｈａｖｉｏｕｒｆｏｒｅＣｏｓｉｓｔｏｎｏｔｉｎｃｌｕｄｅｔｈｅｍｉｎｔｈｅ
ＧＤＢｓｔｕｂｓｕｐｐｏｒｔｃｏｄｅ．″

｝

｝

在ｉ３８６的硬件抽象层中，链接脚本由体系结构抽象层提供。在其他体系结构如ＭＩＰＳ的
硬件抽象层中是由变体抽象层提供链接脚本。下面的选项为配置系统中其他组件提供了链接

脚本文件的名字（ｉ３８６．ｌｄ）：

ｃｄｌ ｏｐｔｉｏｎＣＹＧＢＬＤ ＬＩＮＫＥＲ ＳＣＲＩＰＴ｛

ｄｉｓｐｌａｙ″Ｌｉｎｋｅｒｓｃｒｉｐｔ″
ｆｌａｖｏｒｄａｔａ

ｎｏ ｄｅｆｉｎｅ
ｃａｌｃｕｌａｔｅｄ｛″ｓｒｃ／ｉ３８６．ｌｄ″｝

｝

最后，还需要提供一个接口表明该平台是否实现了ｈａｌｉ３８６ ｍｅｍ ｒｅａｌ ｒｅｇｉｏｎ ｔｏｐ（）
函数。如果实现了该函数，则应该包含这样一行：ｉｍｐｌｅｍｅｎｔｓＣＹＧＩＮＴ ＨＡＬ Ｉ３８６ ＭＥＭ
ＲＥＡＬ ＲＥＧＩＯＮ ＴＯＰ，像ＲｅｄＢｏｏｔ这样的包可以据此来检测是否存在该函数，从而对它进
行调用。如：

ｃｄｌｉｎｔｅｒｆａｃｅＣＹＧＩＮＴ ＨＡＬ Ｉ３８６ ＭＥＭ ＲＥＡＬ ＲＥＧＩＯＮ ＴＯＰ｛

ｄｉｓｐｌａｙ″Ｉｍｐｌｅｍｅｎｔａｔｉｏｎｓｏｆｈａｌｉ３８６ ｍｅｍ ｒｅａｌｒｅｇｉｏｎ ｔｏｐ（）″
｝

｝

至此，形成了一个完整的基于ｉ３８６结构的体系结构抽象层的ＣＤＬ文件。其他体系结构
的ＣＤＬ文件可以按照这种方法来产生。

９８２

第１２章 组件结构与ＣＤＬ
ｅＣｏｓ最为显著的特征是其可配置性。针对具体开发项目的不同，可以对系统的组件进行
适当的选择，实现系统在源码级的配置与裁剪，充分满足嵌入式系统的在系统资源方面和实时

方面的需求。ｅＣｏｓ的这种特性主要得力于它的组织结构和配置方式。它使用组件框架对系
统中的所有组件进行管理，为了实现这种管理，它采用了组件定义语言ＣＤＬ对所有的软件包
和组件进行描述。这一章首先对ｅＣｏｓ的配置机制和组件结构进行介绍，然后详细介绍组件定
义语言ＣＤＬ。在开发基于ｅＣｏｓ的新的软件包和组件时，需要使用ＣＤＬ语言。

１２１ ｅＣｏｓ的配置机制

ｅＣｏｓ组件框架着重强调的是组件的可配置性，其主要目的是可以利用可重用的软件组件
构造大部分的嵌入式应用程序，而这些可重用的软件组件又具有很高的可配置性。在开发嵌

入式应用软件的过程中，通常会受到几个方面的限制。首先是来自资源方面的限制。为节省

成本，许多嵌入式应用可供其使用的内存都很小，最后形成的可存放于ＲＯＭ、ＥＰＲＯＭ 或

ＦｌａｓｈＲＯＭ的映像文件除了包含应用所需程序代码外，不应该包含其他多余的代码。在像

Ｗｉｎｄｏｗｓ这样的桌面系统的应用程序中，通常对这些多余代码不会加以特别注意，但在嵌入式
应用中这种问题必须加以考虑。组件框架必须具有对组件进行配置的能力，剔除多余的不需

要的功能。另一种限制来自于嵌入式应用的实时性，这种实时需要往往会增加程序的代码量

和程序的执行时间。因此组件框架应该对组件的时间特性进行控制。还有一种限制来自嵌入

式应用程序的调试。一般来说，嵌入式应用程序的调试较为困难，特别是与时间相关的一些信

息难以重现和跟踪。在组件框架中可以使用一些可重用的用于调试目的的组件，结合源码级

调试工具（如ＧＤＢ），可以有效地对嵌入式应用进行调试。一旦调试工作完成，再使用组件框
架将这些用于调试目的的组件删除。

可配置性的目的是控制组件的行为。以调度器组件为例，它可以选择是否支持时间片，也

可以选择是否支持多优先级，它还可以选择是否对传递给调度器函数的参数的合法性进行检

查。以桌面应用程序的图形界面为例，对这种行为的选择包括它的某个按钮是采用文本方式

还是图形方式、采用文本方式时的字符大小、其前景和背景采用什么颜色等等。对组件的所有

这些行为都需要进行一系列的选择，组件框架为此提供了一种选择和配置机制。对这些行为

进行控制的方法之一是在应用程序运行时进行控制，这种方法必须实现各种可能的选择，即使

实际应用不需要的行为也可能包括在应用程序中，因此其缺点是代码量大。另一种控制方法

是在链接时进行控制，其典型的例子是面向对象语言中的继承机制。以上面提到的文本按钮

和图形按钮为例，按钮库提供一个抽象基础类Ｂｕｔｔｏｎ和派生类ＴｅｘｔＢｕｔｔｏｎ与ＰｉｃｔｕｒｅＢｕｔｔｏｎ，
如果应用程序只使用文本按钮则只需生成ＴｅｘｔＢｕｔｔｏｎ类的对象，而不会用到ＰｉｃｔｕｒｅＢｕｔｔｏｎ类
的代码。这种方法在大多数情况下都很有效，能减少最后的映像文件的大小。但这种方法也

有其缺点，如果派生类过多就难于管理。

０９２

相对于这两种方法而言，ｅＣｏｓ组件框架在更早的阶段就对组件的行为进行控制。它在对
源码进行编译和建库的时候就着手对组件行为进行控制。以上面提到的按钮为例，按钮组件

提供了一些选项，比如一个只需要文本按钮支持的选项。在对组件进行编译并生成应用所需

的库文件时，库文件中只包含了应用程序所需要的代码。具有不同需求的不同应用程序必须

具有不同版本的库文件，这些库文件通过各自不同的配置所产生。

从理论上来说，这种编译时的可配置性可以在减少程序代码方面取得最好的效果。它可

以在单个语句级别上进行控制，而不是在函数级和对象级上进行控制。可以用一个与嵌入式

系统密切相关的支持多线程的包作为例子来加以说明。这种包中有一个标准函数用于异步终

止线程（在ＰＯＳＩＸ中该函数是ｐｔｈｒｅａｄ ｃａｎｃｅｌ，在μＩＴＲＯＮ中是ｔｅｒ ｔｓｋ）。这些函数本身具
有相当可观的代码量，但问题并不在此，而是在于系统的其他部分为了保证线程终止函数的正

确运行需要另外的程序代码和数据。例如，当一个线程在等待一个互斥体而处于阻塞状态时，

如果另一个线程要终止该线程则可能必须完成两种操作：从等待该互斥体的线程队列中删除

该线程、解除其优先级继承所造成的影响。为实现这些操作，在线程数据结构中必须增加一部

分数据用来表示线程当前状态，同时在互斥体程序中必须增加相应的程序代码来对数据结构

中的这一部分数据进行操作。然而，许多嵌入式应用程序并不需要这种异步线程终止的能力，

这种线程终止程序不应该包含在最终的应用映像文件内。但是，如果不在编译时对其进行配

置和控制，在最终的应用映像中仍然会包含互斥体程序中的这些无用的程序代码和数据。ｅ
Ｃｏｓ具有编译时的可配置能力，可以很好地解决这一问题。例如，在其互斥体程序中包含了一
些用于线程终止的语句，这些语句只有在需要该功能时才被编译。这种配置的结果是最后的

应用映像文件只包含了实际应用所需要的代码和数据，而不会包含其他多余的程序代码和数

据。

ｅＣｏｓ的这种编译时的配置能力具有一定的复杂性。它不能完全取代其他配置方法，它与
运行时的选择控制能力和链接时的选择控制能力相互补充。编译时的配置能力是这三种配置

方法中最有效的一种配置方法，最适合于嵌入式系统的开发。

ｅＣｏｓ的组件支持从简单到复杂的各种不同程度的配置能力，不同的组件可能具有不同的
可配置程度。最简单的配置仅仅是选择是否加载某一特定的软件包，而该软件包可能没有任

何可配置的选项。具有高可配置性的组件可能会包含几个甚至几十个配置选项，可以提供非

常精细的配置。

１２２ ｅＣｏｓ组织结构及编译过程

为满足系统的可配置性和可裁剪性，ｅＣｏｓ对一些相对独立的软件以包的形式进行封装。

ｅＣｏｓ的软件包必须符合组件框架的一些规则才可以使用。软件包要以统一的格式发布，组件
仓库管理工具使用这种统一的格式来对软件包进行管理。同时，软件包要为组件框架提供一

个对该包进行描述的顶层ＣＤＬ脚本。为了保证软件包在不同环境下仍然能够使用，对该包进
行编译的方法也必须满足一些条件。

１２２１ 软件包与组件仓库

ｅＣｏｓ具有一个组件仓库，这是一个包含所有已经安装的包的目录结构。组件框架提供了

１９２

一个管理工具，可以用其安装新的软件包或者安装已有软件包的新版本，也可以删除软件包。

组件框架包含了一个由管理工具进行维护的简单的数据库，该数据库包含了各种软件包的详

细信息。图１２１为ｅＣｏｓ组件仓库结构示意图。

图１２１ 软件包的目录结构

每个包在组件仓库中都有自己的目录结构，不允许多个包同时出现在同一个目录下。ｅｒ
ｒｏｒ包、ｉｎｆｒａ包和ｋｅｒｎｅｌ包都位于组件仓库的最顶层。其他一些软件包也有自己固定的目录：

ｃｏｍｐａｔ目录用于实现兼容目的的软件包如μＩＴＲＯＮ、ＰＯＳＩＸ等，ｈａｌ目录包含的软件包用于将

ｅＣｏｓ移植到不同的系统结构和平台，ｉｏ目录包含了设备驱动程序软件包，ｌａｎｇｕａｇｅ目录用于语
言支持库（如Ｃ语言库）。在安装一个新的软件包时，对于将该包放置到哪个目录并没有严格
的限制。如果需要的话，可以创建一个新的目录来安装新的软件包。

ｅｃｏｓｄｂ文件保存的是组件仓库数据库，由管理工具进行管理。ｅＣｏｓ配置工具在启动时通
过读取该文件来获取已安装的各种软件包的信息。在开发一个新的软件包时，需要在该文件

中加入一些相关的信息，也就是必须更新数据库文件ｅｃｏｓｄｂ。ｔｅｍｐｌａｔｅｓ目录保存了各种配置
模板。

在每一个软件包的目录下可以有一个或多个版本的以版本号命名的子目录。这样允许用

户安装同一个软件包的多个版本，用户可以选择其中的一个版本来开发应用程序。管理工具

可以删除不需要的版本。

１２２２ 软件包的内容与格式

软件包通常包含如下内容：

① 用于生成库文件的源程序文件，应用程序与这些库文件链接生成可执行文件。有些源
文件可能用于其他目的，如提供一个链接脚本文件。

② 对软件包提供的接口进行定义的导出头文件。

③ 在线说明。

④ 测试源程序，用于检查软件包是否能在指定硬件和配置下正常工作。

⑤ 用于描述该软件包的一个或多个ＣＤＬ脚本文件
软件包通常还包含一个记录该包变化历史的文件ＣｈａｎｇＬｏｇ。一个软件包不一定包含上

述全部内容，但必须至少具有一个描述该包的ＣＤＬ脚本文件，否则组件框架将无法对其进行
处理。有些软件包可能没有任何源代码，例如一个只对其他包实现的公共接口进行定义的软

件包。一些包可能只有源代码而没有任何导出头文件，如以太网设备驱动程序，它只实现一个

标准接口而不提供任何附加功能。另外，软件包不一定都有在线说明。

组件框架建议软件包采用图１２２所示的目录结构，对软件包的内容可以按功能的不同进

２９２

行划分。

图１２２ ｅＣｏｓ组件仓库示意图

１２２３ 编译过程

在对ｅＣｏｓ进行编译之前需要对其进行配置。配置工作可由ｅＣｏｓ图形配置工具或命令行
配置工具进行。ｅＣｏｓ的编译涉及到三个目录树：组件仓库（ｃｏｍｐｏｎｅｎｔｒｅｐｏｓｉｔｏｒｙ）、编译树
（ｂｕｉｌｄｔｒｅｅ）、安装树（ｉｎｓｔａｌｌｔｒｅｅ）。

① 组件仓库。组件仓库包含了所有软件包的源代码、ＣＤＬ脚本文件以及说明文档等等。
从编译的角度来看，这是一个源目录树，可以看成是一个只读资源。开发人员只能在安装或删

除软件包的时候通过管理工具对组件仓库进行修改。

② 编译树。每一种配置都具有自己的编译树，在任何时间都可以通过使用ｅＣｏｓ配置保
存文件如ｅｃｏｓｅｃｃ来生成该目录树。在完成对ｅＣｏｓ的配置后，可以将这种配置保存在ｅ
ｃｏｓｅｃｃ配置文件中（文件名不一定是ｅｃｏｓｅｃｃ，但扩展名必须是ｅｃｃ）。编译树只包含中间文
件，主要是编译时产生的目标文件。一旦完成全部的编译工作，编译树所包含的信息就不再有

用，可以删除。但如果对配置进行了修改，则需要再一次使用编译树。

③ 安装树。该目录树的内容在编译过程中产生，它包含了与应用开发相关的所有文件。
该目录树有一个ｌｉｂ子目录，包含了库文件ｌｉｂｔａｒｇｅｔａ、链接脚本、启动代码等等。它还有一个

ｉｎｃｌｕｄｅ子目录，包含了各种软件包的导出头文件。另外还有一个ｉｎｃｌｕｄｅ／ｐｋｇｃｏｎｆ子目录包含
了各种配置头文件，这些配置头文件主要由选项的＃ｄｅｆｉｎｅ语句组成。在成功完成编译后，开
发应用程序时只使用安装树，不需要使用组件仓库和编译树中的任何文件。安装树中不会有

任何软件包的说明文档，这些说明文档只保存在组件仓库内。

编译过程的一般步骤如下：

１）对于一个给定的配置，组件框架负责生成编译树和安装树的所有目录。如果这些目录
树已经存在，组件框架将对其进行清扫工作。例如，如果一个软件包被删除，则组件框架将删

除其在编译树和安装树中的所有相关文件。配置头文件将在此时生成。组件框架根据具体的

主机开发环境将生成ｍａｋｅｆｉｌｅ文件或其他用于编译各种软件包的类似文件。为保证所有的选
项能发挥作用，对配置进行的每一次修改都必须重复这一步工作。

２）在实际编译过程中，首先要确认安装树包含了所有的导出头文件。安装树的ｉｎｃｌｕｄｅ
子目录将是编译过程中查找头文件的目录之一。

３）对与当前配置相关的所有源代码文件进行编译。编译时使用一组与目标平台相关的
编译标志，每个软件包可以对这些编译标志进行修改，用户也可以修改这些编译标志。编译生

成的所有目标文件将保存在编译树内。

４）一旦全部源文件编译完成，所有的目标文件将生成一个库文件，该库文件通常是ｌｉｂ
ｔａｒｇｅｔａ，应用程序可以与该库文件进行链接产生执行文件。所生成的库文件位于安装树内。

３９２

５）组件框架使用ｍａｋｅ ｏｂｊｅｃｔ和ｍａｋｅ属性可以对编译步骤进行定制。

１２３ 组件定义语言ＣＤＬ

组件定义语言ＣＤＬ（ＣｏｍｐｏｎｅｎｔＤｅｆｉｎｉｔｉｏｎＬａｎｇｕａｇｅ）是ｅＣｏｓ组件框架的一个关键部分。

ｅＣｏｓ中所有的包都必需具有至少一个ＣＤＬ脚本对该包进行描述。这种ＣＤＬ脚本包含了该包
中所有配置选项的详细信息，并且提供了一些如何对该包进行编译的信息。当实现一个新的

组件或者将其他软件包转换为一个ｅＣｏｓ组件时，必须编写相应的ＣＤＬ脚本。
下面是一个简单的ＣＤＬ脚本：

ｃｄｌ ｐａｃｋａｇｅＣＹＧＰＫＧ ＥＲＲＯＲ｛

ｄｉｓｐｌａｙ ″Ｃｏｍｍｏｎｅｒｒｏｒｃｏｄｅｓｕｐｐｏｒｔ″
ｃｏｍｐｉｌｅｓｔｒｅｒｒｏｒｃｘｘ

ｉｎｃｌｕｄｅ ｄｉｒｃｙｇ／ｅｒｒｏｒ
ｄｅｓｃｒｉｐｔｉｏｎ″

Ｔｈｉｓｐａｃｋａｇｅｃｏｎｔａｉｎｓｔｈｅｃｏｍｍｏｎｌｉｓｔｏｆｅｒｒｏｒａｎｄ
ｓｔａｔｕｓｃｏｄｅｓＩｔｉｓｈｅｌｄｃｅｎｔｒａｌｌｙｔｏａｌｌｏｗ

ｐａｃｋａｇｅｓｔｏｉｎｔｅｒｃｈａｎｇｅｅｒｒｏｒｃｏｄｅｓａｎｄｓｔａｔｕｓ
ｃｏｄｅｓｉｎａｃｏｍｍｏｎｗａｙ，ｒａｔｈｅｒｔｈａｎｅａｃｈｐａｃｋａｇｅ
ｈａｖｉｎｇｉｔｓｏｗｎｃｏｎｖｅｎｔｉｏｎｓｆｏｒｅｒｒｏｒ／ｓｔａｔｕｓ
ｒｅｐｏｒｔｉｎｇＴｈｅｅｒｒｏｒｃｏｄｅｓａｒｅｍｏｄｅｌｌｅｄｏｎｔｈｅ
ＰＯＳＩＸｓｔｙｌｅｎａｍｉｎｇｅｇＥＩＮＶＡＬｅｔｃＴｈｉｓｐａｃｋａｇｅ
ａｌｓｏｐｒｏｖｉｄｅｓｔｈｅｓｔａｎｄａｒｄｓｔｒｅｒｒｏｒ（）ｆｕｎｃｔｉｏｎｔｏ
ｃｏｎｖｅｒｔｅｒｒｏｒｃｏｄｅｓｔｏｔｅｘｔｕａｌｒｅｐｒｅｓｅｎｔａｔｉｏｎ″

｝

这是一个简单的错误代码包，它没有任何子组件和配置选项。包内有一个内部名字

ＣＹＧＰＫＧ ＥＲＲＯＲ，其他包的ＣＤＬ脚本可以使用“ｒｅｑｕｉｒｅＣＹＧＰＫＧ ＥＲＲＯＲ″来引用它。在
一个配置头文件中还可以对该符号使用＃ｄｅｆｉｎｅ。除了包的名字外，ＣＤＬ脚本还包含了该组
件包的许多属性。属性ｄｉｓｐｌａｙ对该包进行了简短的描述，而属性ｄｅｓｃｒｉｐｔｉｏｎ则对该包进行详
细描述，用户可以从该属性了解到更多有关该组件包的信息。ｃｏｍｐｉｌｅ和ｉｎｃｌｕｄｅ ｄｉｒ属性列
举了该组件包在编译时的一些信息。该包没有提供它的在线说明信息。

有些包的ＣＤＬ脚本甚至比这个例子更为简单。如果包仅仅只提供一个接口而没有任何
需要编译的文件，则它不需要ｃｏｍｐｉｌｅ属性。如果没有任何头文件或者头文件位于ｉｎｓｔａｌｌ／ｉｎ
ｃｌｕｄｅ的顶级目录，则不需要ｉｎｃｌｕｄｅ ｄｉｒ属性。
然而，大多数的包都要比错误包复杂得多，它们包含了各种各样的子组件和配置选项。下

面例子出自于ｉｎｆｒａｓｔｒｕｃｔｕｒｅ包：

ｃｄｌｃｏｍｐｏｎｅｎｔＣＹＧＤＢＧ ＩＮＦＲＡ ＤＥＢＵＧ ＴＲＡＣＥ ＡＳＳＥＲＴ ＢＵＦＦＥＲ｛

ｄｉｓｐｌａｙ ″Ｂｕｆｆｅｒｅｄｔｒａｃｉｎｇ″
ｄｅｆａｕｌｔ ｖａｌｕｅ１
ａｃｔｉｖｅｉｆ ＣＹＧＤＢＧ ＵＳＥ ＴＲＡＣＩＮＧ

４９２

ｄｅｓｃｒｉｐｔｉｏｎ ″
Ａｎｏｕｔｐｕｔｍｏｄｕｌｅｗｈｉｃｈｂｕｆｆｅｒｓｏｕｔｐｕｔｆｒｏｍｔｒａｃｉｎｇａｎｄ
ａｓｓｅｒｔｉｏｎｅｖｅｎｔｓＴｈｅｓｔｏｒｅｄｍｅｓｓａｇｅｓａｒｅｏｕｔｐｕｔｗｈｅｎａｎ
ａｓｓｅｒｔｆｉｒｅｓ，ｏｒＣＹＧ ＴＲＡＣＥ ＰＲＩＮＴ（）（ｄｅｆｉｎｅｄｉｎ
＜ｃｙｇ／ｉｎｆｒａ／ｃｙｇ ｔｒａｃｈ＞）ｉｓｃａｌｌｅｄＯｆｃｏｕｒｓｅ，ｔｈｅｒｅｗｉｌｌ
ｏｎｌｙｂｅｓｔｏｒｅｄｍｅｓｓａｇｅｓｉｆｔｒａｃｉｎｇｐｅｒｓｅ（ＣＹＧＤＢＧ ＵＳＥ ＴＲＡＣＩＮＧ）

ｉｓｅｎａｂｌｅｄａｂｏｖｅ″

ｃｄｌ ｏｐｔｉｏｎＣＹＧＤＢＧ ＩＮＦＲＡ ＤＥＢＵＧ ＴＲＡＣＥ ＢＵＦＦＥＲ ＳＩＺＥ｛

ｄｉｓｐｌａｙ ″Ｔｒａｃｅｂｕｆｆｅｒｓｉｚｅ″
ｆｌａｖｏｒ ｄａｔａ
ｄｅｆａｕｌｔ ｖａｌｕｅ３２
ｌｅｇａｌ ｖａｌｕｅｓ ５ｔｏ６５５３５
ｄｅｓｃｒｉｐｔｉｏｎ ″

ＴｈｅｓｉｚｅｏｆｔｈｅｔｒａｃｅｂｕｆｆｅｒＴｈｉｓｃｏｕｎｔｓｔｈｅｎｕｍｂｅｒｏｆ
ｔｒａｃｅｒｅｃｏｒｄｓｓｔｏｒｅｄＷｈｅｎｔｈｅｂｕｆｆｅｒｆｉｌｌｓｉｔｅｉｔｈｅｒ
ｗｒａｐｓ，ｓｔｏｐｓｒｅｃｏｒｄｉｎｇ，ｏｒｇｅｎｅｒａｔｅｓｏｕｔｐｕｔ″

｝


｝

与ｃｄｌ ｐａｃｋａｇｅ一样，ｃｄｌｃｏｍｐｏｎｅｎｔ也有名字和体，体包含了该组件各种各样的属性，它
还可以包含子组件或选项。同样，ｃｄｌ ｏｐｔｉｏｎ也有名字和属性体。上面这个例子还列出了一
些新的属性：ｄｅｆａｕｌｔ ｖａｌｕｅ、ａｃｔｉｖｅ ｉｆ、ｆｌａｖｏｒ以及ｌｅｇａｌ ｖａｌｕｅｓ。

１２３１ ＣＤＬ命令

在顶层ＣＤＬ脚本中可能包含有四个ＣＤＬ命令，它们是ｃｄｌ ｐａｃｋａｇｅ，ｃｄｌ ｃｏｍｐｏｎｅｎｔ，ｃｄｌ
ｏｐｔｉｏｎ和ｃｄｌｉｎｔｅｒｆａｃｅ。这四个命令是ＣＤＬ语言的基本构造单位，它们具有相同的基本格
式：

（１）ｃｄｌ ｏｐｔｉｏｎ命令。

ｃｄｌ ｏｐｔｉｏｎ＜ｎａｍｅ＞｛


｝

ｃｄｌ ｏｐｔｉｏｎ命令定义单个配置选项（ｏｐｔｉｏｎ）。选项是可配置的一个基本单位。每一个选
项一般都对应于用户的一个选择。

（２）ｃｄｌ ｃｏｍｐｏｎｅｎｔ命令。

ｃｄｌｃｏｍｐｏｎｅｎｔ＜ｎａｍｅ＞｛


｝

ｃｄｌ ｃｏｍｐｏｎｅｎｔ命令定义一个组件（ｃｏｍｐｏｎｅｎｔ），是一组配置选项的集合。组件是一个包

５９２

含其他选项和子组件的一个配置选项。

（３）ｃｄｌ ｐａｃｋａｇｅ命令。

ｃｄｌ ｐａｃｋａｇｅ＜ｎａｍｅ＞｛


｝

ｃｄｌ ｐａｃｋａｇｅ命令定义一个包（ｐａｃｋａｇｅ），一个可以发布的组件。包是一个发布单位，它也
是一个配置选项，用户可以选择是否将特定的包加入到配置中，并且可以选择加载哪个版本的

包。包同时也是一个组件，它以层次结构的形式包含其他的组件和选项。

（４）ｃｄｌｉｎｔｅｒｆａｃｅ命令。

ｃｄｌｉｎｔｅｒｆａｃｅ＜ｎａｍｅ＞｛


｝

ｃｄｌｉｎｔｅｒｆａｃｅ命令定义一个接口（ｉｎｔｅｒｆａｃｅ）。接口是一种特殊类型的配置选项。
紧跟在这些ＣＤＬ命令后面的ｎａｍｅ是被定义的选项、组件、包或接口的名字，随后是｛｝内

的命令属性体。包和组件还可以包含其他项，因此ｃｄｌ ｐａｃｋａｇｅ和ｃｄｌ ｃｏｍｐｏｎｅｎｔ在其体内
还可以具有嵌套命令。在一个给定的配置中，名字必须是惟一的。例如，如果Ｃ库包和ＴＣＰ／

ＩＰ协议栈包都具有一个相同名字的选项，那么这两个包不能同时出现在同一个配置中。使用
命名约定可以避免名字冲突。如果两个包不可能同时出现在同一个配置中时，则可以使用相

同的名字。在硬件抽象层ＨＡＬ包内会出现这种情况。
每一个包都有一个顶层ＣＤＬ脚本，在包的数据库入口ｅｃｏｓｄｂ中对该脚本有详细说明。

通常顶层ＣＤＬ脚本名字与相应的包有关，例如内核包使用的ＣＤＬ脚本的名字为ｋｅｒｎｅｌｃｄｌ。
顶层脚本中第一条命令是ｃｄｌ ｐａｃｋａｇｅ，它所使用的名字ｎａｍｅ与ｅｃｏｓｄｂ中所使用的名字相
同。每一个包只能有一个ｃｄｌ ｐａｃｋａｇｅ命令。
各种各样的ＣＤＬ实体均具有层次结构。以内核包为例，它包含一个调度组件、一个同步

原语组件以及其他一些组件，同步组件又包含各种各样的选项（例如，是否使能互斥体优先级

继承的选项）。对于组件嵌套的层数没有上限和下限的规定，但一般不会超过四层。

采用这种层次结构有两个目的。使用层次结构可以对选项进行统一控制，禁止某个组件

将自动禁止该组件下的所有选项。另一个目的是在图形配置工具中可以更加简单明了地表示

配置结构，便于浏览和修改配置选项。

默认情况下，包都位于层次结构的顶层。但有时可能使用ｐａｒｅｎｔ属性来指定它在层次结
构中的位置。例如，体系结构抽象层ＨＡＬ包（如ＣＹＧＰＫＧ ＨＡＬ ＳＨ）通常使用ｐａｒｅｎｔ属性
来将其置于ＣＹＧＰＫＧ ＨＡＬ之下，而平台抽象层ＨＡＬ包又通过ｐａｒｅｎｔ属性将其置于这种体
系结构抽象层ＨＡＬ之下。这种方法可以使得这种层次结构更具有可读性。组件、选项和接
口都可以使用ｐａｒｅｎｔ属性，但不常用。
在顶层脚本中定义的所有组件、选项和接口都直接放置在包（ｃｄｌ ｃｏｍｐｏｎｅｎｔ）之下。它们

也可以嵌套在ｃｄｌ ｐａｃｋａｇｅ命令体中。下面两个脚本具有相同的效果：
脚本１：

ｃｄｌ ｐａｃｋａｇｅＣＹＧＰＫＧ ＬＩＢＣ｛

６９２


｝

ｃｄｌｃｏｍｐｏｎｅｎｔＣＹＧＰＫＧ ＬＩＢＣ ＳＴＲＩＮＧ｛


｝

ｃｄｌ ｏｐｔｉｏｎＣＹＧＰＫＧ ＬＩＢＣ ＣＴＹＰＥ ＩＮＬＩＮＥＳ｛


｝

脚本２：

ｃｄｌ ｐａｃｋａｇｅＣＹＧＰＫＧ ＬＩＢＣ｛


ｃｄｌｃｏｍｐｏｎｅｎｔＣＹＧＰＫＧ ＬＩＢＣ ＳＴＲＩＮＧ｛


｝

ｃｄｌ ｏｐｔｉｏｎＣＹＧＰＫＧ ＬＩＢＣ ＣＴＹＰＥ ＩＮＬＩＮＥＳ｛


｝

｝

如果一个脚本既有位于ｃｄｌ ｐａｃｋａｇｅ命令体外的选项定义，也有位于其体内的选项定义，
那么命令体内的选项将最先得到处理。

组件还可以包含选项和其他一些ＣＤＬ实体，这实际上也是它与选项之间的区别。这种定
义可以在ｃｄｌ ｃｏｍｐｏｎｅｎｔ命令体内进行，例如：

ｃｄｌｃｏｍｐｏｎｅｎｔＣＹＧＰＫＧ ＬＩＢＣ ＳＴＤＩＯ｛

ｃｄｌｃｏｍｐｏｎｅｎｔＣＹＧＰＫＧ ＬＩＢＣ ＳＴＤＩＯ ＦＬＯＡＴＩＮＧ ＰＯＩＮＴ｛


｝

ｃｄｌ ｏｐｔｉｏｎＣＹＧＳＥＭ ＬＩＢＣ ＳＴＤＩＯ ＴＨＲＥＡＤ ＳＡＦＥ ＳＴＲＥＡＭＳ｛


｝

｝

这种组件命令体内的嵌套选项只在配置选项数量有限的简单包中较为有效，当选项数量

增加时就难以取得令人满意的效果。解决的方法是将ＣＤＬ内容以组件为基本单位分成多个

ＣＤＬ脚本。此时将用到ｓｃｒｉｐｔ属性。例如，在Ｃ库内所有与ｓｔｄｉｏ相关的配置选项都位于

ｓｔｄｉｏｃｄｌ，顶层ＣＤＬ脚本ｌｉｂｃｃｄｌ将包含下面语句：

ｃｄｌ ｐａｃｋａｇｅＣＹＧＰＫＧ ＬＩＢＣ｛


ｃｄｌｃｏｍｐｏｎｅｎｔＣＹＧＰＫＧ ＬＩＢＣ ＳＴＤＩＯ｛


ｓｃｒｉｐｔｓｔｄｉｏｃｄｌ

７９２

｝

｝

组件ＣＹＧＰＫＧ ＬＩＢＣ ＳＴＤＩＯ ＦＬＯＡＴＩＮＧ ＰＯＩＮＴ和选项ＣＹＧＳＥＭ ＬＩＢＣ
ＳＴＤＩＯ ＴＨＲＥＡＤ ＳＡＦＥ ＳＴＲＥＡＭＳ被放置到ｓｔｄｉｏｃｄｌ的顶层。ｃｄｌ ｃｏｍｐｏｎｅｎｔ命令体
内可能有一些嵌套选项，另外还可以通过ｓｃｒｉｐｔ属性的形式来使用位于其他文件内的选项。
在这种情况下，首先将处理嵌套选项，然后再读取其他脚本中的选项。由ｓｃｒｉｐｔ属性指定的脚
本只能用于对新的选项、组件或接口进行定义，它不应该包含任何当前组件的附加属性。

１２３２ ＣＤＬ属性

包、组件、选项以及接口都有一个属性体，属性体用于说明如何对它们的每一个选项进行

处理。例如，属性ｄｅｓｃｒｉｐｔｉｏｎ用于描述文本消息，它告诉用户该选项在目标应用中的使用效
果。而ｄｅｆａｕｌｔ属性用于说明选项的默认值是什么，如指定某个特定选项的默认值是使能还是
禁止。所有的属性都是可选的，配置选项的属性体可以是一个空体。

不同的属性具有不同的目的，因此它们的语法并不完全一致。某些属性可能没有任何值，

一些属性可能有单一的值（如描述字符串），而另一些属性则可能有一个参数列表，例如用于指

定哪些文件应该编译的属性ｃｏｍｐｉｌｅ。
大多数的属性可以被用在任何一个ｃｄｌ ｐａｃｋａｇｅ、ｃｄｌ ｃｏｍｐｏｎｅｎｔ、ｃｄｌ ｏｐｔｉｏｎ和ｃｄｌ ｉｎ

ｔｅｒｆａｃｅ命令中。但有些属性具有专用性，例如ｓｃｒｉｐｔ属性，它只与组件有关。ｄｅｆｉｎｅ ｈｅａｄｅｒ、

ｈａｒｄｗａｒｅ、ｉｎｃｌｕｄｅ ｄｉｒ、ｉｎｃｌｕｄｅ ｆｉｌｅｓ和ｌｉｂｒａｒｙ等属性只适用于包，因此这些属性只能出现在

ｃｄｌ ｐａｃｋａｇｅ命令中。ｃａｌｃｕｌａｔｅｄ、ｄｅｆａｕｌｔ ｖａｌｕｅ和ｆｌａｖｏｒ等属性与包以及接口无关，ｌｅｇａｌ ｖａｌ
ｕｅ属性与包无关。
下面根据属性所服务的不同目的对它们进行分组介绍。

１信息类属性
如果选项具有足够的说明信息，用户就可以很方便地进行配置操作。有三个属性用于对

选项提供纯文本方式的解释：

①ｄｉｓｐｌａｙ属性。为选项提供一个文本方式的别名。它提供一个比ＣＹＧＰＫＧ ＬＩＢＣ
ＴＩＭＥ ＺＯＮＥＳ这样的选项名字更易于理解的名字。

②ｄｅｓｃｒｉｐｔｉｏｎ属性。为选项提供一段很详细的文字说明。

③ｄｏｃ属性。指定与该选项相关的在线说明文档位置。
例如：

ｃｄｌ ｐａｃｋａｇｅＣＹＧＰＫＧ ＵＩＴＲＯＮ｛

ｄｉｓｐｌａｙ ″ｕＩＴＲＯＮｃｏｍｐａｔｉｂｉｌｉｔｙｌａｙｅｒ″
ｄｏｃ ｒｅｆ／ｅｃｏｓｒｅｆａｈｔｍｌ
ｄｅｓｃｒｉｐｔｉｏｎ ″

ｅＣｏｓｓｕｐｐｏｒｔｓａｕＩＴＲＯＮＣｏｍｐａｔｉｂｉｌｉｔｙＬａｙｅｒ，ｐｒｏｖｉｄｉｎｇ
ｆｕｌｌＬｅｖｅｌＳ（Ｓｔａｎｄａｒｄ）ｃｏｍｐｌｉａｎｃｅｗｉｔｈＶｅｒｓｉｏｎ３０２ｏｆ
ｔｈｅｕＩＴＲＯＮＳｔａｎｄａｒｄ，ｐｌｕｓｍａｎｙＬｅｖｅｌＥ（Ｅｘｔｅｎｄｅｄ）ｆｅａｔｕｒｅｓ
ｕＩＴＲＯＮｉｓｔｈｅｐｒｅｍｉｅｒＪａｐａｎｅｓｅｅｍｂｅｄｄｅｄＲＴＯＳｓｔａｎｄａｒｄ″



８９２

｝

在图形配置工具中，用户主要是通过ｄｉｓｐｌａｙ属性所提供的字符串来辨别配置选项的，例
如上例中的“ｕＩＴＲＯＮｃｏｍｐａｔｉｂｉｌｉｔｙｌａｙｅｒ”。当选中配置选项时，图形配置工具将会显示ｄｅ
ｓｃｒｉｐｔｉｏｎ属性所提供的详细说明文字。如果想要了解更多的信息，则可以通过图形配置工具
访问ｄｏｃ属性提供的在线说明文档。
这三个属性都只有一个参数。ｄｉｓｐｌａｙ和ｄｅｓｃｒｉｐｔｉｏｎ属性的参数只是一个字符串，ｄｏｃ属

性的参数则是一个ＨＴＭＬ文件。配置工具将从该包的ｄｏｃ子目录中查找该文件，如果没有则
从该包的顶级目录查找。

２配置层次属性
有两个与组件和选项的层次结构相关的属性：ｐａｒｅｎｔ属性和ｓｃｒｉｐｔ属性。

ｐａｒｅｎｔ属性用于控制选项在配置层次结构中的位置，使用该属性可以将ＣＤＬ实体置于层
次结构中的任何位置。该属性在包中被经常使用，用以避免所有的包都出现在配置层次结构

的顶层。例如，体系结构ＨＡＬ包ＣＹＧＰＫＧ ＨＡＬ ＳＨ使用ｐａｒｅｎｔ属性将其置于公共ＨＡＬ
包ＣＹＧＰＫＧ ＨＡＬ之下：

ｃｄｌ ｐａｃｋａｇｅＣＹＧＰＫＧ ＨＡＬ ＳＨ｛

ｄｉｓｐｌａｙ ″ＳＨａｒｃｈｉｔｅｃｔｕｒｅ″
ｐａｒｅｎｔ ＣＹＧＰＫＧ ＨＡＬ

｝

ｐａｒｅｎｔ属性还可以用在ｃｄｌ ｃｏｍｐｏｎｅｎｔ、ｃｄｌ ｏｐｔｉｏｎ和ｃｄｌ ｉｎｔｅｒｆａｃｅ命令体内，但这种情
况出现较少。

ｓｃｒｉｐｔ属性用于从另一个ＣＤＬ脚本导入附加的配置信息。该属性仅在ｃｄｌ ｃｏｍｐｏｎｅｎｔ命
令中使用。它使用另一个ＣＤＬ脚本的文件名作为参数，该ＣＤＬ脚本文件包含一些置于当前
组件之下的附加的选项、子组件和接口。配置工具将从该包的ｃｄｌ子目录中查找该文件，如果
没有则从该包的顶级目录查找。ｓｃｒｉｐｔ属性使用例子如下：

ｃｄｌｃｏｍｐｏｎｅｎｔＣＹＧＰＫＧ ＬＩＢＣ ＳＴＤＩＯ｛

ｄｉｓｐｌａｙ ″Ｓｔａｎｄａｒｄｉｎｐｕｔ／ｏｕｔｐｕｔｆｕｎｃｔｉｏｎｓ″
ｆｌａｖｏｒ ｂｏｏｌ
ｒｅｑｕｉｒｅｓ ＣＹＧＰＫＧ ＩＯ
ｒｅｑｕｉｒｅｓ ＣＹＧＰＫＧ ＩＯ ＳＥＲＩＡＬ ＨＡＬＤＩＡＧ
ｄｅｆａｕｌｔ ｖａｌｕｅ１
ｄｅｓｃｒｉｐｔｉｏｎ ″

ＴｈｉｓｅｎａｂｌｅｓｓｕｐｐｏｒｔｆｏｒｓｔａｎｄａｒｄＩ／Ｏｆｕｎｃｔｉｏｎｓｆｒｏｍ＜ｓｔｄｉｏｈ＞″

ｓｃｒｉｐｔ ｓｔｄｉｏｃｄｌ
｝

３值相关属性
有七个属性与选项的值或状态相关。它们分别是：ｆｌａｖｏｒ、ｃａｌｃｕｌａｔｅｄ、ｄｅｆａｕｌｔ ｖａｌｕｅ、ｌｅｇａｌ

ｖａｌｕｅｓ、ａｃｔｉｖｅ ｉｆ、ｉｍｐｌｅｍｅｎｔｓ、ｒｅｑｕｉｒｅｓ。

９９２

在可配置的环境中，选项值的作用非同寻常。一个具体的配置可能使用也可能不使用某

个选项。有可能只选择数学库而不选择内核，而数学库的ＣＤＬ脚本仍然要涉及到内核选项，
例如，ＣＹＧＳＥＭ ＬＩＢＭ ＴＨＲＥＡＤ ＳＡＦＥ ＣＯＭＰＡＴ ＭＯＤＥ对ＣＹＧＶＡＲ ＫＥＲＮＥＬ
ＴＨＲＥＡＤＳ ＤＡＴＡ有一个强制需要。即使选项被使用，它也不一定是活跃的，这依赖于层次
结构中它的更高层的行为。例如，如果Ｃ库的ＣＹＧＰＫＧ ＬＩＢＣ ＳＴＤＩＯ组件被禁止，那么其
他的一些选项如ＣＹＧＮＵＭ ＬＩＢＣ ＳＴＤＩＯ ＢＵＦＳＩＺＥ就变成不相干的选项。
每一个选项都有一个用于使能／禁止的布尔值和一个数据值。许多选项只关心它的布尔

值，而有些选项则只关心它的数据值。使用ｆｌａｖｏｒ属性可以对选项的这种性质进行控制：

①ｆｌａｖｏｒｎｏｎｅ。指明选项的布尔值和数据值都是不可修改的。选项总是处于使能状态，
而且其数据值总是为１。它常常用于仅仅把组件当成层次结构中的一个占位符的情形。

②ｆｌａｖｏｒｂｏｏｌ。只有选项的布尔值可以被修改，数据值固定为１。

③ｆｌａｖｏｒｄａｔａ。只有选项的数据值可以被修改，布尔值固定为使能。

④ｆｌａｖｏｒｂｏｏｌｄａｔａ。选项的布尔值和数据值都可以被修改。

ｆｌａｖｏｒ属性不能用于包和接口。包总是具有ｂｏｏｌｄａｔａ值的ｆｌａｖｏｒ属性，接口总是具有ｄａｔａ
值的ｆｌａｖｏｒ属性。因为大多数的配置选择是一种简单的“是”与“否”的选择，因此选项和组件
的默认ｆｌａｖｏｒ属性值是ｂｏｏｌ。

ｃａｌｃｕｌａｔｅｄ属性用于那些用户不能修改、由目标硬件平台或其他选项的当前值所决定的选
项。ｃａｌｃｕｌａｔｅｄ属性不能用于包和接口。一般来说，应该避免出现具有这种属性的选项，它容
易使人混淆。该属性使用普通的ＣＤＬ表达式作为其参数。例如：

＃Ａｃｏｎｓｔａｎｔｏｎｓｏｍｅｔａｒｇｅｔｈａｒｄｗａｒｅ，ｐｅｒｈａｐｓｕｓｅｒｍｏｄｉｆｉａｂｌｅｏｎｏｔｈｅｒ
＃ｔａｒｇｅｔｓ
ｃｄｌ ｏｐｔｉｏｎＣＹＧＮＵＭ ＨＡＬ ＲＴＣ ＰＥＲＩＯＤ｛

ｄｉｓｐｌａｙ ″Ｒｅａｌｔｉｍｅｃｌｏｃｋｐｅｒｉｏｄ″
ｆｌａｖｏｒ ｄａｔａ
ｃａｌｃｕｌａｔｅｄ １２５００
｝

ｄｅｆａｕｌｔ ｖａｌｕｅ属性用ＣＤＬ表达式为选项提供一个默认值。它与ｃａｌｃｕｌａｔｅｄ属性相似，但
只指定一个可以修改的默认值。该属性与包和接口无关。下面是它的一个例子：

ｃｄｌ ｏｐｔｉｏｎＣＹＧＤＢＧ ＨＡＬ ＤＥＢＵＧ ＧＤＢ ＴＨＲＥＡＤ ＳＵＰＰＯＲＴ｛

ｄｉｓｐｌａｙ ″ＩｎｃｌｕｄｅＧＤＢｍｕｌｔｉｔｈｒｅａｄｉｎｇｄｅｂｕｇｓｕｐｐｏｒｔ″
ｒｅｑｕｉｒｅｓ ＣＹＧＤＢＧ ＫＥＲＮＥＬ ＤＥＢＵＧ ＧＤＢ ＴＨＲＥＡＤ ＳＵＰＰＯＲＴ
ｄｅｆａｕｌｔ ｖａｌｕｅＣＹＧＤＢＧ ＫＥＲＮＥＬ ＤＥＢＵＧ ＧＤＢ ＴＨＲＥＡＤ ＳＵＰＰＯＲＴ

｝

ｌｅｇａｌ ｖａｌｕｅｓ属性对选项的数据值作出一个限制。它只适用于ｆｌａｖｏｒ属性为ｄａｔａ或ｂｏｏｔ
ｄａｔａ的选项。ｌｅｇａｌ ｖａｌｕｅｓ属性不能用于包。例子如下：

ｃｄｌ ｏｐｔｉｏｎＣＹＧＮＵＭ ＬＩＢＣ ＴＩＭＥ ＳＴＤ ＤＥＦＡＵＬＴ ＯＦＦＳＥＴ｛

ｄｉｓｐｌａｙ ″ＤｅｆａｕｌｔＳｔａｎｄａｒｄＴｉｍｅｏｆｆｓｅｔ″

００３

ｆｌａｖｏｒ ｄａｔａ
ｌｅｇａｌ ｖａｌｕｅｓ ９００００ｔｏ９００００
ｄｅｆａｕｌｔ ｖａｌｕｅ０

｝

ａｃｔｉｖｅ ｉｆ属性对选项或其他ＣＤＬ实体的活跃状态进行控制。配置选项或其他ＣＤＬ实体
的状态可能是活跃的也可能是不活跃的，这种活跃状态通常受到该选项在层次结构中所处位

置的控制。它与选项的状态有关，而与选项的值无关。例如，如果ＣＹＧＰＫＧ ＬＩＢＣ ＳＴＤＩＯ
组件被禁止，那么位于它下面的所有选项都将处于不活跃状态，而且对结果不会有任何影响。

在某些情况下，这种层次结构对选项的活跃状态难以提供足够的控制。以数学库为例，数学库

可以提供浮点例外支持，但它还需要有硬件的支持。相应的数学库配置选项在整个层次结构

中的位置处于ＣＹＧＰＫＧ ＬＩＢＭ包之下，除非有适当的硬件支持，否则这些选项将是不活跃
的。在这种情况下，需要使用ａｃｔｉｖｅ ｉｆ属性。ａｃｔｉｖｅ ｉｆ属性还可以用来避免配置层次结构中
出现过多的嵌套。例子如下：

＃Ｄｏｎｏｔｐｒｏｖｉｄｅｅｘｔｒａｓｅｍａｐｈｏｒｅｄｅｂｕｇｇｉｎｇｉｆｔｈｅｒｅａｒｅｎｏｓｅｍａｐｈｏｒｅｓ
ｃｄｌ ｏｐｔｉｏｎＣＹＧＤＢＧ ＫＥＲＮＥＬ ＩＮＳＴＲＵＭＥＮＴ ＢＩＮＳＥＭ｛

ａｃｔｉｖｅｉｆＣＹＧＰＫＧ ＫＥＲＮＥＬ ＳＹＮＣＨ

｝

ｉｍｐｌｅｍｅｎｔｓ属性与ＣＤＬ接口相关。该属性使得一个选项提供一种可通用的接口。如果
一个选项处于活跃、使能状态并且实现了一个特定的接口，那么它的接口值为１。ｉｍｐｌｅｍｅｎｔｓ
属性只有一个参数，这个参数就是接口的名字。下面是其使用例子：

ｃｄｌ ｐａｃｋａｇｅＣＹＧＰＫＧ ＮＥＴ ＥＤＢ７ＸＸＸ ＥＴＨ ＤＲＩＶＥＲＳ｛

ｄｉｓｐｌａｙ ″ＣｉｒｒｕｓＬｏｇｉｃｅｔｈｅｒｎｅｔｄｒｉｖｅｒ″
ｉｍｐｌｅｍｅｎｔｓ ＣＹＧＨＷＲ ＮＥＴ ＤＲＩＶＥＲＳ
ｉｍｐｌｅｍｅｎｔｓ ＣＹＧＨＷＲ ＮＥＴ ＤＲＩＶＥＲ ＥＴＨ０

｝

ｒｅｑｕｉｒｅｓ属性对用户的选择进行约束。如果要使能或激活一个选项，则必须满足它的ｒｅ
ｑｕｉｒｅｓ属性所列出的所有约束条件。例如，如果希望Ｃ库的某个函数的实现具有线程安全性
（ｔｈｒｅａｄｓａｆｅ），就必须使用内核并且使能内核。例子如下：

ｃｄｌ ｏｐｔｉｏｎＣＹＧＳＥＭ ＬＩＢＣ ＰＥＲ ＴＨＲＥＡＤ ＥＲＲＮＯ｛

ｄｉｓｐｌａｙ ″Ｐｅｒｔｈｒｅａｄｅｒｒｎｏ″
ｄｏｃ ｒｅｆ／ｅｃｏｓｒｅｆ１５ｈｔｍｌ
ｒｅｑｕｉｒｅｓ ＣＹＧＶＡＲ ＫＥＲＮＥＬ ＴＨＲＥＡＤＳ ＤＡＴＡ
ｄｅｆａｕｌｔ ｖａｌｕｅ１

｝

１０３

４配置头文件相关属性
在生成或者更新一个编译树的时候，组件框架对于每一个包都将产生一个配置头文件。

默认情况下，它将对每一个处于活跃和使能状态的选项、组件或接口都产生一条＃ｄｅｆｉｎｅ语
句。对于ｆｌａｖｏｒ属性为ｄａｔａ或ｂｏｏｌｄａｔａ值的选项，它的＃ｄｅｆｉｎｅ语句将使用选项的数据值，其
他ｆｌａｖｏｒ属性值将使用常数１。这种＃ｄｅｆｉｎｅ语句举例如下：

＃ｄｅｆｉｎｅＣＹＧＦＵＮ ＬＩＢＣ ＴＩＭＥ ＰＯＳＩＸ１
＃ｄｅｆｉｎｅＣＹＧＮＵＭ ＬＩＢＣ ＴＩＭＥ ＤＳＴ ＤＥＦＡＵＬＴ ＳＴＡＴＥ１

有六个属性用于控制这种头文件的产生过程，它们分别是：ｄｅｆｉｎｅ ｈｅａｄｅｒ、ｎｏ ｄｅｆｉｎｅ、ｄｅ
ｆｉｎｅ ｆｏｒｍａｔ、ｄｅｆｉｎｅ、ｉｆ ｄｅｆｉｎｅ和ｄｅｆｉｎｅ ｐｒｏｃ。

ｄｅｆｉｎｅ ｈｅａｄｅｒ属性用于指定配置文件名。组件框架为每个包产生的配置头文件的默认
文件名是以该包的名字为基础，去掉前缀（第一个下划线前面的字符，包括下划线），剩余部分

变为小写，再加上“ｈ”作为后缀。例如ＣＹＧＰＫＧ ＫＥＲＮＥＬ包的配置头文件是ｐｋｇｃｏｎｆ／ｋｅｒ
ｎｅｌｈ。如果不想使用这种默认方式的文件名，可以使用ｄｅｆｉｎｅ ｈｅａｄｅｒ属性来指定配置头文
件名。下面的例子指定头文件名为ｈａｌ ｓｐａｒｃｌｉｔｅｈ：

ｃｄｌ ｐａｃｋａｇｅＣＹＧＰＫＧ ＨＡＬ ＳＰＡＲＣＬＩＴＥ｛

ｄｉｓｐｌａｙ″ＳＰＡＲＣｌｉｔｅａｒｃｈｉｔｅｃｔｕｒｅ″

ｐａｒｅｎｔ ＣＹＧＰＫＧ ＨＡＬ
ｈａｒｄｗａｒｅ
ｄｅｆｉｎｅ ｈｅａｄｅｒｈａｌｓｐａｒｃｌｉｔｅｈ

｝

ｎｏ ｄｅｆｉｎｅ属性用于禁止默认＃ｄｅｆｉｎｅ语句的产生。如果某个选项所产生的＃ｄｅｆｉｎｅ没有
受到任何程序源码的检查，就可以使用该属性来取消其＃ｄｅｆｉｎｅ语句的产生。它还可以与ｄｅ
ｆｉｎｅ、ｉｆ ｄｅｆｉｎｅ或ｄｅｆｉｎｅ ｐｒｏｃ等属性一起使用。该属性没有参数。例如：

ｃｄｌｃｏｍｐｏｎｅｎｔＣＹＧ ＨＡＬ ＳＴＡＲＴＵＰ｛

ｄｉｓｐｌａｙ ″Ｓｔａｒｔｕｐｔｙｐｅ″
ｆｌａｖｏｒ ｄａｔａ
ｌｅｇａｌ ｖａｌｕｅｓ ｛″ＲＡＭ″″ＲＯＭ″｝

ｄｅｆａｕｌｔ ｖａｌｕｅ｛″ＲＡＭ″｝

ｎｏ ｄｅｆｉｎｅ
ｄｅｆｉｎｅｆｉｌｅｓｙｓｔｅｍｈＣＹＧ ＨＡＬ ＳＴＡＲＴＵＰ

｝

除了产生默认＃ｄｅｆｉｎｅ语句之外，还可以使用ｄｅｆｉｎｅ属性来产生另外一条＃ｄｅｆｉｎｅ语句。
上面例子中就使用了ｄｅｆｉｎｅ属性。它只有一个参数，该参数就是所要定义的符号名。它通过
选项ｆｉｌｅ和ｆｏｒｍａｔ来控制哪一个配置头文件将产生该＃ｄｅｆｉｎｅ语句以及该语句的格式。上面
例子中将在头文件ｓｙｓｔｅｍｈ内产生一条＃ｄｅｆｉｎｅＣＹＧ ＨＡＬ ＳＴＡＲＴＵＰＲＡＭ的语句（假设
配置时选择ＲＡＭ启动方式）。

２０３

ｄｅｆｉｎｅ ｆｏｒｍａｔ属性用来控制默认＃ｄｅｆｉｎｅ语句中值的格式。下面例子中的格式串“０ｘ％
０４ｘ”用来产生一个４位１６进制数。

ｃｄｌ ｏｐｔｉｏｎＣＹＧＮＵＭ ＵＩＴＲＯＮ ＶＥＲ ＩＤ ｛

ｄｉｓｐｌａｙ ″ＯＳｉｄｅｎｔｉｆｉｃａｔｉｏｎ″
ｆｌａｖｏｒ ｄａｔａ
ｌｅｇａｌ ｖａｌｕｅｓ ０ｔｏ０ｘＦＦＦＦ
ｄｅｆａｕｌｔ ｖａｌｕｅ０
ｄｅｆｉｎｅ ｆｏｒｍａｔ″０ｘ％０４ｘ″
ｄｅｓｃｒｉｐｔｉｏｎ ″

Ｔｈｉｓｖａｌｕｅｉｓｒｅｔｕｒｎｅｄｉｎｔｈｅ′ｉｄ′
ｆｉｅｌｄｏｆｔｈｅＴ ＶＥＲｓｔｒｕｃｔｕｒｅｉｎ
ｒｅｓｐｏｎｓｅｔｏａｇｅｔ ｖｅｒ（）ｓｙｓｔｅｍｃａｌｌ″

｝

ｉｆ ｄｅｆｉｎｅ属性用于在配置头文件中产生＃ｉｆｄｅｆ以及＃ｅｎｄｉｆ等预处理语句。其格式如
下：

ｉｆ ｄｅｆｉｎｅ［ｆｉｌｅ＝＜ｆｉｌｅｎａｍｅ＞］＜ｓｙｍｂｏｌ１＞ ＜ｓｙｍｂｏｌ２＞

该属性有两个参数。如果当前选项是活跃的并且处于使能状态，则配置头文件中将产生

如下格式的Ｃ预处理结构：

＃ｉｆｄｅｆ＜ｓｙｍｂｏｌ１＞
＃ｄｅｆｉｎｅ＜ｓｙｍｂｏｌ２＞
＃ｅｎｄｉｆ

如果当前选项不活跃或者被禁止，则不会产生这样这些语句。ｆｉｌｅ用于指定这些语句输
出到哪一个配置头文件，默认值是当前包的配置头文件。ｉｆ ｄｅｆｉｎｅ属性的使用例子如下：

ｃｄｌ ｏｐｔｉｏｎＣＹＧＤＢＧ ＫＥＲＮＥＬ ＵＳＥ ＡＳＳＥＲＴＳ｛

ｄｉｓｐｌａｙ″Ａｓｓｅｒｔｉｏｎｓｉｎｔｈｅｋｅｒｎｅｌｐａｃｋａｇｅ″

ｉｆ ｄｅｆｉｎｅＣＹＧＳＲＣ ＫＥＲＮＥＬＣＹＧＤＢＧ ＵＳＥ ＡＳＳＥＲＴＳ
ｒｅｑｕｉｒｅｓ ＣＹＧＤＢＧ ＩＮＦＲＡ ＡＳＳＥＲＴＩＯＮ ＳＵＰＰＯＲＴ
｝

ｄｅｆｉｎｅ ｐｒｏｃ属性使用一段ＴＣＬ代码向配置头文件输出一段代码数据。例如：

ｃｄｌ ｐａｃｋａｇｅＣＹＧＰＫＧ ＨＡＬ ＡＲＭ ＰＩＤ｛

ｄｉｓｐｌａｙ ″ＡＲＭＰＩＤｅｖａｌｕａｔｉｏｎｂｏａｒｄ″
ｐａｒｅｎｔ ＣＹＧＰＫＧ ＨＡＬ ＡＲＭ
ｄｅｆｉｎｅ ｈｅａｄｅｒｈａｌ ａｒｍ ｐｉｄｈ
ｉｎｃｌｕｄｅ ｄｉｒ ｃｙｇ／ｈａｌ
ｈａｒｄｗａｒｅ
ｄｅｆｉｎｅ ｐｒｏｃ｛

ｐｕｔｓ＄：：ｃｄｌｓｙｓｔｅｍ ｈｅａｄｅｒ″＃ｄｅｆｉｎｅＣＹＧＢＬＤ ＨＡＬ ＴＡＲＧＥＴ Ｈ ＜ｐｋｇｃｏｎｆ／ｈａｌ

３０３

ａｒｍｈ＞″
ｐｕｔｓ＄：：ｃｄｌｓｙｓｔｅｍ ｈｅａｄｅｒ″＃ｄｅｆｉｎｅＣＹＧＢＬＤ ＨＡＬ ＰＬＡＴＦＯＲＭ Ｈ＜ｐｋｇｃｏｎｆ／ｈａｌ

ａｒｍ ｐｉｄｈ＞″
ｐｕｔｓ＄：：ｃｄｌ ｈｅａｄｅｒ″″
ｐｕｔｓ＄：：ｃｄｌ ｈｅａｄｅｒ″＃ｄｅｆｉｎｅＨＡＬ ＰＬＡＴＦＯＲＭ ＣＰＵ ＼″ＡＲＭ７ＴＤＭＩ＼″″
ｐｕｔｓ＄：：ｃｄｌ ｈｅａｄｅｒ″＃ｄｅｆｉｎｅＨＡＬ ＰＬＡＴＦＯＲＭ ＢＯＡＲＤ ＼″ＰＩＤ＼″″
ｐｕｔｓ＄：：ｃｄｌ ｈｅａｄｅｒ″＃ｄｅｆｉｎｅＨＡＬ ＰＬＡＴＦＯＲＭ ＥＸＴＲＡ ＼″＼″″
ｐｕｔｓ＄：：ｃｄｌ ｈｅａｄｅｒ″″
｝


｝

５编译控制类属性
有六个属性用于控制编译过程，它们分别是：ｃｏｍｐｉｌｅ、ｍａｋｅ、ｍａｋｅ ｏｂｊｅｃｔ、ｌｉｂｒａｒｙ、ｉｎｃｌｕｄｅ

ｄｉｒ和ｉｎｃｌｕｄｅ ｆｉｌｅｓ。后面三个属性只适用于包，并且只出现在ｃｄｌ ｐａｃｋａｇｅ命令体内。
大多数的源码文件通过选用目标平台相应的编译器以及一些编译标志和设置就可以进行

编译，编译的最后结果将得到库文件ｌｉｂｔａｒｇｅｔａ，应用程序将与该库进行链接。ｃｏｍｐｉｌｅ属性用
于列举这些编译源文件。例如：

ｃｄｌ ｐａｃｋａｇｅＣＹＧＰＫＧ ＥＲＲＯＲ｛

ｄｉｓｐｌａｙ ″Ｃｏｍｍｏｎｅｒｒｏｒｃｏｄｅｓｕｐｐｏｒｔ″
ｃｏｍｐｉｌｅ ｓｔｒｅｒｒｏｒｃｘｘ
ｉｎｃｌｕｄｅ ｄｉｒ ｃｙｇ／ｅｒｒｏｒ

｝

ｃｏｍｐｉｌｅ属性的参数可以是一个或多个文件。包通常具有多个源文件，因此在ｃｄｌ ｐａｃｋ
ａｇｅ命令体中可能有多个ｃｏｍｐｉｌｅ属性。有些源程序可能是专用于某些特殊的配置选项的，只
有当这些选项被使能时才会对它们进行编译。这种情况下，应该在相应的ｃｄｌ ｏｐｔｉｏｎ、ｃｄｌ
ｃｏｍｐｏｎｅｎｔ或者ｃｄｌｉｎｔｅｒｆａｃｅ命令体内用ｃｏｍｐｉｌｅ属性来列举这些源文件。
有些包可能有比较复杂的编译要求。ｅＣｏｓ编译的最终结果是产生一个单一的库ｌｉｂｔａｒ

ｇｅｔａ，但有时还需要产生其他一些目标。例如，体系结构ＨＡＬ包通常要产生一个链接器脚本
和一些ｓｔａｒｔｕｐ代码。这些目标的产生可以通过ｍａｋｅ属性来实现。有时，需要采取特殊的编
译步骤来产生目标文件，这时就需要使用ｍａｋｅ ｏｂｊｅｃｔ属性。例如：

ｃｄｌ ｐａｃｋａｇｅＣＹＧＰＫＧ ＨＡＬ ＭＮ１０３００ ＡＭ３３｛

ｄｉｓｐｌａｙ ″ＭＮ１０３００ＡＭ３３ｖａｒｉａｎｔ″

ｍａｋｅ｛

＜ＰＲＥＦＩＸ＞／ｌｉｂ／ｔａｒｇｅｔｌｄ：＜ＰＡＣＫＡＧＥ＞／ｓｒｃ／ｍｎ１０３００ ａｍ３３ｌｄ
＄（ＣＣ）ＥＰＷｐ，ＭＤ，ｔａｒｇｅｔｔｍｐＤＥＸＴＲＡＳ＝１ｘｃ＄（ＩＮＣＬＵＤＥ ＰＡＴＨ）＼

＄（ＣＦＬＡＧＳ）ｏ＄＠ ＄＜
＠ｅｃｈｏ＄＠″：＼＼″＞ ＄（ｎｏｔｄｉｒ＄＠）ｄｅｐｓ
＠ｔａｉｌ＋２ｔａｒｇｅｔｔｍｐ＞＞ ＄（ｎｏｔｄｉｒ＄＠）ｄｅｐｓ

４０３

＠ｅｃｈｏ＞＞ ＄（ｎｏｔｄｉｒ＄＠）ｄｅｐｓ
＠ｒｍｔａｒｇｅｔｔｍｐ

｝

｝

默认的最终编译结果是库文件ｌｉｂｔａｒｇｅｔａ，使用ｌｉｂｒａｒｙ属性可以对其进行改变。一般应
该避免使用这种属性，因为它将增加应用开发的复杂性和难度。下面例子将生成库文件ｌｉｂ
ＳｏｍｅＰａｃｋａｇｅａ：

ｃｄｌ ｐａｃｋａｇｅ＜ＳＯＭＥ ＰＡＣＫＡＧＥ＞｛


ｌｉｂｒａｒｙ ｌｉｂＳｏｍｅＰａｃｋａｇｅａ
｝

ｉｎｃｌｕｄｅ ｄｉｒ属性和ｉｎｃｌｕｄｅ ｆｉｌｅｓ属性与包的导出头文件有关。大多数的包都将导出一个
或多个对它们的公共接口进行定义的头文件。例如，Ｃ库将导出头文件ｓｔｄｉｏｈ和ｃｔｙｐｅｈ。
默认情况下，包的头文件将导出到ｉｎｓｔａｌｌ／ｉｎｃｌｕｄｅ目录。如果将所有的导出头文件都放置到同
一个目录，则有可能造成文件名的冲突。解决这一问题的方法是使用ｉｎｃｌｕｄｅ ｄｉｒ属性为其指
定一个子目录。下面例子中的头文件将导出到子目录ｉｎｓｔａｌｌ／ｃｙｇ／ｉｎｆｒａ中。

ｃｄｌ ｐａｃｋａｇｅＣＹＧＰＫＧ ＩＮＦＲＡ｛

ｄｉｓｐｌａｙ ″Ｉｎｆｒａｓｔｒｕｃｔｕｒｅ″
ｉｎｃｌｕｄｅ ｄｉｒ ｃｙｇ／ｉｎｆｒａ

｝

ｉｎｃｌｕｄｅ ｆｉｌｅｓ属性用于指定包的导出头文件。

６其他属性

ｈａｒｄｗａｒｅ属性只与包相关。该属性用于说明该包专用于指定的硬件。某些包（如设备驱
动程序和硬件抽象层ＨＡＬ包）是硬件专用的，如果在目标系统中没有相应的硬件，则这些包
不会有任何意义。通常在配置工具中选择目标平台时会自动进行硬件包的选择。ｈａｒｄｗａｒｅ属
性不带参数，它只是标识这是一个硬件专用的包。例子如下：

ｃｄｌ ｐａｃｋａｇｅＣＹＧＰＫＧ ＨＡＬ ＭＩＰＳ｛

ｄｉｓｐｌａｙ″ＭＩＰＳａｒｃｈｉｔｅｃｔｕｒｅ″
ｐａｒｅｎｔ ＣＹＧＰＫＧ ＨＡＬ
ｈａｒｄｗａｒｅ
ｉｎｃｌｕｄｅ ｄｉｒ ｃｙｇ／ｈａｌ
ｄｅｆｉｎｅ ｈｅａｄｅｒｈａｌ ｍｉｐｓｈ

｝

１２４ 选项命名约定

在一个具体的配置中，所有的选项都处于同一个名字空间，任何两个不同的选项不能有相

５０３

同的名字。为了避免同名现象的出现，选项的名字必须符合命名约定。

对于每一个处于活跃和使能状态的选项，组件框架通常要为其输出一条＃ｄｅｆｉｎｅ语句，＃
ｄｅｆｉｎｅ语句要用到选项的名字，这些名字是已经定义好的符号。这就要求所有的名字都是有
效的Ｃ语言预处理符号。即使选项具有ｎｏ ｄｅｆｉｎｅ属性（不输出＃ｄｅｆｉｎｅ语句），其名字也必
须符合这种约定。预处理符号可以是大写英文字母ＡＺ、小写英文字母ａｚ、下划线“”和数字０
９的任意组合，但第一个字符不能是数字。同时，第一个字符最好不要使用下划线，以避免与
保留标识符相冲突。另外的一个约定是预处理符号只使用大写英文字母。

一个具有代表性的选项名字是ＣＹＧＳＥＭ ＫＥＲＮＥＬ ＳＣＨＥＤ ＢＩＴＭＡＰ，它由几个部分
组成：

１）前缀ＣＹＧ。前面的几个字符（此例中的前三个字符ＣＹＧ）用于标识该包出自哪一个社
团组织。由于历史原因，源自ＲｅｄＨａｔ公司的包使用的前缀为ＣＹＧ而不是ＲＨＡＴ。用户在写
自己的包时，可以使用自己定义的前缀。

２）前缀后面的三个字符ＳＥＭ表示该选项的性质，例如它是否对接口有影响，或者仅仅是
一种实现（ｉｍｐｌｅｍｅｎｔａｔｉｏｎ）。后面将介绍一些这样的通用标记。

３）ＫＥＲＮＥＬ ＳＣＨＥＤ部分表示选项在整个层次结构中的位置。此例中说明该选项是内
核包中调度组件的一部分。在选项名字中体现层次结构的位置有助于了解可配置代码，并减

少名字冲突的可能。

４）最后部分ＢＩＴＭＡＰ是选项自己的一个标识。
前缀后面三个字符的标记可以提供有关选项的一些信息。目前已经定义了许多的这种标

记。有些标记的选用并不是绝对的。例如，与硬件相关的选项一般用ＨＷＲ，而数字选项则用

ＮＵＭ，与平台相关的数字选项（如中断堆栈大小）则可以使用这两个标记的任何一个。下面是
目前ｅＣｏｓ所使用的一些通用标记（前缀ｘｘｘ是提供该包的社团组织的标识符）：

①ｘｘｘＡＲＣ 。ＡＲＣ标记表示选项与处理器体系结构相关，这种选项通常只出现在体系
结构抽象层ＨＡＬ包或变体抽象层ＨＡＬ包中。

②ｘｘｘＨＷＲ 。ＨＷＲ标记表示选项与特定的目标平台相关。通常只出现在平台抽象层

ＨＡＬ包中。

③ｘｘｘＰＫＧ 。ＰＫＧ标记表示这是一个包或者是一个组件，是一个用于扩展配置层次结
构的选项。

④ｘｘｘＧＬＯ 。ＧＬＯ标记表示这是一个全局配置选项。

⑤ｘｘｘＤＢＧ 。ＤＢＧ标记表示选项与ｄｅｂｕｇ相关。

⑥ｘｘｘＴＳＴ 。ＴＳＴ标记表示这是一个与测试相关的选项。它们通常不会影响实际应用
代码。

⑦ｘｘｘＦＵＮ 。ＦＵＮ标记表示这是一个影响包的接口的选项。有许多用于表示与接口
相关的标记，ｘｘｘＦＵＮ 主要用于那些控制是否提供一个或多个函数的包的选项。如果没有其
他可用的与接口相关的标记，那么可以使用ＦＵＮ标记。

⑧ｘｘｘＶＡＲ 。ＶＡＲ标记类似于ＦＵＮ标记，但主要用于那些控制是否出现一个或多个
变量或对象的选项。

⑨ｘｘｘＣＬＳ 。ＣＬＳ标记只用于那些提供面向对象接口的包，控制一个类的出现与否。

⑩ｘｘｘＭＦＮ 。ＭＦＮ只用于面向对象的接口，表示一个成员函数（而不是一个类）的出现

６０３

与否。

瑏瑡ｘｘｘＳＥＭ 。ＳＥＭ选项不会影响接口。它用于那些对包的语义行为有根本影响的选
项。例如，内核调度器的选择实质上是一种语义行为，它对接口不会有影响，特别是函数ｃｙｇ
ｔｈｒｅａｄ ｃｒｅａｔｅ的存在不受调度器选择的影响。它主要对系统的行为有影响。

瑏瑢ｘｘｘＩＭＰ 。ＩＭＰ标记主要用于执行（ｉｍｐｌｅｍｅｎｔａｔｉｏｎ）选项，不会对接口与语义行为造
成影响。一个典型的执行选项是控制一个或一组函数是否应该内联（ｉｎｌｉｎｅ）。

瑏瑣ｘｘｘＮＵＭ 。ＮＵＭ标记用于数字选项。例如调度优先级数目。

瑏瑤ｘｘｘＤＡＴ 。ＤＡＴ标记用于非数字的数据选项，如设备名字。

瑏瑥ｘｘｘＢＬＤ 。ＢＬＤ标记表示对编译过程有影响的选项，如编译器标志的设置。

瑏瑦ｘｘｘＩＮＴ 。ＩＮＴ标记通常用于ＣＤＬ接口。

瑏瑧ｘｘｘＰＲＩ 。ＰＲＩ标记一般不用于配置选项。它通常被ｄｅｆｉｎｅ ｐｒｏｃ属性内的ＣＤＬ脚
本所使用，该ＣＤＬ脚本将一些附加信息通过配置头文件传递给源码程序。

瑏瑨ｘｘｘＳＲＣ 。ＳＲＣ标记一般不用于配置选项。它通常被包用来使其源码与这些选项相
互作用，尤其是在使用ｉｆ ｄｅｆｉｎｅ属性的环境下。

１２５ Ｔｃｌ简介

所有的ＣＤＬ脚本都是一种Ｔｃｌ脚本，它由一个标准的Ｔｃｌ解释器进行处理。Ｔｃｌ（Ｔｏｏｌ
ＣｏｍｍａｎｄＬａｎｇｕａｇｅ）是一种非常简单的编程语言。ＣＤＬ对Ｔｃｌ只进行了很小的扩展，如ｃｄｌ
ｃｏｍｐｏｎｅｎｔ和ｃｄｌ ｏｐｔｉｏｎ等。在写ＣＤＬ脚本时，并不需要详细了解Ｔｃｌ，只需参考已有的脚
本，对其进行复制并适当加以变化就可以编写新的ＣＤＬ脚本。虽然如此，由于ＣＤＬ语言在某
些地方（如ｄｅｆｉｎｅ ｐｒｏｃ属性中）需要用到Ｔｃｌ脚本，同时在分析和理解ｅＣｏｓ各组件包时也需
要有一定的Ｔｃｌ知识，因此有必要对Ｔｃｌ有一个初步的了解。本节将结合ＣＤＬ对Ｔｃｌ进行简
单的介绍。

１２５１ 基本语法

Ｔｃｌ脚本由一组命令组成，这些命令通过换行符或分号进行分离。Ｔｃｌ命令由命令字和参
数组成，命令字和参数之间用空格分开。所有的命令都采用下例所示的基本格式：

ｅｘｐｒ２０＋１０
该命令计算２０与１０的和，并返回结果３０。其命令字为ｅｘｐｒ，参数为２０和１０。Ｔｃｌ中不

同的命令对参数的要求和处理都有所不同。所有的Ｔｃｌ命令都返回一个结果，如果没有实际
结果，则返回一个空串。

可以从下面的例子来进一步了解Ｔｃｌ的基本语法：

ｐｕｔｓＨｅｌｌｏ
ｓｅｔｘ３２

这是一个由两条命令组成的Ｔｃｌ脚本，它也可以写成一行（用分号隔开）：

ｐｕｔｓＨｅｌｌｏ；ｓｅｔｘ３２

其中第一条命令的命令字是ｐｕｔｓ，它只有一个参数：Ｈｅｌｌｏ。第二条命令的命令字是ｓｅｔ，它

７０３

有两个参数：ｘ和３２。当使用分号将命令进行分离时，分号前后的空格将被忽略。

１２５２ 变量

Ｔｃｌ的变量可以被赋值，在后续命令中可以使用该变量值。命令ｓｅｔ用于设置和读取变量
值。例如：

ｓｅｔ ｘ ３２
ｓｅｔ ｘ

第一条命令给变量ｘ赋值３２，第二条命令读取变量ｘ的值。

Ｔｃｌ不需要对变量进行声明，在对变量进行第一次设置时将自动产生该变量。Ｔｃｌ变量没
有类型，可以赋以任何类型的值。

在命令中可以通过变量的引用来使用变量值，如：

ｅｘｐｒ＄ｘ２

当命令中出现字符＄时，Ｔｃｌ将该字符后面的字符串（字符和数字）当作变量名处理，并将
该变量名用变量的值来替代。在此例中，ｅｘｐｒ命令的实际参数是３２２（前面例子中变量ｘ已
被赋值３２，此处将＄ｘ替换为３２）。
可以在任何命令的任何位置使用这种变量，如：

ｓｅｔｃｍｄｅｘｐｒ
ｓｅｔｘ１１
＄ｃｍｄ＄ｘ＄ｘ

除了在使用Ｔｃｌ脚本的地方外，ＣＤＬ很少使用这种变量替换。如果在选项描述中使用了
实际的字符＄（不是Ｔｃｌ变量），则应该在其前面加上反斜杠符号，即“＼＄”。

１２５３ 命令替换

所谓命令替换，就是将一条命令的结果作为另一条命令的一个参数。例如：

ｓｅｔａ４４
ｓｅｔｂ［ｅｘｐｒ＄ａ４］

当一条命令中出现方括号［］时，Ｔｃｌ将方括号内的所有内容当作一条嵌套命令进行处理。

Ｔｃｌ首先执行这一嵌套命令，并将该命令执行结果替换方括号及其内容。上例中第二条命令
的第二个参数将是１７６（ｅｘｐｒ＄ａ４的结果是１７６）。
在ＣＤＬ语言中，只有在像ｄｅｆｉｎｅ ｐｒｏｃ这样的属性使用Ｔｃｌ脚本的地方才有可能使用这

种命令替换，其他地方很少使用。值得注意的是要避免出现意外的命令替换。例如，在一个选

项的描述中如果包含有方括号“［］”，则应该使用反斜杠符号，即“＼［”和“＼］”。

１２５４ 引号和花括弧的使用

首先来看一个例子：

ｓｅｔｘＨｅｌｌｏｗｏｒｌｄ

８０３

这是一个非法的Ｔｃｌ命令。ｓｅｔ命令只有变量名和值两个参数，而此例中有三个参数：ｘ、

Ｈｅｌｌｏ和ｗｏｒｌｄ。可以使用引号来避免这种现象的出现：

ｓｅｔｘ″Ｈｅｌｌｏｗｏｒｌｄ″

引号的出现使Ｈｅｌｌｏｗｏｒｌｄ成为一个单独的参数。当Ｔｃｌ解释器遇到引号时，它将引号内
的所有内容当成当前参数的一部分，但不包括引号本身。由于解释器将剔除引号，因此上例中

ｓｅｔ命令的第二个参数是没有引号的Ｈｅｌｌｏｗｏｒｌｄ字符串。引号的使用在ＣＤＬ脚本中很值得注
意，例如：

ｃｄｌ ｏｐｔｉｏｎＣＹＧ ＨＡＬ ＳＴＡＲＴＵＰ｛


ｄｅｆａｕｌｔ ｖａｌｕｅ″ＲＡＭ″
｝

Ｔｃｌ解释器对上例进行处理时将会把引号剔除掉，ＣＤＬ表达式解析器看到的将是ＲＡＭ
而不是″ＲＡＭ″。它被当作一个未知选项ＲＡＭ的引用，而不是一个字符串常量。ＣＤＬ表达式
解析器将其当作未加载的选项进行处理，ＲＡＭ的值为０。因此，选项ＣＹＧ ＨＡＬ ＳＴＡＲＴ
ＵＰ最后的默认值（ｄｅｆａｕｌｔ ｖａｌｕｅ）将是０。使用花括弧或反斜杠可以避免这种现象的发生，在
上例中可以使用花括弧：ｄｅｆａｕｌｔ ｖａｌｕｅ｛″ＲＡＭ″｝。
引号内的换行符和分号不会终止当前命令，引号内可以有多行内容。ＣＤＬ命令的ｄｅ

ｓｃｒｉｐｔｉｏｎ属性通常使用引号的这种特性，例如：

ｃｄｌ ｐａｃｋａｇｅＣＹＧＰＫＧ ＥＲＲＯＲ｛

ｄｅｓｃｒｉｐｔｉｏｎ ″
Ｔｈｉｓｐａｃｋａｇｅｃｏｎｔａｉｎｓｔｈｅｃｏｍｍｏｎｌｉｓｔｏｆｅｒｒｏｒａｎｄ
ｓｔａｔｕｓｃｏｄｅｓＩｔｉｓｈｅｌｄｃｅｎｔｒａｌｌｙｔｏａｌｌｏｗ

ｐａｃｋａｇｅｓｔｏｉｎｔｅｒｃｈａｎｇｅｅｒｒｏｒｃｏｄｅｓａｎｄｓｔａｔｕｓ
ｃｏｄｅｓｉｎａｃｏｍｍｏｎｗａｙ，ｒａｔｈｅｒｔｈａｎｅａｃｈｐａｃｋａｇｅ
ｈａｖｉｎｇｉｔｓｏｗｎｃｏｎｖｅｎｔｉｏｎｓｆｏｒｅｒｒｏｒ／ｓｔａｔｕｓ
ｒｅｐｏｒｔｉｎｇＴｈｅｅｒｒｏｒｃｏｄｅｓａｒｅｍｏｄｅｌｌｅｄｏｎｔｈｅ
ＰＯＳＩＸｓｔｙｌｅｎａｍｉｎｇｅｇＥＩＮＶＡＬｅｔｃＴｈｉｓｐａｃｋａｇｅ
ａｌｓｏｐｒｏｖｉｄｅｓｔｈｅｓｔａｎｄａｒｄｓｔｒｅｒｒｏｒ（）ｆｕｎｃｔｉｏｎｔｏ
ｃｏｎｖｅｒｔｅｒｒｏｒｃｏｄｅｓｔｏｔｅｘｔｕａｌｒｅｐｒｅｓｅｎｔａｔｉｏｎ″


｝

花括弧的作用与引号类似，它将花括弧内的全部内容当成单个参数处理。与引号不同之

处是在花括弧内不存在变量替换、命令替换以及反斜杠替换（惟一例外是位于行末的反斜杠替

换）。对于前面例子中的ｄｅｆａｕｌｔ ｖａｌｕｅ｛″ＲＡＭ″｝，Ｔｃｌ解释器将剔除花括弧，ＣＤＬ表达式解
析器看到的是字符串常量″ＲＡＭ″。

１２５５ 反斜杠和注释

前面已经提到了反斜杠的一些用法。Ｔｃｌ支持其他许多编程语言广泛使用的反斜杠替换

９０３

方法。例如＼ｎ代表换行、＼＼表示一个“＼”字符等等。在命令行最末端的反斜杠将使该反
斜杠字符、换行字符以及下一行起始端的任何空格被一个空格所替代。下面两条Ｔｃｌ命令是
等同的：

ｐｕｔｓ ″Ｈｅｌｌｏ＼ｎｗｏｒｌｄ＼ｎ″

ｐｕｔｓ＼
″Ｈｅｌｌｏ
ｗｏｒｌｄ
″

下面三条语句具有相同的效果：

ｄｅｆａｕｌｔ ｖａｌｕｅ｛″ＲＡＭ″｝

ｄｅｆａｕｌｔ ｖａｌｕｅ＼″ＲＡＭ＼″
ｄｅｆａｕｌｔ ｖａｌｕｅ″＼″ＲＡＭ＼″″

Ｔｃｌ脚本中使用字符“＃”来进行注释。注释用的＃字符只能出现在命令字的位置，如果
没有注释的话，字符＃的位置出现的应该是命令字。看下面的例子：

＃Ｔｈｉｓｉｓａｃｏｍｍｅｎｔ
ｐｕｔｓ″Ｈｅｌｌｏ″＃ｗｏｒｌｄ

上例中的第一行是有效的注释，注释字符＃出现在命令字的位置。但第二行中的字符＃
被认为是一个参数，在ｐｕｔｓ命令中这是一个非法参数，因此该命令将会导致错误的发生。如
果第二行改成下面的形式，则成为合法的Ｔｃｌ语句：

ｐｕｔｓ″Ｈｅｌｌｏ″；＃ｗｏｒｌｄ

其中的分号表明当前命令的结束，字符＃后面的“ｗｏｒｌｄ”是其注释内容

１２６ 表达式和值

某些配置选项（如ＣＹＧＶＡＲ ＫＥＲＮＥＬ ＴＨＲＥＡＤＳ ＤＡＴＡ）可以用具体的值对它们进
行配置。这些值可以影响到使用这些选项的表达式（例如ｒｅｑｕｉｒｅｓＣＹＧＶＡＲ ＫＥＲＮＥＬ
ＴＨＲＥＡＤＳ ＤＡＴＡ）。同时，它们还将影响这些选项的最终结果，选项的值不仅影响编译过
程，而且还影响到其他任何受该选项（如ＣＹＧＶＡＲ ＫＥＲＮＥＬ ＴＨＲＥＡＤＳ ＤＡＴＡ）的约束
条件所限制的选项的行为。

１２６１ 选项的值

选项的值包含有四个要素，它们表示的意义分别如下：

① 选项可以被加载，也可以不被加载。

② 如果选项被加载，它可以处于活跃状态，也可以不处于活跃状态。

③ 即使选项处于活跃状态，它可能被使能，也可以被禁止。

④ 如果选项被加载，处于活跃状态而且被使能，则它具有一些选项值数据。

０１３

在任何时候，一个具体的配置不可能包含所有的包，有些包不能同时出现在同一个配置

中。以体系结构抽象层ＨＡＬ包为例，它包含有字节排列方式选项、基本数据类型大小等一些
与体系结构相关的选项。在同一个配置中不能同时加载两个这样的体系结构抽象层ＨＡＬ
包，否则将引起名字冲突，从而导致配置的失败。对于任何一个没有出现在当前配置中的选项

的处理如下：

① 未被加载的选项在被引用时，其值为０。

② 未加载的选项不对编译过程产生任何直接的影响。它不会在配置头文件中产生相应
的＃ｄｅｆｉｎｅ语句，也不会有相应的文件被编译。如果选项没有被加载，组件框架就无法了解其

ｃｏｍｐｉｌｅ等类似的属性。通过表达式的引用，可以使未加载的选项间接影响编译过程。

③ 未加载的选项对配置不会产生任何约束条件。组件框架无法了解未加载选项的ｒｅ
ｑｕｉｒｅｓ和ｌｅｇａｌ ｖａｌｕｅｓ等属性。
配置选项都是以组件和子组件的层次结构来进行组织的。如果禁止（ｄｉｓａｂｌｅ）一个组件，

那么位于该组件下的所有选项都将处于不活跃状态（ｉｎａｃｔｉｖｅ）。在图形配置工具中，不活跃的
选项呈灰色状态。选项的活跃状态（ａｃｔｉｖｅ和ｉｎａｃｔｉｖｅ）对其他的包具有一定的影响。例如，假
如某个包使用了ｓｐｒｉｎｔｆ函数，它要求有浮点转换的支持，如果相关的选项处于不活跃状态，那
么这种约束条件就得不到满足。选项的不活跃状态准确定义如下：

① 如果一个选项的父选项（ｐａｒｅｎｔ）处于不活跃或禁止状态，则该选项也将处于不活跃状
态。

② 选项的ａｃｔｉｖｅ ｉｆ属性可以使选项处于不活跃状态。

③ 如果选项处于不活跃状态，那么在引用该选项的ＣＤＬ表达式中该选项将被赋值为０。

④ 处于不活跃状态的选项对编译过程不起作用。不会产生相应的＃ｄｅｆｉｎｅ语句，其ｃｏｍ
ｐｉｌｅ等类似属性将被忽略。

⑤ 处于不活跃状态的选项对配置不会产生任何约束条件。
在ＣＤＬ中，选项的值由两部分组成。一部分是布尔（Ｂｏｏｌｅａｎ）部分，用于控制选项的使能

状态；另一部分是数据部分，为选项提供附加信息。选项值的两个部分由其ｆｌａｖｏｒ属性来控
制，如表１２１。

表１２１ Ｆｌａｖｏｒ对选项值的控制

Ｆｌａｖｏｒ Ｅｎａｂｌｅｄ Ｄａｔａ

ｎｏｎｅ 总是使能 １，不可修改

ｂｏｏｌ 可修改 １，不可修改

ｄａｔａ 总是使能 可修改

ｂｏｏｌｄａｔａ 可修改 可修改

选项值的布尔部分和数据部分的作用如下：

① 如果选项被禁止（ｄｉｓａｂｌｅ），也就是说选项的布尔值为ｆａｌｓｅ，则它在ＣＤＬ表达式中的值
为０。其作用与不活跃的选项相同，选项值的数据部分没有意义。在具有ｎｏｎｅ和ｄａｔａ的ｆｌａ
ｖｏｒｓ属性的情况下，选项总是处于使能状态，不适用于该规则。

② 如果选项处于使能（ｅｎａｂｌｅ）状态，则在引用它的ＣＤＬ表达式中将使用该选项的数据值
作为该选项的值。对于具有ｎｏｎｅ和ｂｏｏｌ的ｆｌａｖｏｒｓ属性的选项，其数据值固定为１。

１１３

③ 如果一个组件或包被禁止，则在其下的所有子组件和选项都是不活跃的。

④ 如果选项被禁止，则它不会对整个配置施加任何约束条件，其ｒｅｑｕｉｒｅｓ和ｌｅｇａｌ ｖａｌｕｅ
属性将被忽略。如果选项被使能，则它的约束条件应该被满足，否则将出现各种各样的冲突。

⑤ 如果选项被禁止，则它不会对编译过程有直接的影响。不会产生相应的＃ｄｅｆｉｎｅ语句，
也不会有相应的文件被编译。如果选项被使能，则将直接影响编译过程。其选项名和数据值

用于在相应的配置头文件中产生＃ｄｅｆｉｎｅ语句。

１２６２ 普通表达式

ＣＤＬ表达式具有一些语法约定。表达式的使用例子如下：

ｄｅｆａｕｌｔ ｖａｌｕｅＣＹＧＧＬＯ ＣＯＤＥＳＩＺＥ＞ＣＹＧＧＬＯ ＳＰＥＥＤ
ｄｅｆａｕｌｔ ｖａｌｕｅ｛（ＣＹＧ ＨＡＬ ＳＴＡＲＴＵＰ＝＝″ＲＡＭ″＆＆

！ＣＹＧＤＢＧ ＨＡＬ ＤＥＢＵＧ ＧＤＢ ＩＮＣＬＵＤＥ ＳＴＵＢＳ＆＆
！ＣＹＧＩＮＴ ＨＡＬ ＵＳＥ ＲＯＭ ＭＯＮＩＴＯＲ ＵＮＳＵＰＰＯＲＴＥＤ＆＆
！ＣＹＧＳＥＭ ＨＡＬ ＰＯＷＥＲＰＣ ＣＯＰＹ ＶＥＣＴＯＲＳ）？１：０｝

ｄｅｆａｕｌｔ ｖａｌｕｅ｛″＼″／ｄｅｖ／ｓｅｒ０＼″″｝

ＣＤＬ表达式由四个元素组成：配置选项的引用、字符串常量、整数、浮点数。这四个元素
通过各种操作符组合在一起。这些操作符有：

● 一元操作符：，，！
● 算术操作符：＋，，，／，％
● 移位操作符：＜＜，＞＞
● 比较操作符：＝＝，！＝，＜，＜＝，＞，＞＝
● 位操作符：＆，^，｜
● 逻辑操作符：＆＆，｜｜
● 条件运算符：Ａ？Ｂ：Ｃ
ＣＤＬ表达式允许出现包含在括弧内的子表达式。表１２２是各种操作符列表。

表１２２ 表达式操作符

运算优先级 操 作 符 类 别

１３ 引用和常量 基本元素

１２ 位非

１２ ！ 逻辑非

１２  算术负

１１  ／％ 算术乘、除、取余

１０ ＋ 算术加、减

９ ＜＜ ＞＞ 移位

８ ＜＝ ＜ ＞ ＞＝ 不等式

７ ＝＝ ！＝ 比较

６ ＆ 位与

５ ＾ 位异或

４ ｜ 位或

３ ＆＆ 逻辑与

２ ｜｜ 逻辑或

１ ？： 条件运算

２１３

表达式中的ＣＤＬ标识符（如上例中的ＣＹＧＧＬＯ ＳＰＥＥＤ）是对配置选项的引用，使用了
该选项的名字。当前配置中不一定加载了该选项。当组件框架对表达式赋值时，它将根据该

选项是否被加载以及该选项的活跃状态和使能状态等情况来确定该选项的值。

字符串常量是用引号描述的一串字符。在使用字符串常量的时候必须注意字符串常量的

使用方法，防止Ｔｃｌ解释器在ＣＤＬ表达式解析器看到该字符串之前丢掉字符串的引号。看下
面的例子：

ｄｅｆｉｎｅ ｖａｌｕｅ″ＲＡＭ″

上面例子在ＣＤＬ表达式解析器看到字符串之前，其引号已被丢掉，因此该表达式将被解
释为一个配置选项ＲＡＭ的引用，其值为０。前面已经介绍了解决这种问题的方法，使用花括
弧或其他Ｔｃｌ引号机制可以避免这种现象的出现。
字符串常量由引号内的数据组成，如果数据本身需要包含引号字符，则需要再一次使用引

号，例如：

ｄｅｆａｕｌｔ ｖａｌｕｅ｛″＼″／ｄｅｖ／ｓｅｒ０＼″″｝

整数常量由一组数字组成，可以在其前面加上正负符号（＋、－）。十六进制整数用０ｘ或

０Ｘ前缀表示，最左边数字为０时表示八进制。整型数据长度为６４位，如果常量太大，可用双
精度表示。双精度数字可以使用传统的语法格式，如３１４１５９２或３Ｅ６。
在对表达式赋值时，可以对操作数进行适当的转换。例如，比较运算符“＞”可以用于整数

和双精度数，它首先尝试将它的两个操作数进行从字符串到整数的转换，如果失败再进行从字

符串到双精度的转换。如果两种转换都不成功，则报告赋值例外冲突。

１２６３ 目标表达式

目标表达式用于描述无冲突配置所需要满足的一个目标。如果一个ｒｅｑｕｉｒｅｓ约束条件没
有得到满足，则组件框架推理机将检查目标表达式，以确定是否可以采取一定的方法对配置加

以适当的改变而不会引起新的冲突，从而使目标表达式的值为ｔｒｕｅ，使冲突得以解决。
某些属性特别是ｒｅｑｕｉｒｅｓ和ａｃｔｉｖｅ ｉｆ属性的参数构成一种目标表达式。与普通表达式一

样，所有参数都组合在一起然后交给表达式解析器进行处理。在处理字符串常量时，必须注意

对引号的使用。因此，全局表达式通常使用花括弧将整个表达式括起来，表达式解析器将其当

作一个单独的参数处理。

目标表达式主要由一些普通表达式组成，下面是目标表达式的一个例子：

ｒｅｑｕｉｒｅｓ｛ＣＹＧＤＢＧ ＨＡＬ ＤＥＢＵＧ ＧＤＢ ＩＮＣＬＵＤＥ ＳＴＵＢＳ
！ＣＹＧＤＢＧ ＨＡＬ ＤＥＢＵＧ ＧＤＢ ＢＲＥＡＫ ＳＵＰＰＯＲＴ
！ＣＹＧＤＢＧ ＨＡＬ ＤＥＢＵＧ ＧＤＢ ＣＴＲＬＣ ＳＵＰＰＯＲＴ｝

上面例子由三个单独的表达式组成，它们将被赋值为非０值。该表达式还可以写成如下
的形式：

ｒｅｑｕｉｒｅｓ｛ＣＹＧＤＢＧ ＨＡＬ ＤＥＢＵＧ ＧＤＢ ＩＮＣＬＵＤＥ ＳＴＵＢＳ ＆＆
！ＣＹＧＤＢＧ ＨＡＬ ＤＥＢＵＧ ＧＤＢ ＢＲＥＡＫ ＳＵＰＰＯＲＴ＆＆
！ＣＹＧＤＢＧ ＨＡＬ ＤＥＢＵＧ ＧＤＢ ＣＴＲＬＣ ＳＵＰＰＯＲＴ｝

３１３

使用下列语句也具有相同的效果：

ｒｅｑｕｉｒｅｓＣＹＧＤＢＧ ＨＡＬ ＤＥＢＵＧ ＧＤＢ ＩＮＣＬＵＤＥ ＳＴＵＢＳ
ｒｅｑｕｉｒｅｓ！ＣＹＧＤＢＧ ＨＡＬ ＤＥＢＵＧ ＧＤＢ ＢＲＥＡＫ ＳＵＰＰＯＲＴ
ｒｅｑｕｉｒｅｓ！ＣＹＧＤＢＧ ＨＡＬ ＤＥＢＵＧ ＧＤＢ ＣＴＲＬＣ ＳＵＰＰＯＲＴ

目标表达式的值是一个布尔值。

１２６４ 列表表达式

列表表达式是一组ｌｅｇａｌ ｖａｌｕｅｓ属性的值，ｌｅｇａｌ ｖａｌｕｅｓ属性的参数构成列表表达式。与
普通表达式和目标表达式一样，所有的参数组合在一起然后再交给表达式解析器进行处理。

在采用字符串常量时必须注意引号的使用。列表表达式通常将整个表达式用花括弧括起来，

表达式解析器将其视为一个单独的参数。

大多数列表表达式都采取下面两种格式之一：

ｌｅｇａｌ ｖａｌｕｅｓ＜ｅｘｐｒ１＞ ＜ｅｘｐｒ２＞ ＜ｅｘｐｒ３＞
ｌｅｇａｌ ｖａｌｕｅｓ＜ｅｘｐｒ１＞ｔｏ＜ｅｘｐｒ２＞

其中ｅｘｐｒ１、ｅｘｐｒ２等等都是普通表达式，它们通常是常量，或者是对体系结构抽象层ＨＡＬ
的推算选项的引用。如果需要，它们也可以是任意表达式。上述第一种格式指明一组可能的

值，不一定是数字值。第二种格式指明一个数字范围，其上限和下限必须是数字值。下面是列

表表达式的一些例子：

ｌｅｇａｌ ｖａｌｕｅｓ｛″ｒｅｄ″″ｇｒｅｅｎ″″ｂｌｕｅ″｝

ｌｅｇａｌ ｖａｌｕｅｓ１２４８１６
ｌｅｇａｌ ｖａｌｕｅｓ１ｔｏＣＹＧＡＲＣ ＭＡＸＩＮＴ
ｌｅｇａｌ ｖａｌｕｅｓ１０ｔｏ２０

这两种格式也可能组合在一起，如：

ｌｅｇａｌ ｖａｌｕｅｓ１２４ｔｏＣＹＧＡＲＣ ＭＡＸＩＮＴ１０２４２００ｔｏ１０

它表示三个合法值１、２、－１０２４，一个从４到ＣＹＧＡＲＣ ＭＡＸＩＮＴ的整数范围，一个从

２００到－１００的浮点数范围。这种列表表达式很少出现。
在图形配置工具中使用这样的ｌｅｇａｌ ｖａｌｕｅｓ列表表达式使得用户对选项值的操作非常方

便。列表表达式在图形配置工具中将以小窗口的形式出现，例如｛″ｒｅｄ″″ｇｒｅｅｎ″″ｂｌｕｅ″｝表达式
将在图形配置工具中出现一个下拉菜单供选择，而对于｛１ｔｏ１６｝表达式则将出现一个选项值
的调节控制项。

１２７ 接口

虽然选项为系统的可配置性提供了很大程度上的支持，但有时这种支持还不够，需要为可

配置性提供更高层次上的支持。例如，有些包需要标准内核调度器接口实现的支持，这是一种

约束条件，这种约束条件可以通过多级队列调度器、位图调度器或其他一些调度器来满足。这

种依赖性可以使用下面语句来表示：

４１３

ｒｅｑｕｉｒｅｓＣＹＧＳＥＭ ＫＥＲＮＥＬ ＳＣＨＥＤ ＭＬＱＵＥＵＥ｜｜ＣＹＧＳＥＭ ＫＥＲＮＥＬ ＳＣＨＥＤ ＢＩＴＭＡＰ

ＣＤＬ接口提供了这样一种抽象机制：约束条件可以用一个抽象概念来表达（如“ｓｃｈｅｄ
ｕｌｅｒ”），而不是用特殊实现（如ＣＹＧＳＥＭ ＫＥＲＮＥＬ ＳＣＨＥＤ ＭＬＱＵＥＵＥ和ＣＹＧＳＥＭ
ＫＥＲＮＥＬ ＳＣＨＥＤ ＢＩＴＭＡＰ）来表示。从本质上来说，接口是一种可推算的配置选项。下面
就是一个接口例子：

ｃｄｌｉｎｔｅｒｆａｃｅＣＹＧＩＮＴ ＫＥＲＮＥＬ ＳＣＨＥＤＵＬＥＲ｛

ｄｉｓｐｌａｙ ″Ｎｕｍｂｅｒｏｆｓｃｈｅｄｕｌｅｒｓｉｎｔｈｉｓｃｏｎｆｉｇｕｒａｔｉｏｎ″


｝

可以使用单独的调度器来实现这一接口：

ｃｄｌ ｏｐｔｉｏｎＣＹＧＳＥＭ ＫＥＲＮＥＬ ＳＣＨＥＤ ＭＬＱＵＥＵＥ｛

ｄｉｓｐｌａｙ ″Ｍｕｌｔｉｌｅｖｅｌｑｕｅｕｅｓｃｈｅｄｕｌｅｒ″

ｄｅｆａｕｌｔ ｖａｌｕｅ１

ｉｍｐｌｅｍｅｎｔｓ ＣＹＧＩＮＴ ＫＥＲＮＥＬ ＳＣＨＥＤＵＬＥＲ


｝

ｃｄｌ ｏｐｔｉｏｎＣＹＧＳＥＭ ＫＥＲＮＥＬ ＳＣＨＥＤ ＢＩＴＭＡＰ｛

ｄｉｓｐｌａｙ ″Ｂｉｔｍａｐｓｃｈｅｄｕｌｅｒ″

ｄｅｆａｕｌｔ ｖａｌｕｅ０

ｉｍｐｌｅｍｅｎｔｓ ＣＹＧＩＮＴ ＫＥＲＮＥＬ ＳＣＨＥＤＵＬＥＲ


｝

接口的值是实现该接口的活跃而且使能的选项的数目。这样，需要调度器实现支持的包

可以按下面的方式使用约束条件：

ｒｅｑｕｉｒｅｓＣＹＧＩＮＴ ＫＥＲＮＥＬ ＳＣＨＥＤＵＬＥＲ

如果所有的调度器都没有使能，或者没有加载内核包，那么ＣＹＧＩＮＴ ＫＥＲＮＥＬ
ＳＣＨＥＤＵＬＥＲ将被赋值为０。如果至少有一个调度器处于活跃和使能状态，则该约束条件将
会得到满足。

由于接口具有一个可推算出来的值，因此在ｃｄｌｉｎｔｅｒｆａｃｅ命令体中不会出现也不应该出
现属性ｄｅｆａｕｌｖａｌｅ和ｃａｌｃｕｌａｔｅｄ。接口总是具有ｆｌａｖｏｒｄａｔａ属性，因此也不会出现ｆｌａｖｏｒ属性。
一般情况下，接口可以使用其他的一些属性，如ｒｅｑｕｉｒｅｓ和ｃｏｍｐｉｌｅ等。
如果有一个选项实现了一个ＣＤＬ接口，那么该选项通常会提供一些特殊的Ｃ和Ｃ＋＋函

数接口。例如，以太网设备驱动程序实现了ＣＤＬ接口ＨＷＲ ＮＥＴ ＤＲＩＶＥＲＳ，它提供了一
组可用于ＴＣＰ／ＩＰ协议栈的Ｃ函数。同样，ＣＹＧＳＥＭ ＫＥＲＮＥＬ ＳＣＨＥＤ ＭＬＱＵＥＵＥ实现
了ＣＤＬ接口ＣＹＧＩＮＴ ＫＥＲＮＥＬ ＳＣＨＥＤＵＬＥＲ，提供了一些可用的调度函数。

５１３

１２８ 更新ｅｃｏｓｄｂ数据库

ｅＣｏｓ要求所有的包都处于一个组件仓库内，组件数据库ｅｃｏｓｄｂ列举了所有的组件。在
进行ｅＣｏｓ开发时，除使用管理工具增加或删除组件外，其他时候可以认为组件仓库是一种只
读资源。但如果是开发一个新的组件，则需要对组件仓库进行操作。这种操作要对数据库进

行更新，将新开发的包更新到数据库。

与大多数与组件框架相关的文件一样，ｅｃｏｓｄｂ数据库实际上是一个Ｔｃｌ脚本。典型的包
的入口如下：

ｐａｃｋａｇｅＣＹＧＰＫＧ ＬＩＢＣ｛

ａｌｉａｓ ｛″Ｃｌｉｂｒａｒｙ″ｌｉｂｃｃｌｉｂｃｌｉｂｒａｒｙ｝

ｄｉｒｅｃｔｏｒｙ ｌａｎｇｕａｇｅ／ｃ／ｌｉｂｃ
ｓｃｒｉｐｔ ｌｉｂｃｃｄｌ
ｄｅｓｃｒｉｐｔｉｏｎ ″

ＴｈｉｓｐａｃｋａｇｅｅｎａｂｌｅｓｃｏｍｐａｔｉｂｉｌｉｔｙｗｉｔｈｔｈｅＩＳＯＣｓｔａｎｄａｒｄＩＳＯ／ＩＥＣ
９８９９：１９９０Ｔｈｉｓａｌｌｏｗｓｔｈｅｕｓｅｒａｐｐｌｉｃａｔｉｏｎｔｏｕｓｅｗｅｌｌｋｎｏｗｎｓｔａｎｄａｒｄ
Ｃｌｉｂｒａｒｙｆｕｎｃｔｉｏｎｓ，ａｎｄｉｎｅＣｏｓｓｔａｒｔｓａｔｈｒｅａｄｔｏｉｎｖｏｋｅｔｈｅｕｓｅｒ
ｆｕｎｃｔｉｏｎｍａｉｎ（）″
｝

ｐａｃｋａｇｅＣＹＧＰＫＧ ＩＯ ＰＣＩ ｛

ａｌｉａｓ ｛″ＰＣＩｃｏｎｆｉｇｕｒａｔｉｏｎｌｉｂｒａｒｙ″ｉｏ ｐｃｉ｝

ｄｉｒｅｃｔｏｒｙ ｉｏ／ｐｃｉ
ｓｃｒｉｐｔ ｉｏ ｐｃｉｃｄｌ
ｈａｒｄｗａｒｅ
ｄｅｓｃｒｉｐｔｉｏｎ″
ＴｈｉｓｐａｃｋａｇｅｃｏｎｔａｉｎｓｔｈｅＰＣＩｃｏｎｆｉｇｕｒａｔｉｏｎｌｉｂｒａｒｙ″

｝

这种ｐａｃｋａｇｅ命令有两个参数，即包的名字ｎａｍｅ和体ｂｏｄｙ。ｎａｍｅ必须与包的顶层ＣＤＬ
脚本中ｃｄｌ ｐａｃｋａｇｅ命令的ｎａｍｅ相同。ｂｏｄｙ可以包含五种命令：ａｌｉａｓ、ｄｉｒｅｃｔｏｒｙ、ｓｃｒｉｐｔ、ｈａｒｄ
ｗａｒｅ和ｄｅｓｃｒｉｐｔｉｏｎ。

①ａｌｉａｓ。每一个包必须有一个或多个别名。当列举包的清单时，一般使用第一个别名。
很显然，使用别名“Ｃｌｉｂｒａｒｙ”比使用“ＣＹＧＰＫＧ ＬＩＢＣ”更具有可读性，更容易理解。其他别名
一般不用于输出操作，但是可以作为输入。例如，使用命令行工具ｅｃｏｓｃｏｎｆｉｇ时可以用“ａｄｄ
ｌｉｂｃ”作为一个命令选项，其操作结果与“ａｄｄＣＹＧＰＫＧ ＬＩＢＣ”相同。这里ｌｉｂｃ是ＣＹＧＰＫ
ＧＬＩＢＣ的另一个别名。

②ｄｉｒｅｃｔｏｒｙ。该命令用于指定包的相对位置（相对于组件仓库的根目录）。需要说明的
是，该包的位置不能因其后续版本的原因而被改变。如果必须在其他位置安装该包的新版本，

则首先必须将其旧版本全部卸载。数据库不能为同一个包提供两个不同的位置。

③ｓｃｒｉｐｔ。该命令指定包的顶层ＣＤＬ脚本（包含有该包的ｃｄｌ ｐａｃｋａｇｅ定义）的位置。它

６１３

的位置一般是在ｃｄｌ子目录。该文件不应该被其后续版本改变。

④ｈａｒｄｗａｒｅ。该命令用于说明该包与特殊硬件紧密相关，如设备驱动程序和ＨＡＬ包。

ＣＤＬ脚本中的ｃｄｌ ｐａｃｋａｇｅ命令和数据库入口中都应该对此加以说明。

⑤ｄｅｓｃｒｉｐｔｉｏｎ。该命令对包进行简短的描述。可以使用ｃｄｌ ｐａｃｋａｇｅ命令ｄｅｓｃｒｉｐｔｉｏｎ属
性所提供的文本信息。

ｅｃｏｓｄｂ数据库中还具有各种目标平台的一些信息。在将ｅＣｏｓ移植到新的目标平台时，
需要将该目标平台的信息加入到数据库中。另外，还必须将该平台的硬件抽象层ＨＡＬ包和
其他平台相关的包的详细信息加入到数据库中。

７１３

第１３章 ｅＣｏｓ嵌入式 Ｗｅｂ服务器

作为一种移植性强、可配置性好的免费嵌入式实时操作系统，ｅＣｏｓ已在许多领域得到了
成功应用。目前使用ｅＣｏｓ作为其嵌入式软件平台的产品包括：移动电话、个人数字助理
（ＰＤＡ）、ＭＰ３播放器、手持多媒体设备、激光打印机、磁盘阵列、卫星地面设备、指纹识别设备、
汽车数字设备等等。ｅＣｏｓ是一种开放源代码，随着它的不断发展和完善，其应用范围也将越
来越广泛。作为ｅＣｏｓ应用的一个例子，本章将介绍一个运行于普通ＰＣ微机上的基于ｅＣｏｓ的
嵌入式Ｗｅｂ服务器。通过对该应用实例的介绍，读者将会对ｅＣｏｓ应用的开发过程有一个更
清楚的了解。

１３１ 嵌入式Ｗｅｂ服务器ＬｉｂＨＴＴＰＤ

随着信息技术的发展，基于互联网的Ｗｅｂ服务已日益普及，对某些设备进行 Ｗｅｂ访问也
成为日常生活中的一个普通需求。虽然有许多可用的Ｗｅｂ服务器实现方法，但大多数标准的

Ｗｅｂ服务器因过于庞大而不便于使用。将 Ｗｅｂ服务器嵌入到一个独立设备或应用中时，该

Ｗｅｂ服务器的实现应该尽量简单而且便宜。ＨｕｇｈｅｓＴｅｃｈｎｏｌｏｇｉｅｓ公司提供的ＬｉｂＨＴＴＰＤ正
是这样的一个Ｗｅｂ服务器软件。

ＬｉｂＨＴＴＰＤ是一个自由软件，可以从ｈｔｔｐ：／／ｗｗｗｈｕｇｈｅｓｃｏｍａｕ处下载最新版本。使
用ＬｉｂＨＴＴＰＤ可以提供安全而有效的Ｗｅｂ访问，其访问内容既可以是静态的，也可以是动态
产生的。ＬｉｂＨＴＴＰＤ提供了许多ＡＰＩ函数，使用这些函数可以产生一个Ｗｅｂ服务器并对其进
行操作。其操作基本过程如下：

１）创建一个Ｗｅｂ服务器。

２）定义Ｗｅｂ服务器访问内容。

３）接收并解释从浏览器发送过来的ＨＴＴＰ请求。

４）对请求进行处理并通过ＨＴＴＰ将结果返回给浏览器。

ＬｉｂＨＴＴＰＤ提供了用于完成上述工作的ＡＰＩ函数。在创建 Ｗｅｂ服务器时，可以调用

ｈｔｔｐＣｒｅａｔｅ（）函数，其返回值为服务器的句柄。其他对该 Ｗｅｂ服务器进行操作的ＡＰＩ函数都
将使用此句柄。如果需要的话，可以使用ｈｔｔｐＳｅｔＥｒｒｏｒＬｏｇ（）函数和ｈｔｔｐＳｅｔＡｃｃｅｓｓＬｏｇ（）函数对

Ｗｅｂ服务器的错误和访问信息进行记录。
在创建一个Ｗｅｂ服务器后，必须对服务器的访问内容进行设置和定义。ＬｉｂＨＴＴＰＤ与其

他Ｗｅｂ服务器软件不同，其Ｗｅｂ内容必须使用其ＡＰＩ函数产生。使用ＡＰＩ函数可以产生如
下形式的Ｗｅｂ内容：

① 静态内容：保存在静态文本ｂｕｆｆｅｒ内的ＨＴＭＬ内容。

② 文件内容：一个外部文件。

③ 通配符（Ｗｉｌｄｃａｒｄ）内容：在指定目录内的任何相关文件。

④ 动态内容：使用Ｃ回调函数产生所需的输出。

８１３

在对Ｗｅｂ服务器内容进行定义后，可以使程序进入一个循环，在循环体内对 Ｗｅｂ请求进
行处理。每一次循环都调用下述ＡＰＩ函数：

ｈｔｔｐｄＧｅｔＣｏｎｎｅｃｔｉｏｎ（） ———接受ＨＴＴＰ连接

ｈｔｔｐｄＲｅａｄＲｅｑｕｅｓｔ（） ———读ＨＴＴＰ请求

ｈｔｔｐｄＰｒｏｃｅｓｓＲｅｑｕｅｓｔ（） ———生成输出信息

ｈｔｔｐｄＥｎｄＲｅｑｕｅｓｔ（） ———结束此次ＨＴＴＰ连接

当调用ｈｔｔｐｄＰｒｏｃｅｓｓＲｅｑｕｅｓｔ（）函数时，ＬｉｂＨＴＴＰＤ将对客户端的请求内容进行识别，确定

Ｗｅｂ服务器内是否有所需的内容，并采取适当的措施将被请求的内容发送到客户端。
表１３１列举了ＬｉｂＨＴＴＰＤ提供的一些ＡＰＩ函数，这些ＡＰＩ函数的详细说明和使用方法

可以参考ＬｉｂＨＴＴＰＤ源码中的说明文档。

表１３１ ＬｉｂＨＴＴＰＤＡＰＩ函数

类 别 函 数 说 明

服务器设置函数

ｈｔｔｐｄＣｒｅａｔｅ（） 创建Ｗｅｂ服务器

ｈｔｔｐｄＳｅｔＡｃｃｅｓｓＬｏｇ（） 设置访问日志文件

ｈｔｔｐｄＳｅｔＥｒｒｏｒＬｏｇ（） 设置错误日志文件

ｈｔｔｐｄＳｅｔＦｉｌｅＢａｓｅ（） 设置文件基本路径名

Ｗｅｂ内容定义函数

ｈｔｔｐｄＡｄｄＣＣｏｎｔｅｎｔ（） 调用Ｃ函数产生输出内容

ｈｔｔｐｄＡｄｄＦｉｌｅＣｏｎｔｅｎｔ（） 将一个外部文件加入到输出内容

ｈｔｔｐｄＳｔａｔｉｃＣｏｎｔｅｎｔ（） 将一个内部文本ｂｕｆｆｅｒ加入到ＨＴＭＬ输出内容

ｈｔｔｐｄＡｄｄＷｉｌｄｃａｒｄＣｏｎｔｅｎｔ（） 增加与通配符匹配的文件内容

ｈｔｔｐｄＡｄｄＣＷｉｌｄｃａｒｄＣｏｎｔｅｎｔ（） 请求指定目录中的任何文件时调用Ｃ回调函数

连接和请求处理函数

ｈｔｔｐｄＧｅｔＣｏｎｎｅｃｔｉｏｎ（） 接受一个ＨＴＴＰ连接请求

ｈｔｔｐｄＲｅａｄＲｅｑｕｅｓｔ（） 读取并保存从客户端发送过来的请求和数据

ｈｔｔｐｄＰｒｏｃｅｓｓＲｅｑｕｅｓｔ（） 对请求进行处理，并将请求内容发送到客户端

ｈｔｔｐｄＥｎｄＲｅｑｕｅｓｔ（） 请求结束处理

响应处理函数

ｈｔｔｐｄＯｕｔｐｕｔ（） 将文本ｂｕｆｆｅｒ内容发送到客户端浏览器

ｈｔｔｐｄＰｒｉｎｔｆ（） 按指定格式将内容输出到客户端浏览器

ｈｔｔｐｄＳｅｔＣｏｎｔｅｎｔＴｙｐｅ（）
设置除ＨＴＭＬ文本以外的内容类型，如“ｉｍａｇｅ／

ｊｐｅｇ″
ｈｔｔｐｄＳｅｔＲｅｓｐｏｎｓｅ（） 设置返回给客户端浏览器的响应代码

ｈｔｔｐｄＡｄｄＨｅａｄｅｒ（） 增加ＨＴＭＬ头内容

ｈｔｔｐｄＳｅｎｄＨｅａｄｅｒｓ（） 发送ＨＴＭＬ头

表格数据、Ｃｏｏｋｉｅｓ、

符号表函数

ｈｔｔｐｄＧｅｔＶａｒｉａｂｌｅＢｙＮａｍｅ（） 在符号表中查找变量

ｈｔｔｐｄＧｅｔＶａｒｉａｂｌｅＢｙＰｒｅｆｉｘ（） 获取第一个与指定前缀相匹配的变量

ｈｔｔｐｄＧｅｔＮｅｘｔＶａｒｉａｂｌｅＢｙＰｒｅｆｉｘ（） 获取下一个与指定前缀相匹配的变量

ｈｔｔｐｄＧｅｔＶａｒｉａｂｌｅＢｙＰｒｅｆｉｘｅｄＮａｍｅ（） 在符号表中查找变量

ｈｔｔｐｄＡｄｄＶａｒｉａｂｌｅ（） 在符号表中增加变量

ｈｔｔｐｄＤｕｍｐＶａｒｉａｂｌｅｓ（） Ｄｕｍｐ符号表内容

ｈｔｔｐｄＳｅｔＣｏｏｋｉｅ（） 设置Ｃｏｏｋｉｅｓ

身份验证
ｈｔｔｐｄＡｕｔｈｅｎｔｉｃａｔｅ（） 使用用户名和口令进行身份认证

ｈｔｔｐｄＦｏｒｃｅＡｕｔｈｅｎｔｉｃａｔｅ（） 强迫身份认证

访问控制表（ＡＣＬ）函数
ｈｔｔｐｄＡｄｄＡｃｌ（） 在ＡＣＬ表中增加访问控制项

ｈｔｔｐｄＳｅｔＤｅｆａｕｌｔＡｃｌ（） 设置默认ＡＣＬ
ｈｔｔｐｄＣｈｅｃｋＡｃｌ（） 进行ＡＣＬ检查

９１３

（续）

类 别 函 数 说 明

其他函数

ｈｔｔｐｄＵｒｌＥｎｃｏｄｅ（） 进行ＵＲＬ编码

ｈｔｔｐｄＲｅｑｕｅｓｔＭｅｔｈｏｄ（） 获取访问方式（ＨＴＴＰ ＧＥＴ／ＨＴＴＰ ＰＯＳＴ）

ｈｔｔｐｄＲｅｑｕｅｓｔＭｅｔｈｏｄＮａｍｅ（） 获取访问方式名字（ＧＥＴ／ＰＯＳＴ）

ｈｔｔｐｄＲｅｑｕｅｓｔＰａｔｈ（） 获取ＵＲＬ请求路径

ｈｔｔｐｄＲｅｑｕｅｓｔＣｏｎｔｅｎｔＴｙｐｅ（） 获取当前请求内容类型

ｈｔｔｐｄＲｅｑｕｅｓｔＣｏｎｔｅｎｔＬｅｎｇｔｈ（） 获取当前请求发送的内容长度

作为ｅＣｏｓ的一个应用，可以使用ＬｉｂＨＴＴＰＤ建立一个简单的基于ｅＣｏｓ的小型嵌入式

Ｗｅｂ服务器。该服务器的建立分两步进行。首先要对ｅＣｏｓ进行配置和编译，产生应用程序
（即Ｗｅｂ服务器）可以与之链接的ｅＣｏｓ库。在得到ｅＣｏｓ链接库后，再对应用程序（包括Ｌｉｂ
ＨＴＴＰＤ库和Ｗｅｂ服务器程序）进行编译和链接，最后得到可在目标平台上运行的 Ｗｅｂ服务
器软件。

为方便学习和实践，运行嵌入式Ｗｅｂ服务器的硬件平台选用普通的ＰＣ微机（可以不需要
键盘、鼠标和显示器），要求使用Ｉｎｔｅｌｉ８２５５９网卡（如ＩｎｔｅｌＥｎｔｈｅｒｐｒｅｓｓＰｒｏ１０／１００网卡），ｅＣｏｓ
开发平台ＨＯＳＴ与目标系统的连接使用串口连接。目标平台使用软盘引导ＲｅｄＢｏｏｔ。这里假
设已经产生了一个用于软盘引导的ＲｅｄＢｏｏｔ，且能正常引导。

１３２ 配置和建造ｅＣｏｓ

使用图形配置工具对ｅＣｏｓ进行配置。由于 Ｗｅｂ服务器需要网络支持，因此在选用模板
时应该选择“ｎｅｔ”模板，目标平台为“ｉ３８６ＰＣ”。目前ｅＣｏｓ源码只为ｉ３８６ＰＣ目标平台提供Ｉｎ
ｔｅｌｉ８２５５９系列网卡的支持，因此目标平台上只能使用这种网卡。如果要支持其他网卡，必须
为这些网卡编写新的驱动程序。

在对ｅＣｏｓ进行配置时，要注意选择启动方式（Ｓｔａｒｔｕｐ）为“ＲＡＭ”，这是因为最后生成的

Ｗｅｂ服务器可执行代码将通过ＧＤＢ加载到目标系统内存中运行。

Ｗｅｂ服务器需要对网络进行配置。配置过程如图１３１所示。主要配置内容包括：

①ＩＰ地址。

ＩＰａｄｄｒｅｓｓ：１７２２６４１００
② 子网掩码。

Ｎｅｔｗｏｒｋｍａｓｋａｄｄｒｅｓｓ：２５５２５５２５５０
③ 广播地址。

Ｂｒｏａｄｃａｓｔａｄｄｒｅｓｓ：１７２２６４２５５
④ 网关。

Ｇａｔｅｗａｙ／ｒｏｕｔｅｒＩＰａｄｄｒｅｓｓ：１７２２６４１
最后产生的ｅＣｏｓＷｅｂ服务器使用的ＩＰ地址为１７２２６４１００，网关为１７２２６４１，子网

掩码为２５５２５５２５５０，广播地址为１７２２６４２５５。
除此之外，其他配置选项都可以使用默认配置。也可以根据需要适当增加某些软件包或

删减一些软件包，或修改某些配置选项的值。

０２３

图１３１ 对ｅＣｏｓ网络进行配置

在完成对ｅＣｏｓ的配置后，将其进行保存。例如，将其保存为配置文件ｎｅｔ３８６ｅｃｃ，路径为

ｈ：＼ｅｃｏｓ２０。（ｅＣｏｓ组件仓库路径为ｈ：＼ｅｃｏｓ２０＼ｐａｃｋａｇｅｓ）。此时将产生三个子目录：ｈ：＼ｅ
ｃｏｓ２０＼ｎｅｔ３８６ ｂｕｉｌｄ、ｈ：＼ｅｃｏｓ２０＼ｎｅｔ３８６ ｍｌｔ和ｈ：＼ｅｃｏｓ２０＼ｎｅｔ３８６ ｉｎｓｔａｌｌ。
使用图形配置工具的“Ｂｕｉｌｄ”菜单对已经配置好的ｅＣｏｓ进行编译。编译完成后，将在其安

装目录（ｈ：＼ｅｃｏｓ２０＼ｎｅｔ３８６ ｉｎｓｔａｌｌ）下得到编译应用程序所需要的头文件和库文件。

１３３ Ｗｅｂ服务器编程

作为ｅＣｏｓ应用程序的ＬｉｂＨＴＴＰＤ嵌入式Ｗｅｂ服务器软件由两部分组成。其中一部分是
提供ｈｔｔｐｄ服务器库函数的ＬｉｂＨＴＴＰＤ，另一部分是作为Ｗｅｂ服务器演示程序。这些软件可
以从下述网站上获取：

ＬｉｂＨＴＴＰＤ：ｈｔｔｐ：／／ｗｗｗｍｌｂａｓｓｏｃｃｏｍ／ｅｘａｍｐｌｅｓ／ｌｉｂｈｔｔｐｄ１３ｔａｒｇｚ
ＬｉｂＨＴＴＰＤ补丁：ｈｔｔｐ：／／ｗｗｗｍｌｂａｓｓｏｃｃｏｍ／ｅｘａｍｐｌｅｓ／ｌｉｂｈｔｔｐｄｐａｔｃｈ
Ｗｅｂ服务器演示程序：ｈｔｔｐ：／／ｗｗｗｍｌｂａｓｓｏｃｃｏｍ／ｅｘａｍｐｌｅｓ／ｈｔｔｐｄ ａｐｐｌｉｃａｔｉｏｎｔａｒｇｚ

本书配套光盘上也包含了这些程序，位于目录／ｅｃｏｓ ａｐｐｌｉｃａｔｉｏｎ下。为配合ｅＣｏｓ图形配
置工具的使用，某些文件已经过修改，可以直接使用。

得到上述文件后，进入Ｃｙｇｗｉｎ环境。进行下面的操作，创建工作目录ｈｔｔｐｄ：

＄ｃｄ／ｈ／ｅｃｏｓ２０
＄ｍｋｄｉｒｈｔｔｐｄ
＄ｃｄｈｔｔｐｄ

将上述文件复制到该目录下（ｈ：＼ｅｃｏｓ２０＼ｈｔｔｐｄ），对它们进行解压缩并运行ＬｉｂＨＴＴＰＤ
补丁程序：

＄ｃｄ／ｈ／ｅｃｏｓ２０／ｈｔｔｐｄ ｔｅｓｔ

１２３

＄ｔａｒｚｘｖｆ ｌｉｂｈｔｔｐｄ１３ｔａｒｇｚ
＄ｔａｒｚｘｖｆ ｈｔｔｐｄ ａｐｐｌｉｃａｔｉｏｎｔａｒｇｚ
＄ｐａｔｃｈｐ０＜ｌｉｂｈｔｔｐｄｐａｔｃｈ

完成上述操作后，将光盘上的ｂｕｉｌｄ Ｍａｋｅｐａｒａｍｓ文件复制到当前目录。这是一个用于
自动生成ｍａｋｅｆｉｌｅ文件的脚本文件，也可以从ｅＣｏｓ源码中的ｅｘａｍｐｌｅｓ目录下找到该文件。必
须根据具体环境对该文件进行简单的修改，才能继续进行后面的操作。下面是本书光盘提供

的一个ｂｕｉｌｄ Ｍａｋｅｐａｒａｍｓ文件，该文件已经进行了修改，修改内容主要是使其能使用正确
的ｅＣｏｓ安装目录路径，在此例中安装目录的路径为／ｈ／ｅｃｏｓ２０／ｎｅｔ３８６ ｉｎｓｔａｌｌ。如果要使用不
同的路径或配置名（本例为ｎｅｔ３８６），只需对ＨＯＭＥ参数进行修改。

ｂｕｉｌｄ Ｍａｋｅｐａｒａｍｓ文件
＃！／ｂｉｎ／ｓｈ
＃ＴｈｉｓｓｃｒｉｐｔｗｉｌｌｓｅｔｕｐａＭａｋｅｆｉｌｅｆｒａｇｍｅｎｔｗｉｔｈ
＃ｐｌａｔｆｏｒｍｓｐｅｃｉｆｉｃｓ Ｔｈｉｓｆｒａｇｅｍｅｎｔｃａｎｂｅｕｓｅｄｂｙ
＃ｔｈｅａｕｔｏｍａｔｉｃａｌｌｙｇｅｎｅｒａｔｅｄＭａｋｅｆｉｌｅ（ｖｉａｔｈｅｓｃｒｉｐｔ
＃′ｂｕｉｌｄ Ｍａｋｅｆｉｌｅ′）

＃Ｃｏｐｉｅｄｆｒｏｍ′ｍａｋｅｆｉｌｅ′ｔｈｅ″ｉｎｓｔａｌｌ″ｔｒｅｅ
＃ＨＯＭＥ＝＄｛１′ｐｗｄ′｝

ＨＯＭＥ＝／ｈ／ｅｃｏｓ２０／ｎｅｔ３８６
ｉｆ［！ｄ＄｛ＨＯＭＥ｝ｉｎｓｔａｌｌ］；ｔｈｅｎ
ｅｃｈｏ″ＮｏｔａｎｅＣｏｓｉｎｓｔａｌｌｔｒｅｅ″
ｅｃｈｏ″ｕｓａｇｅ：＜ｅＣｏｓ ｒｅｐｏｓｉｔｏｒｙ＞／ｂｕｉｌｄ Ｍａｋｅｐａｒａｍｓ［＜ｅＣｏｓｉｎｓｔａｌｌ ｄｉｒ＞］″
ｅｘｉｔ

ｆｉ
ｃａｔ＜＜ＥＯＦ＞Ｍａｋｅｐａｒａｍｓ
＃Ｃｏｐｉｅｄｆｒｏｍ′ｍａｋｅｆｉｌｅ′ｉｎｔｈｅ″ｉｎｓｔａｌｌ″ｔｒｅｅ
ＥＯＦ
ｇｒｅｐｅｘｐｏｒｔ＄｛ＨＯＭＥ｝ｂｕｉｌｄ／ｍａｋｅｆｉｌｅ＞＞Ｍａｋｅｐａｒａｍｓ
ｃａｔ＜＜ＥＯＦ＞＞Ｍａｋｅｐａｒａｍｓ
＃
＃Ｔａｒｇｅｔｓｐｅｃｉｆｉｃｆｌａｇｓ，ｅｔｃ
＃
ＥＯＦ
ｃａｔ＄｛ＨＯＭＥ｝ｉｎｓｔａｌｌ／ｉｎｃｌｕｄｅ／ｐｋｇｃｏｎｆ／ｅｃｏｓｍａｋ＞＞Ｍａｋｅｐａｒａｍｓ

对ｂｕｉｌｄ Ｍａｋｅｐａｒａｍｓ文件进行修改后，进入ｈｔｔｐｄ ａｐｐｌｉｃａｔｉｏｎ目录，执行该脚本文件生
成编译应用程序所需的ｍａｋｅｆｉｌｅ文件，然后对应用程序（包括ＬｉｂＨＴＴＰＤ）按下面的操作命令
进行编译：

＄ｃｄ ｈｔｔｐｄ ａｐｐｌｉｃａｔｉｏｎ
＄ｓｈ ／ｂｕｉｌｄ Ｍａｋｅｐａｒａｍｓ ／ｈ／ｅｃｏｓ２０／ｎｅｔ３８６
＄ｍａｋｅ

上面第二行命令的／ｈ／ｅｃｏｓ２０／ｎｅｔ３８６指的是ｅＣｏｓ安装树所在目录（即ｎｅｔ３８６ ｉｎｓｔａｌｌ目

２２３

录）。

对应用程序进行编译后，在ｈ：＼ｅｃｏｓ２０＼ｈｔｔｐｄ＼ｈｔｔｐｄ ａｐｐｌｉｃａｔｉｏｎ目录下将得到一个ｔｅｓｔ
文件，这是一个可在目标系统上运行的可执行文件，也就是简单的一个Ｗｅｂ服务器软件。
在ｈｔｔｐｄ ａｐｐｌｉｃａｔｉｏｎ目录下有一个ｈｔｔｐｄ ｔｅｓｔｃ文件，这就是Ｗｅｂ服务器演示程序。此

程序产生一个简单的Ｗｅｂ服务器，它提供一个静态页面ｔｅｓｔ１ｈｔｍｌ、两个动态页面ｉｎｄｅｘｈｔｍｌ
和ｔｅｓｔ２ｈｔｍｌ、一个通配符页面ｔｅｓｔ３ｈｔｍｌ、两个身份认证页面ｌｏｇｉｎｈｔｍｌ和ｌｏｇｉｎ２ｈｔｍｌ。
下面是本书光盘上的例子程序ｈｔｔｐｄ ｔｅｓｔｃ。ＬｉｂＨＴＴＰＤ可以运行在多个嵌入式操作系

统之下，它提供的演示程序包含了对其他嵌入式系统的支持。光盘中的该程序已经过修改，只

保留了与ｅＣｏｓ相关的部分。读者可以仔细分析该程序，了解如何创建ｅＣｏｓＷｅｂ服务器以及
如何对Ｗｅｂ服务器内容进行定义和设置的方法。

ｈｔｔｐｄ ｔｅｓｔｃ文件
＃ｉｎｃｌｕｄｅ＜ｃｙｇ／ｈａｌ／ｈａｌ ａｒｃｈｈ＞
＃ｉｎｃｌｕｄｅ＜ｃｙｇ／ｋｅｒｎｅｌ／ｋａｐｉｈ＞
＃ｉｎｃｌｕｄｅ＜ｃｙｇ／ｈａｌ／ｈａｌｉｆｈ＞
＃ｄｅｆｉｎｅｍａｉｎｈｔｔｐｄ ｔｅｓｔ
＃ｉｎｃｌｕｄｅ″ｃｏｎｆｉｇｈ″
＃ｉｎｃｌｕｄｅ＜ｓｔｄｉｏｈ＞
＃ｉｎｃｌｕｄｅ＜ｕｎｉｓｔｄｈ＞
＃ｉｎｃｌｕｄｅ＜ｓｙｓ／ｔｉｍｅｈ＞
＃ｉｎｃｌｕｄｅ″ｈｔｔｐｄｈ″

／
ＴｈｉｓｉｓａｓｔａｔｉｃｐａｇｅｏｆＨＴＭＬ Ｉｔｉｓｌｏａｄｅｄｉｎｔｏｔｈｅｃｏｎｔｅｎｔ
ｔｒｅｅｕｓｉｎｇｈｔｔｐｄＡｄｄＳｔａｔｉｃＣｏｎｔｅｎｔ（）
／

＃ｄｅｆｉｎｅｔｅｓｔ１ ｈｔｍｌ″＜ＨＴＭＬ＞＜ＢＯＤＹ＞Ｔｈｉｓｉｓｊｕｓｔａｔｅｓｔ＜／ＢＯＤＹ＞″

／
Ｂｅｌｏｗａｒｅ２ｄｙｎａｍｉｃｐａｇｅｓ，ｅａｃｈｇｅｎｅｒａｔｅｄｂｙａＣｆｕｎｃｔｉｏｎ Ｔｈｅｆｉｒｓｔ
ｉｓａｓｉｍｐｌｅｐａｇｅｔｈａｔｏｆｆｅｒｓａｌｉｔｔｌｅｄｙｎａｍｉｃｉｎｆｏ（ｔｈｅｐｒｏｃｅｓｓＩＤ）

ａｎｄｔｈｅｓｅｔｕｐｓｕｐａｔｅｓｔｌｉｎｋａｎｄａｓｉｍｐｌｅｆｏｒｍ

Ｔｈｅｓｅｃｏｎｄｐａｇｅｐｒｏｃｅｓｓｅｓｔｈｅｆｏｒｍ Ａｓｙｏｕｃａｎｓｅｅ，ｙｏｕｃａｎａｃｃｅｓｓ
ｔｈｅｆｏｒｍｄａｔａｆｒｏｍｗｉｔｈｉｎｙｏｕｒＣｃｏｄｅｂｙａｃｃｅｓｓｉｎｇｔｈｅｓｙｍｂｏｌｔａｂｌｅ
ｕｓｉｎｇｈｔｔｐｄＧｅｔＶａｒｉａｂｌｅＢｙＮａｍｅ（）（ａｎｄｏｔｈｅｒｓｉｍｉｌａｒｆｕｎｃｔｉｏｎｓ） Ｙｏｕ
ｃａｎａｌｓｏｉｎｃｌｕｄｅｖａｒｉａｂｌｅｓｉｎｔｈｅｓｔｒｉｎｇｐａｓｓｅｄｔｏｈｔｔｐｄＯｕｔｐｕｔ（）ａｎｄ
ｔｈｅｙｗｉｌｌｂｅｅｘｐａｎｄｅｄａｕｔｏｍａｔｉｃａｌｌｙ
／

ｖｏｉｄｉｎｄｅｘ ｈｔｍｌ（ｓｅｒｖｅｒ）

ｈｔｔｐｄｓｅｒｖｅｒ；
｛

３２３

ｈｔｔｐｄＰｒｉｎｔｆ（ｓｅｒｖｅｒ，

″Ｈｅｌｌｏ！ＴｈｉｓｉｓａｅＣｏｓＥｍｂｅｄｅｄＷｅｂＳｅｒｖｅｒ！＜Ｐ＞＼ｎ″）；

ｈｔｔｐｄＰｒｉｎｔｆ（ｓｅｒｖｅｒ，

″Ｗｅｌｃｏｍｅｔｏｔｈｅｈｔｔｐｄｓｅｒｖｅｒｒｕｎｎｉｎｇｉｎｐｒｏｃｅｓｓｎｕｍｂｅｒ％ｄ＜Ｐ＞＼ｎ″，ｇｅｔｐｉｄ（））；

ｈｔｔｐｄＰｒｉｎｔｆ（ｓｅｒｖｅｒ，

″Ｃｌｉｃｋ＜ＡＨＲＥＦ＝／ｔｅｓｔ１ｈｔｍｌ＞ｈｅｒｅ＜／Ａ＞ｔｏｖｉｅｗａｔｅｓｔｐａｇｅ＜Ｐ＞＼ｎ″）；

ｈｔｔｐｄＰｒｉｎｔｆ（ｓｅｒｖｅｒ，

″Ｃｌｉｃｋ＜ＡＨＲＥＦ＝／ｌｏｇｉｎｈｔｍｌ＞ｈｅｒｅ＜／Ａ＞ｔｏａｕｔｈｅｎｔｉｃａｔｅ＜Ｐ＞＼ｎ″）；

ｈｔｔｐｄＰｒｉｎｔｆ（ｓｅｒｖｅｒ，

″Ｏｒ＜ＡＨＲＥＦ＝／ｗｉｌｄｃａｒｄ／ｆｏｏ＞ｈｅｒｅ＜／Ａ＞ｆｏｒａｔｅｓｔｗｉｌｄｃａｒｄｐａｇｅ＜Ｐ＞＼ｎ″）；

ｈｔｔｐｄＰｒｉｎｔｆ（ｓｅｒｖｅｒ，″＜Ｐ＞＜ＦＯＲＭＡＣＴＩＯＮ＝ｔｅｓｔ２ｈｔｍｌＭＥＴＨＯＤ＝ＰＯＳＴ＞＼ｎ″）；

ｈｔｔｐｄＰｒｉｎｔｆ（ｓｅｒｖｅｒ，″Ｅｎｔｅｒｙｏｕｒｎａｍｅ＜ＩＮＰＵＴＮＡＭＥ＝ｎａｍｅＳＩＺＥ＝１０＞＼ｎ″）；

ｈｔｔｐｄＰｒｉｎｔｆ（ｓｅｒｖｅｒ，″＜ＩＮＰＵＴＴＹＰＥ＝ＳＵＢＭＩＴＶＡＬＵＥ＝Ｃｌｉｃｋ！＞＜Ｐ＞＜／ＦＯＲＭ＞＼
ｎ″）；

ｒｅｔｕｒｎ；
｝

ｓｔａｔｉｃｈｔｔｐｄ ｓｅｒｖｅｒ；

ｓｔａｔｉｃｃｈａｒ ｂｕｆ［８１９２］；

ｓｔａｔｉｃｖｏｉｄ
ｄｏ ｐｒｉｎｔｆ（ｃｈａｒｆｍｔ，）
｛

ｖａ ｌｉｓｔａｐ；

ｖａ ｓｔａｒｔ（ａｐ，ｆｍｔ）；

ｖｓｐｒｉｎｔｆ（ ｂｕｆ，ｆｍｔ，ａｐ）；

ｈｔｔｐｄＰｒｉｎｔｆ（ｓｅｒｖｅｒ， ｂｕｆ）；
｝

ｖｏｉｄｔｅｓｔ２ ｈｔｍｌ（ｓｅｒｖｅｒ）

ｈｔｔｐｄｓｅｒｖｅｒ；
｛

ｈｔｔｐＶａｒ ｖａｒｉａｂｌｅ；
／
Ｇｒａｂｔｈｅｓｙｍｂｏｌｔａｂｌｅｅｎｔｒｙｔｏｓｅｅｉｆｔｈｅｖａｒｉａｂｌｅｅｘｉｓｔｓ
／

ｖａｒｉａｂｌｅ＝ｈｔｔｐｄＧｅｔＶａｒｉａｂｌｅＢｙＮａｍｅ（ｓｅｒｖｅｒ，″ｎａｍｅ″）；

ｉｆ（ｖａｒｉａｂｌｅ＝＝ＮＵＬＬ）
｛

ｈｔｔｐｄＰｒｉｎｔｆ（ｓｅｒｖｅｒ，″Ｍｉｓｓｉｎｇｆｏｒｍｄａｔａ！″）；

ｒｅｔｕｒｎ；
｝

／

４２３

ＵｓｅｈｔｔｐｄＯｕｔｐｕｔ（）ｒａｔｈｅｒｔｈａｎｈｔｔｐｄＰｒｉｎｔｆ（）ｓｏｔｈａｔｔｈｅｖａｒｉａｂｌｅ
ｅｍｂｅｄｄｅｄｉｎｔｈｅｔｅｘｔｉｓｅｘｐａｎｄｅｄａｕｔｏｍａｔｉｃａｌｌｙ
／

ｈｔｔｐｄＯｕｔｐｕｔ（ｓｅｒｖｅｒ，″Ｈｅｌｌｏ＄ｎａｍｅ″）；

ｓｅｒｖｅｒ＝ｓｅｒｖｅｒ；

ｈｔｔｐｄＰｒｉｎｔｆ（ｓｅｒｖｅｒ，″＜ｐｒｅ＞＼ｎ″）；

ｓｈｏｗ ｎｅｔｗｏｒｋ ｔａｂｌｅｓ（ ｄｏ ｐｒｉｎｔｆ）；

ｈｔｔｐｄＰｒｉｎｔｆ（ｓｅｒｖｅｒ，″＜／ｐｒｅ＞＼ｎ″）；
｝

ｖｏｉｄｔｅｓｔ３ ｈｔｍｌ（ｓｅｒｖｅｒ）

ｈｔｔｐｄｓｅｒｖｅｒ；
｛

ｃｈａｒ ｐａｔｈ；

ｐａｔｈ＝ｈｔｔｐｄＲｅｑｕｅｓｔＰａｔｈ（ｓｅｒｖｅｒ）；

ｈｔｔｐｄＯｕｔｐｕｔ（ｓｅｒｖｅｒ，″Ｗｉｌｃａｒｄｄｙｎａｍｉｃｒｅｑｕｅｓｔｒｅｃｅｉｖｅｄ＜Ｐ＞″）；

ｈｔｔｐｄＰｒｉｎｔｆ（ｓｅｒｖｅｒ，″Ｔｈｅｒｅｑｕｅｓｔｅｄｐａｔｈｗａｓ％ｓ＜Ｐ＞″，ｐａｔｈ）；
｝

ｖｏｉｄｌｏｇｉｎ ｈｔｍｌ（ｓｅｒｖｅｒ）

ｈｔｔｐｄｓｅｒｖｅｒ；
｛

ｉｆ（ｈｔｔｐｄＡｕｔｈｅｎｔｉｃａｔｅ（ｓｅｒｖｅｒ，″ＬｉｂＨＴＴＰＤＴｅｓｔ″）＝＝０）

ｒｅｔｕｒｎ；

ｈｔｔｐｄＰｒｉｎｔｆ（ｓｅｒｖｅｒ，″Ｙｏｕｒｕｓｅｒｎａｍｅｉｓ′％ｓ′＜Ｐ＞＼ｎ″，

ｓｅｒｖｅｒ＞ｒｅｑｕｅｓｔａｕｔｈＵｓｅｒ）；

ｈｔｔｐｄＰｒｉｎｔｆ（ｓｅｒｖｅｒ，″Ｙｏｕｒｐａｓｓｗｏｒｄｉｓ′％ｓ′＜Ｐ＞＼ｎ″，

ｓｅｒｖｅｒ＞ｒｅｑｕｅｓｔａｕｔｈＰａｓｓｗｏｒｄ）；

ｈｔｔｐｄＯｕｔｐｕｔ（ｓｅｒｖｅｒ，

″Ｃｌｉｃｋ＜ＡＨＲＥＦ＝ｌｏｇｉｎ２ｈｔｍｌ＞ｈｅｒｅ＜／Ａ＞ｔｏｆｏｒｃｅｒｅａｕｔｈｅｎｔｉｃａｔｉｏｎ″）；

ｈｔｔｐｄＯｕｔｐｕｔ（ｓｅｒｖｅｒ，″ Ｕｓｅａｕｓｅｒｎａｍｅ＝ｔｅｓｔｐａｓｓｗｏｒｄ＝１２３″）；
｝

ｖｏｉｄｌｏｇｉｎ２ ｈｔｍｌ（ｓｅｒｖｅｒ）

ｈｔｔｐｄｓｅｒｖｅｒ；
｛

ｉｆ（ｈｔｔｐｄＡｕｔｈｅｎｔｉｃａｔｅ（ｓｅｒｖｅｒ，″ＬｉｂＨＴＴＰＤＴｅｓｔ″）＝＝０）
｛

ｈｔｔｐｄＯｕｔｐｕｔ（ｓｅｒｖｅｒ，″Ａｕｔｈｅｎｔｉｃａｔｉｏｎｆａｉｌｕｒｅ（１）″）；

ｒｅｔｕｒｎ；
｝

ｉｆ（ｓｔｒｃｍｐ（ｓｅｒｖｅｒ＞ｒｅｑｕｅｓｔａｕｔｈＵｓｅｒ，″ｔｅｓｔ″）！＝０｜｜

５２３

ｓｔｒｃｍｐ（ｓｅｒｖｅｒ＞ｒｅｑｕｅｓｔａｕｔｈＰａｓｓｗｏｒｄ，″１２３″）！＝０）
｛

ｈｔｔｐｄＦｏｒｃｅＡｕｔｈｅｎｔｉｃａｔｅ（ｓｅｒｖｅｒ，″ＬｉｂＨＴＴＰＤＴｅｓｔ″）；

ｈｔｔｐｄＯｕｔｐｕｔ（ｓｅｒｖｅｒ，″Ａｕｔｈｅｎｔｉｃａｔｉｏｎｆａｉｌｕｒｅ（２）″）；

ｒｅｔｕｒｎ；
｝

ｈｔｔｐｄＯｕｔｐｕｔ（ｓｅｒｖｅｒ，″Ｙｏｕｒｌｏｇｉｎｗａｓａｃｃｅｐｔｅｄ″）；
｝

ｉｎｔｍａｉｎ（ａｒｇｃ，ａｒｇｖ）

ｉｎｔ ａｒｇｃ；

ｃｈａｒ ａｒｇｖ［］；
｛

ｈｔｔｐｄｓｅｒｖｅｒ；

ｃｈａｒ ｈｏｓｔ；

ｉｎｔ ｐｏｒｔ，

ｅｒｒＦｌａｇ，

ｒｅｓｕｌｔ；

ｅｘｔｅｒｎｃｈａｒｏｐｔａｒｇ；

ｅｘｔｅｒｎｉｎｔｏｐｔｉｎｄ，ｏｐｔｅｒｒ，ｏｐｔｏｐｔ；

ｉｎｔｃ；

ｓｔｒｕｃｔ ｔｉｍｅｖａｌｔｉｍｅｏｕｔ；

ｃｈａｒｖｅｒｓｉｏｎ＝ＣＹＧＡＣＣ ＣＡＬＬ ＩＦ ＭＯＮＩＴＯＲ ＶＥＲＳＩＯＮ（）；

ｉｆ（ｖｅｒｓｉｏｎ）｛

ｐｒｉｎｔｆ（ｖｅｒｓｉｏｎ）；
｝ｅｌｓｅ｛

ｐｒｉｎｔｆ（″ＵｎｋｎｏｗｎＲｅｄＢｏｏｔｖｅｒｓｉｏｎ！＼ｎ″）；
｝

ｐｒｉｎｔｆ（″ＳｔａｒｔｉｎｇＨＴＴＰｓｅｒｖｅｒ＼ｎ″）；

ｉｎｉｔ ａｌｌ ｎｅｔｗｏｒｋ ｉｎｔｅｒｆａｃｅｓ（）；

ｈｏｓｔ＝ＮＵＬＬ；

ｐｏｒｔ＝８０；
／
Ｃｒｅａｔｅａｓｅｒｖｅｒａｎｄｓｅｔｕｐｏｕｒｌｏｇｇｉｎｇ
／

ｓｅｒｖｅｒ＝ｈｔｔｐｄＣｒｅａｔｅ（ｈｏｓｔ，ｐｏｒｔ）；

ｉｆ（ｓｅｒｖｅｒ＝＝ＮＵＬＬ）
｛

ｐｅｒｒｏｒ（″Ｃａｎ′ｔｃｒｅａｔｅｓｅｒｖｅｒ″）；

ｅｘｉｔ（１）；
｝

ｐｒｉｎｔｆ（″ＳｅｒｖｅｒＯＫ！＼ｎ″）；

ｈｔｔｐｄＳｅｔＡｃｃｅｓｓＬｏｇ（ｓｅｒｖｅｒ，ｓｔｄｏｕｔ）；

６２３

ｈｔｔｐｄＳｅｔＥｒｒｏｒＬｏｇ（ｓｅｒｖｅｒ，ｓｔｄｏｕｔ）；
／
Ｓｅｔｕｐｓｏｍｅｃｏｎｔｅｎｔｆｏｒｔｈｅｓｅｒｖｅｒ
／

ｈｔｔｐｄＡｄｄＣＣｏｎｔｅｎｔ（ｓｅｒｖｅｒ，″／″，″ｉｎｄｅｘｈｔｍｌ″，ＨＴＴＰ ＴＲＵＥ，

ＮＵＬＬ，ｉｎｄｅｘ ｈｔｍｌ）；

ｈｔｔｐｄＡｄｄＣＣｏｎｔｅｎｔ（ｓｅｒｖｅｒ，″／″，″ｔｅｓｔ２ｈｔｍｌ″，ＨＴＴＰ ＦＡＬＳＥ，

ＮＵＬＬ，ｔｅｓｔ２ ｈｔｍｌ）；

ｈｔｔｐｄＡｄｄＣＣｏｎｔｅｎｔ（ｓｅｒｖｅｒ，″／″，″ｌｏｇｉｎｈｔｍｌ″，ＨＴＴＰ ＦＡＬＳＥ，

ＮＵＬＬ，ｌｏｇｉｎ ｈｔｍｌ）；

ｈｔｔｐｄＡｄｄＣＣｏｎｔｅｎｔ（ｓｅｒｖｅｒ，″／″，″ｌｏｇｉｎ２ｈｔｍｌ″，ＨＴＴＰ ＦＡＬＳＥ，

ＮＵＬＬ，ｌｏｇｉｎ２ ｈｔｍｌ）；

ｈｔｔｐｄＡｄｄＣＷｉｌｄｃａｒｄＣｏｎｔｅｎｔ（ｓｅｒｖｅｒ，″／ｗｉｌｄｃａｒｄ″，ＮＵＬＬ，ｔｅｓｔ３ ｈｔｍｌ）；

ｈｔｔｐｄＡｄｄＳｔａｔｉｃＣｏｎｔｅｎｔ（ｓｅｒｖｅｒ，″／″，″ｔｅｓｔ１ｈｔｍｌ″，ＨＴＴＰ ＦＡＬＳＥ，

ＮＵＬＬ，ｔｅｓｔ１ ｈｔｍｌ）；

／ Ｇｏｉｎｔｏｏｕｒｓｅｒｖｉｃｅｌｏｏｐ ／

ｔｉｍｅｏｕｔｔｖ ｓｅｃ＝６０；

ｔｉｍｅｏｕｔｔｖ ｕｓｅｃ＝０；

ｗｈｉｌｅ（１＝＝１）
｛

ｒｅｓｕｌｔ＝ｈｔｔｐｄＧｅｔＣｏｎｎｅｃｔｉｏｎ（ｓｅｒｖｅｒ，＆ｔｉｍｅｏｕｔ）；

ｉｆ（ｒｅｓｕｌｔ＝＝０）
｛

ｐｒｉｎｔｆ（″Ｔｉｍｅｏｕｔ＼ｎ″）；

ｃｏｎｔｉｎｕｅ；
｝

ｉｆ（ｒｅｓｕｌｔ＜０）
｛

ｐｒｉｎｔｆ（″Ｅｒｒｏｒ＼ｎ″）；

ｃｏｎｔｉｎｕｅ；
｝

ｉｆ（ｈｔｔｐｄＲｅａｄＲｅｑｕｅｓｔ（ｓｅｒｖｅｒ）＜０）
｛

ｈｔｔｐｄＥｎｄＲｅｑｕｅｓｔ（ｓｅｒｖｅｒ）；

ｃｏｎｔｉｎｕｅ；
｝

ｈｔｔｐｄＰｒｏｃｅｓｓＲｅｑｕｅｓｔ（ｓｅｒｖｅｒ）；

ｈｔｔｐｄＥｎｄＲｅｑｕｅｓｔ（ｓｅｒｖｅｒ）；
｝

｝

＃ｄｅｆｉｎｅＳＴＡＣＫ ＳＩＺＥ（ＣＹＧＮＵＭ ＨＡＬ ＳＴＡＣＫ ＳＩＺＥ ＴＹＰＩＣＡＬ＋０ｘ１０００）

ｓｔａｔｉｃｃｈａｒｓｔａｃｋ［ＳＴＡＣＫ ＳＩＺＥ］；

７２３

ｓｔａｔｉｃｃｙｇ ｔｈｒｅａｄｔｈｒｅａｄ ｄａｔａ；

ｓｔａｔｉｃｃｙｇ ｈａｎｄｌｅ ｔｔｈｒｅａｄ ｈａｎｄｌｅ；

ｖｏｉｄ
ｃｙｇ ｓｔａｒｔ（ｖｏｉｄ）
｛ ／／Ｃｒｅａｔｅａｍａｉｎｔｈｒｅａｄ，ｓｏｗｅｃａｎｒｕｎｔｈｅｓｃｈｅｄｕｌｅｒａｎｄｈａｖｅｔｉｍｅ′ｐａｓｓ′

ｃｙｇ ｔｈｒｅａｄ ｃｒｅａｔｅ（１０， ／／Ｐｒｉｏｒｉｔｙｊｕｓｔａｎｕｍｂｅｒ
ｈｔｔｐｄ ｔｅｓｔ， ／／ｅｎｔｒｙ
０， ／／ｅｎｔｒｙｐａｒａｍｅｔｅｒ
″ＨＴＴＰｔｅｓｔ″， ／／Ｎａｍｅ
＆ｓｔａｃｋ［０］， ／／Ｓｔａｃｋ
ＳＴＡＣＫ ＳＩＺＥ， ／／Ｓｉｚｅ
＆ｔｈｒｅａｄ ｈａｎｄｌｅ， ／／Ｈａｎｄｌｅ
＆ｔｈｒｅａｄ ｄａｔａ ／／Ｔｈｒｅａｄｄａｔａｓｔｒｕｃｔｕｒｅ

）；

ｃｙｇ ｔｈｒｅａｄ ｒｅｓｕｍｅ（ｔｈｒｅａｄ ｈａｎｄｌｅ）； ／／Ｓｔａｒｔｉｔ
ｃｙｇ ｓｃｈｅｄｕｌｅｒ ｓｔａｒｔ（）；
｝

ｃｈａｒ
ｓｔｒｄｕｐ（ｃｈａｒｓ）
｛

ｃｈａｒｒｅｓ＝ｍａｌｌｏｃ（ｓｔｒｌｅｎ（ｓ）＋１）；

ｉｆ（ｒｅｓ）｛

ｓｔｒｃｐｙ（ｒｅｓ，ｓ）；
｝

ｒｅｔｕｒｎｒｅｓ；
｝

１３４ 运行Ｗｅｂ服务器

对ＬｉｂＨＴＴＰＤ和ｈｔｔｐｄ ｔｅｓｔｃ进行编译后，得到执行文件ｔｅｓｔ。此时可以使用ＧＤＢ将

ｔｅｓｔ文件加载到目标系统（ＰＣ微机）运行。其步骤如下：
首先将预先准备好的ＲｅｄＢｏｏｔ引导软盘插入目标平台的软驱中，启动目标平台进入Ｒｅｄ

Ｂｏｏｔ。
在ＨＯＳＴ主机上的Ｃｙｇｗｉｎ环境下，运行下述命令进入ＧＤＢ图形界面：

＄ｃｄ ／ｈ／ｅｃｏｓ２０／ｈｔｔｐｄ／ｈｔｔｐｄ ａｐｐｌｉｃａｔｉｏｎ
＄ｉ３８６ｅｌｆｇｄｂｔｅｓｔ

在ＧＤＢ图形界面上选择菜单选项“Ｖｉｅｗ→Ｃｏｎｓｏｌｅ”，打开控制台窗口。同时选择菜单
“Ｒｕｎ→ＣｏｎｎｅｃｔｔｏＴａｒｇｅｔ”，设置窗口连接参数（波特率为３８４００ｂｉｔ／ｓ），与目标平台进行连接。
选择菜单“Ｒｕｎ→Ｄｏｗｎｌｏａｄ”，加载 Ｗｅｂ服务器程序ｔｅｓｔ，此时ＧＤＢ将加载ｔｅｓｔ文件到目

８２３

标平台上，如图１３２所示。

图１３２ ＧＤＢ加载Ｗｅｂ服务器程序ｔｅｓｔ

ｔｅｓｔ程序加载成功后，点击菜单项“Ｒｕｎ→Ｒｕｎ”，启动 Ｗｅｂ服务器程序ｔｅｓｔ在目标系统上
运行。当Ｗｅｂ服务器正常启动后，ＧＤＢ控制台窗口（ＣｏｎｓｏｌｅＷｉｎｄｏｗ）将显示服务器正常启动
的信息，包括服务器ＩＰ地址、网关地址、子网掩码、网卡ＭＡＣ地址、广播地址等等，如图１３３
所示。

图１３３ Ｗｅｂ服务器启动后ＧＤＢ控制台信息

Ｗｅｂ服务器程序ｔｅｓｔ在目标系统上成功运行后，就成功组建了一个嵌入式 Ｗｅｂ服务器。
其他主机通过ＩＥ浏览器可以浏览该Ｗｅｂ服务器所提供的演示内容。
例如在ＩＰ地址为１７２２６４１２的主机上对该Ｗｅｂ服务器进行访问，在ＩＥ浏览器地址栏

输入ｈｔｔｐ：／／１７２２６４１００并回车后，将出现 Ｗｅｂ服务器提供的ｉｎｄｅｘｈｔｍｌ主页，如图１３４
所示。

在ｉｎｄｅｘｈｔｍｌ主页上的“Ｅｎｔｒｙｙｏｕｒｎａｍｅ”输入框内输入“ＹｏｕｒＮａｍｅ”，并点击“Ｃｌｉｃｋ！”，将
出现下一个网页ｔｅｓｔ２ｈｔｍｌ，该网页将显示刚才输入的名字“ＹｏｕｒＮａｍｅ”，并显示网络相关统计
信息，如图１３５所示。
通过点击ｉｎｄｅｘｈｔｍｌ主页上不同的链接，可以查看其他的主页内容。

９２３

图１３４ 使用浏览器访问嵌入式Ｗｅｂ服务器

图１３５ Ｗｅｂ服务器动态网页返回内容

Ｗｅｂ服务器的运行状态以及访问记录将在ＧＤＢ控制台窗口显示。访问记录包括访问该

Ｗｅｂ服务器的浏览器客户端ＩＰ地址、访问方式（ＧＥＴ或ＰＯＳＴ）、访问目录路径、访问响应码
等等。图１３６为Ｗｅｂ服务器的访问记录。

图１３６ Ｗｅｂ服务器访问记录

０３３

Ｗｅｂ服务器软件中提供了超时记录。当超过一定时间没有被访问时，将输出一条超时记
录信息“Ｔｉｍｅｏｕｔ”。
上述例子仅仅是一个演示程序。如果读者有兴趣，可以自己修改ｈｔｔｐｄ ｔｅｓｔｃ程序，增加

Ｗｅｂ服务器的网页内容。除了以普通ＰＣ机作为目标平台外，还可以使用其他嵌入式开发平
台，只需在ｅＣｏｓ配置阶段进行相应的配置即可，应用程序（ＬｉｂＨＴＴＰＤ库和ｈｔｔｐｄ ｔｅｓｔｃ）不
需修改。

１３３

附 录

附录Ａ ｅＣｏｓ硬件支持情况

这里列举ｅＣｏｓ对硬件的支持情况，包括对处理器、开发板、设备等的支持，截止时间为

２００３年６月。从ｅＣｏｓ网站上可以查看最新的硬件支持情况。

ｅＣｏｓ对处理器和开发板的支持

处 理 器 开 发 板 厂 商
支 持 特 性

以太网 ＵＳＢ Ｆｌａｓｈ ＲｅｄＢｏｏｔ

ＡＲＭ处理器系列

ＡＲＭ７１０Ｔ ＣＭＡ２２２
ＣＭＡ２３２ Ｃｏｇｅｎｔ

ＡＲＭ７ＴＤＭＩ ＡＲＭＩｎｔｅｇｒａｔｏｒ ＡＲＭ 支持 支持 支持

ＡＲＭ７ＴＤＭＩ ＥＰＩＤｅｖ７ ＥＰＩ 支持 支持

ＡＲＭ７ＴＤＭＩ ＰＩＤ７Ｔ ＡＲＭ 支持 支持

ＡＲＭ９６６ＥＳ ＡＲＭＩｎｔｅｇｒａｔｏｒ ＡＲＭ 支持 支持 支持

ＡＲＭ９４０Ｔ ＰＩＤ９Ｔ ＡＲＭ 支持 支持

ＡＲＭ９４０Ｔ ＥＰＴＤｅｖ９ ＥＰＩ 支持 支持

ＡＲＭ９２０Ｔ ＡｇｌｉｅｎｔＡＡＥＤ２０００ ＥＰＩ 支持 支持 支持

ＡｌｔｅｒａＥｘｃａｌｉｂｕｒ（ＡＲＭ９２２Ｔ） ＥｘｃａｌｉｂｕｒＥＰＸＡ１０ Ａｌｔｅｒａ 支持 支持

ＡｔｍｅｌＡＴ９１Ｒ４０８０７
（ＡＲＭ７ＴＤＭＩ核） ＡＴ９１ＥＢ４０ＥｖａｌｕａｔｉｏｎＫｉｔ Ａｔｍｅｌ 支持 支持

ＡｔｍｅｌＡＴ９１Ｒ４０００８
（ＡＲＭ７ＴＤＭＩ核） ＡＴ９１ＥＢ４０ＡＥｖａｌｕａｔｉｏｎＫｉｔ Ａｔｍｅｌ 支持 支持

ＡｔｍｅｌＡＴ９１Ｍ４２８００Ａ
（ＡＲＭ７ＴＤＭＩ核） ＡＴ９１ＥＢ４２ＥｖａｌｕａｔｉｏｎＢｏａｒｄ Ａｔｍｅｌ 支持 支持

ＡｔｍｅｌＡＴ９１Ｍ５５８００Ａ
（ＡＲＭ７ＴＤＭＩ核） ＡＴ９１ＥＢ５５ＥｖａｌｕａｔｉｏｎＢｏａｒｄ Ａｔｍｅｌ 支持 支持

ＣｉｒｒｕｓＬｏｇｉｃＣＬＰＳ７１１１
（ＡＲＭ７１０ａ） ＣＬＰＳ７１１１ＤｅｖｅｌｏｐｍｅｎｔＫｉｔ ＣｉｒｒｕｓＬｏｇｉｃ 支持 支持

ＣｉｒｒｕｓＬｏｇｉｃ Ｍａｖｅｒｉｃｋ ＥＰ７２０９
（ＡＲＭ７２０ＴＣＰＵ，ＡＲＭ７ＴＤＭＩ
核）

ＥＰ７２０９ＤｅｖｅｌｏｐｍｅｎｔＫｉｔ ＣｉｒｒｕｓＬｏｇｉｃ 支持 支持

ＣｉｒｒｕｓＬｏｇｉｃ Ｍａｖｅｒｉｃｋ ＥＰ７２１１
（ＡＲＭ７２０ＴＣＰＵ，ＡＲＭ７ＴＤＭＩ
核）

ＥＰ７２１１ＤｅｖｅｌｏｐｍｅｎｔＫｉｔ ＣｉｒｒｕｓＬｏｇｉｃ 支持 支持 支持

２３３

（续）

处 理 器 开 发 板 厂 商
支 持 特 性

以太网 ＵＳＢ Ｆｌａｓｈ ＲｅｄＢｏｏｔ

ＣｉｒｒｕｓＬｏｇｉｃ Ｍａｖｅｒｉｃｋ ＥＰ７２１２
（ＡＲＭ７２０ＴＣＰＵ，ＡＲＭ７ＴＤＭＩ
核）

ＥＰ７２１２ＤｅｖｅｌｏｐｍｅｎｔＫｉｔ ＣｉｒｒｕｓＬｏｇｉｃ 支持 支持 支持

ＣｉｒｒｕｓＬｏｇｉｃ Ｍａｖｅｒｉｃｋ ＥＰ７３１２
（ＡＲＭ７２０ＴＣＰＵ，ＡＲＭ７ＴＤＭＩ
核）

ＥＰ７３１２ＤｅｖｅｌｏｐｍｅｎｔＫｉｔ ＣｉｒｒｕｓＬｏｇｉｃ 支持 支持 支持

ＳａｍｓｕｎｇＫＳ３２Ｃ５０１００
（ＡＲＭ７ＴＤＭＩｃｏｒｅ） Ｅｖａｌｕａｔｏｒ７Ｔ ＡＲＭ 支持

ＳａｍｓｕｎｇＫＳ３２Ｃ５０１００
（ＡＲＭ７ＴＤＭＩｃｏｒｅ） ＳＮＤＳ１００ Ｓａｍ ｓｕｎｇ 支持

ＳｈａｒｐＬＨ７７７９０ ＡＲＭＡＥＢ１ ＡＲＭ

ＩｎｔｅｌＳｔｒｏｎｇＡＲＭＳＡ１１０ ＥＢＳＡ２８５ Ｉｎｔｅｌ 支持 支持 支持

ＩｎｔｅｌＳｔｒｏｎｇＡＲＭＳＡ１１０
ＩｎｔｅｌＳＡ１１００ Ｅｖａｌｕａｔｉｏｎ Ｐｌａｔ
ｆｏｒｍ（Ｂｒｕｔｕｓ） Ｉｎｔｅｌ 支持

ＩｎｔｅｌＳｔｒｏｎｇＡＲＭＳＡ１１０ ＩｎｔｅｌＳＡ１１００ＭｕｌｔｉｍｅｄｉａＢｏａｒｄ Ｉｎｔｅｌ 支持 支持

ＩｎｔｅｌＳｔｒｏｎｇＡＲＭＳＡ１１０
ＩｎｔｅｌＳＡ１１１０Ｍｉｃｒｏｐｒｏｃｅｓｓｏｒ开
发板（Ａｓｓａｂｅｔ） Ｉｎｔｅｌ 支持 支持 支持 支持

ＡＲＭ系列

ＩｎｔｅｌＳｔｒｏｎｇＡＲＭＳＡ１１０ ｈｐｉＰＡＱＰｏｃｋｅｔＰＣ ＨＰ 支持 支持 支持

ＩｎｔｅｌＳｔｒｏｎｇＡＲＭＳＡ１１０
Ｂｒｉｇｈｔ Ｓｔａｒ Ｅｎｇｉｎｅｅｒｉｎｇ ｃｏｍ
ｍＥｎｇｉｎｅ

ＢｒｉｇｈｔＳｔａｒ 支持 支持 支持

ＩｎｔｅｌＳｔｒｏｎｇＡＲＭＳＡ１１０
ＢｒｉｇｈｔＳｔａｒ Ｅｎｇｉｎｅｅｒｉｎｇ ｎａｎｏ
Ｅｎｇｉｎｅ

ＢｒｉｇｈｔＳｔａｒ 支持 支持 支持

ＩｎｔｅｌＳｔｒｏｎｇＡＲＭＳＡ１１０ ＢｒｉｇｈｔＳｔａｒＥｎｇｉｎｅｅｒｉｎｇＦｌｅｘａｎｅｔ ＢｒｉｇｈｔＳｔａｒ 支持 支持 支持 支持

ＩｎｔｅｌＳｔｒｏｎｇＡＲＭＳＡ１１０ ＣｅｒｆＣｕｂｅ Ｉｎｔｒｉｎｓｙｃ 支持 支持 支持 支持

ＩｎｔｅｌＳｔｒｏｎｇＡＲＭＳＡ１１０ ＣｅｒｆＰＤＡ Ｉｎｔｒｉｎｓｙｃ 支持 支持 支持 支持

ＩｎｔｅｌＸＳｃａｌｅＩＯＰ３１０ ＩｎｔｅｌＩＱ８０３１０开发板 Ｉｎｔｅｌ 支持 支持 支持

ＩｎｔｅｌＸＳｃａｌｅＩＯＰ３２１ ＩｎｔｅｌＩＱ８０３２１开发板 Ｉｎｔｅｌ 支持 支持 支持

ＩｎｔｅｌＸＳｃａｌｅＩＸＰ４２５ ＩｎｔｅｌＩＸＤＰ４２５ Ｉｎｔｅｌ 支持 支持 支持

ＩｎｔｅｌＸＳｃａｌｅＩＸＰ４２５ ＧｅｎｅｒｉｃＲｅｓｉｄｅｎｔｉａｌＧａｔｅｗａｙ ＡＤＩ 支持 支持 支持

ＩｎｔｅｌＸＳｃａｌｅＩＸＣ１１００ ＭｏｔｏｒｏｌａＰｒＰＭＣ１１００ Ｍｏｔｏｒｏｌａ 支持 支持

ＩｎｔｅｌＸＳｃａｌｅＰＸＡ２５０ ＭＰＣ５．０ Ｍｉｃｒｏｐｌｅｘ 支持 支持

ＩｎｔｅｌＸＳｃａｌｅＰＸＡ２５０ ｕＥ２５０ Ｉｎｔｒｉｎｓｙｃ 支持 支持 支持

ＩｎｔｅｌＸＳｃａｌｅＩＯＰ３２１ ＮＰＷＲ ＴｅａｍＡＳＡ 支持 支持 支持

ＩＡ３２处理器系列

ｘ８６及兼容处理器 ＰＣ主板 各厂商 支持 支持

３３３

（续）

处 理 器 开 发 板 厂 商
支 持 特 性

以太网 ＵＳＢ Ｆｌａｓｈ ＲｅｄＢｏｏｔ

ｘ８６及兼容处理器 Ｌｉｎｕｘｓｙｎｔｈｅｔｉｃｔａｒｇｅｔ 各厂商 支持 支持

ＭａｔｓｕｓｈｉｔａＡＭ３ｘ系列

ＰａｎａｓｏｎｉｃＡＭ３１ ｓｔｄｅｖａｌ１
ＳｙｏｉｃｈｉＹａ
ｍａｍｏｔｏ
Ｋｙｏｔｏ

ＰａｎａｓｏｎｉｃＡＭ３１ ｓｔｄｅｖａｌ１ｓｉｍｕｌａｔｏｒ ＧＮＵ开发
工具

ＰａｎａｓｏｎｉｃＡＭ３３ ＳＴＢｒｅｆｅｒｅｎｃｅｐｌａｔｆｏｒｍ
ＳｙｏｉｃｈｉＹａ
ｍａｍｏｔｏ
Ｋｙｏｔｏ

支持

ＰａｎａｓｏｎｉｃＭＮ１０３Ｅ０１０（ＡＭ３３
２） ＡＳＢ２３０３／ＡＳＢ２３０５ Ｍａｔｓｕｓｈｉｔａ 支持 支持

ＭＩＰＳ系列

ＭＩＰＳ４Ｋｃ Ａｔｌａｓ ＭＩＰＳ 支持 支持 支持

ＭＩＰＳ４Ｋｐ Ａｔｌａｓ ＭＩＰＳ 支持 支持 支持

ＭＩＰＳ４Ｋｍ Ａｔｌａｓ ＭＩＰＳ 支持 支持 支持

ＭＩＰＳ５Ｋ Ａｔｌａｓ ＭＩＰＳ 支持 支持 支持

ＮＥＣＶＲ４３００ ＤＤＢＶＲＣ４３７３／ＤＤＢＶＲＣ４３７５ ＮＥＣ 支持 支持 支持

ＰＭＣＳｉｅｒｒａＲＭ７０００Ａ Ｏｃｅｌｏｔ Ｍｏｍｅｎｔｕｍ 支持 支持 支持

ＴｏｓｈｉｂａＴＭＰＲ３９０４ ＪＭＲＴＸ３９０４ Ｔｏｓｈｉｂａ

ＴｏｓｈｉｂａＴＭＰＲ３９０４ ＪＭＲＴＸ３９０４ｓｉｍｕｌａｔｏｒ ＧＮＵ开发
工具

ＴｏｓｈｉｂａＴＭＰＲ４９５５Ｆ ＴＭＰＲ４９５５参考板 Ｔｏｓｈｉｂａ

ＩＤＴ７９ＲＣ３２３３４ＩｎｔｅｇｒａｔｅｄＣｏｍ
ｍｕｎｉｃａｔｉｏｎｓＰｒｏｃｅｓｓｏｒ ＩＤＴ７９Ｓ３３４Ａｅｖａｌｂｏａｒｄ ＩＤＴ 支持 支持 支持

ＮＥＣＶ８ｘｘ

ＮＥＣＶ８５０／ＳＡ１ ＣｏｓｍｏＣＥＢＶ８５０／ＳＡ１ Ｃｏｓｍｏ

ＮＥＣＶ８５０／ＳＢ１ ＣｏｓｍｏＣＥＢＶ８５０／ＳＢ１ Ｃｏｓｍｏ

ＰｏｗｅｒＰＣ系列

ＭｏｔｏｒｏｌａＭＰＣ５５５ ＣＭＥ０５５５ Ａｘｉｏｍ 支持 支持

ＭｏｔｏｒｏｌａＭＰＣ５５５ ＥＣ５５５ ｗｕｅｒｚ
ｅｌｅｋｔｒｏｎｉｋ

支持 支持

ＭｏｔｏｒｏｌａＭＰＣ８２３ ＣＭＡ２８７２３ Ｃｏｇｅｎｔ

ＭｏｔｏｒｏｌａＭＰＣ８５０ ＣＭＡ２８７５０ Ｃｏｇｅｎｔ

ＭｏｔｏｒｏｌａＭＰＣ８６０ ＣＭＡ２８６６０ Ｃｏｇｅｎｔ

ＭｏｔｏｒｏｌａＭＰＣ８６０ ＭＰＣ８ｘｘＦＡＤＳ Ｍｏｔｏｒｏｌａ

ＭｏｔｏｒｏｌａＭＰＣ８２４５ ＣＳＢ２８１ Ｃｏｇｅｎｔ 支持 支持 支持

４３３

（续）

处 理 器 开 发 板 厂 商
支 持 特 性

以太网 ＵＳＢ Ｆｌａｓｈ ＲｅｄＢｏｏｔ

ＭｏｔｏｒｏｌａＭＰＣ８２６０ ＤｅｌｐｈｉＴｉｇｅｒＳＨＡＲＣ６ Ｄｅｌｐｈｉ 支持 支持 支持

ＭｏｔｏｒｏｌａＭＰＣ８２６０ ＭＰＣ８２６０ＶＡＤＳ Ｍｏｔｏｒｏｌａ 支持 支持 支持

ＭｏｔｏｒｏｌａＭＰＣ８６０ ＭＢＸ８６０ Ｍｏｔｏｒｏｌａ 支持 支持 支持

ＭｏｔｏｒｏｌａＭＰＣ８６０Ｔ Ｖｉｐｅｒ
Ａｎａｌｏｇｕｅ＆
Ｍｉｃｒｏ

支持 支持 支持

ＭｏｔｏｒｏｌａＭＰＣ８５０ Ａｄｄｅｒ Ａｎａｌｏｇｕｅ＆
Ｍｉｃｒｏ

支持 支持 支持

ＭｏｔｏｒｏｌａＭＰＣ８５２Ｔ Ａｄｄｅｒ Ａｎａｌｏｇｕｅ＆
Ｍｉｃｒｏ

支持 支持 支持

ＭｏｔｏｒｏｌａＭＰＣ８５５Ｔ ＴＳ１０００ Ａｌｌｉｅｄ
Ｔｅｌｅｓｙｎ

支持 支持 支持

ＭｏｔｏｒｏｌａＭＰＣ６０３ ＰＳＩＭａｒｃｈｉｔｅｃｔｕｒａｌｓｉｍｕｌａｔｏｒ ＧＮＵ开发
工具

ＳＰＡＲＣ系列

ＦｕｊｉｔｓｕＭＢ８６８３１，
ＭＢ８６８３２或ＭＢ８６８３３ ＦｕｊｉｔｓｕＭＢ８６８００ＭＡ０１ Ｆｕｊｉｔｓｕ

ＬＥＯＮ或ＥＲＣ３２ ＴＳＩＭＥＲＣ３２／ＬＥＯＮｓｉｍｕｌａｔｏｒ Ｇａｉｓｌｅｒ

ＦｕｊｉｔｓｕＭＢ８６８３１，ＭＢ８６８３２或
ＭＢ８６８３３ ＳＰＡＲＣｌｉｔｅａｒｃｈｉｔｅｃｔｕｒａｌｓｉｍｕｌａｔｏｒ ＧＮＵ开发

工具

ＳｕｐｅｒＨ系列

ＲｅｎｅｓａｓＳＨ３ＳＨ７７０８ ＥＤＫ／ＳＨ７７０８ Ｒｅｎｅｓａｓ 支持 支持

ＲｅｎｅｓａｓＳＨ３ＳＨ７７０８Ｓ ＣｑＲＥＥＫＳＨ７７０８
ＣＱ

Ｐｕｂｌｉｓｈｉｎｇ

ＲｅｎｅｓａｓＳＨ３ＳＨ７７５０Ｓ ＣｑＲＥＥＫＳＨ７７５０
ＣＱ

Ｐｕｂｌｉｓｈｉｎｇ
支持 支持

ＲｅｎｅｓａｓＳＨ３ＳＨ７７２９Ｒ ＨＳ７７２９ＰＣＩ Ｒｅｎｅｓａｓ 支持

ＲｅｎｅｓａｓＳＨ３ＳＨ７７０９Ｒ ＳＥ７７０９ＲＰ０１ Ｒｅｎｅｓａｓ 支持

ＲｅｎｅｓａｓＳＨ３ＳＨ７７０９Ｒ ＳＥ７７０９ＳＥ０１ Ｒｅｎｅｓａｓ 支持

ＲｅｎｅｓａｓＳＨ３ＳＨ７７２９Ｒ ＳＥ７７２９ＳＥ０１ Ｒｅｎｅｓａｓ 支持

ＲｅｎｅｓａｓＳＨ４ＳＨ７７５１ ＳＥ７７５１ Ｒｅｎｅｓａｓ 支持

ＲｅｎｅｓａｓＳＨ４ＳＨ７７５０ ＳｅｇａＤｒｅａｍｃａｓｔ Ｓｅｇａ 支持

Ｍ６８Ｋ ＭｏｔｏｒｏｌａＣｏｌｄｆｉｒｅＭＣＦ５２７２
ＭＣＦ５２７２Ｃ３
Ｅｖａｌｕａｔｉｏｎ
Ｂｏａｒｄ

Ｍｏｔｏｒｏｌａ 支持 支持

５３３

（续）

处 理 器 开 发 板 厂 商
支 持 特 性

以太网 ＵＳＢ Ｆｌａｓｈ ＲｅｄＢｏｏｔ

Ｈ８ ＲｅｎｅｓａｓＨ８／３００Ｈ

Ａｋｉｚｕｋｉ
Ｈ８／３０６８
Ｎｅｔｗｏｒｋ
Ｂｏａｒｄ

Ａｋｉｚｕｋｉ
Ｄｅｎｓｈｉ

支持 支持

ＲｅｎｅｓａｓＨ８／３００Ｈ Ｈ８／３００Ｈｓｉｍｕｌａｔｏｒ ＧＮＵ开发
工具

ＦＲＶ

ＦｕｊｉｔｓｕＦＲ４００ ＦＲＶ４００ Ｆｕｊｉｔｓｕ 支持 支持 支持

ＣａｌｍＲＩＳＣ ＳａｍｓｕｎｇＣａｌｍＲＩＳＣ１６

ＣａｌｍＲＩＳＣ１６
Ｃｏｒｅ
Ｅｖａｌｕａｔｉｏｎ
Ｂｏａｒｄ

Ｓａｍｓｕｎｇ 支持

ＳａｍｓｕｎｇＣａｌｍＲＩＳＣ１６
ＣａｌｍＲＩＳＣ３２ Ｃｏｒｅ Ｅｖａｌｕａｔｉｏｎ
Ｂｏａｒｄ Ｓａｍｓｕｎｇ 支持

ｅＣｏｓ对硬件设备的支持

厂 商 型 号

Ｆｌｓａｈ设备

ＡＭＤ

ＡＭ２９ｘｘｘｘｘ系列，包括Ａｍ２９Ｆ０４０Ｂ、ＡＭ２９ＬＶ１６０、ＡＭ２９ＬＶ３２０、ＡＭ２９ＬＶ２００、

ＳＴＭ２９Ｗ２００Ｂ、ＡＭ２９ＬＶ６４０、 ＡＭ２９ＤＬ３２２Ｄ、 ＡＭ２９ＤＬ３２３Ｄ、 ＡＭ２９ＤＬ３２４Ｄ、

ＡＭ２９ＤＬ６４０Ｄ、ＡＭ２９Ｆ８００、ＡＭ２９ＬＶ８００、ＴｏｓｈｉｂａＴＣ５８ＦＶＢ８００

Ａｔｍｅｌ

ＡＴ２９ＣｘｘｘＡ系列，包括ＡＴ２９Ｆ０４０Ａ

ＡＴ２９ＬＶｘｘｘ系列，包括ＡＴ２９ＬＶ１０２４

ＡＴ４９ｘｘ１６０４系列，包括ＡＴ４９ＢＶ１６０４Ａ和ＡＴ４９ＬＶ６０４Ａ

Ｉｎｔｅｌ

具有 ＢｏｏｔＢｌｏｃｋ的 Ｆｌａｓｈ系列，包括２８Ｆ００４／４００Ｂ３、２８Ｆ００８／８００Ｂ３、２８Ｆ０１６／

１６０Ｂ３、２８Ｆ３２０Ｂ３、２８Ｆ６４０Ｂ３

ＳｔｒａｔａＦｌａｓｈ系列，包括２８Ｆ１２８Ｊ３Ａ、２８Ｆ６４０Ｊ３Ａ、２８Ｆ３２０Ｊ３Ａ

Ｓｈａｒｐ ＬＨ２８Ｆ０１６ＳＣＴ系列，包括ＬＨ２８Ｆ０１６ＳＣＴＺ４、ＬＨ２８Ｆ０１６ＳＣＴ９５

串口设备

Ｍｏｔｏｒｏｌａ ＱＵＩＣＣＳＭＣ／ＱＵＩＣＣ２ＳＣＣ

各厂商 １６５５ｘ兼容产品

各厂商 ８２５０兼容产品

各厂商 ｅＣｏｓ所支持的片内（ｏｎｃｈｉｐ）串口控制器

以太网控制器

ＡＭＤ Ａｍ７９Ｃ９７ｘ（ＰＣＮｅｔ系列）

ＣｉｒｒｕｓＬｏｇｉｃ ＣＳ８９００

６３３

（续）

厂 商 型 号

Ｆｌｓａｈ设备

Ｉｎｔｅｌ ８２５５９１０／１００以太网控制器（如ＩｎｔｅｌＰｒｏ／１００）

Ｉｎｔｅｌ ８２５５４Ｇｉｇａｂｉｔ以太网控制器（如ＩｎｔｅｌＰｒｏ／１０００）

Ｉｎｔｅｌ ２１１４３ＰＣＩ／ＣａｒｄＢｕｓ１０／１００ＬＡＮ控制器

Ｍｏｔｏｒｏｌａ ＱＵＩＣＣＳＣＣ

Ｍｏｔｏｒｏｌａ ＱＵＩＣＣＦＥＣ

Ｍｏｔｏｒｏｌａ ＱＵＩＣＣ２ＦＥＣ

Ｎａｔｉｏｎａｌ ＤＰ８３９０（如ＳｏｃｋｅｔＣＦＬＰＥ＋或ＰＲＥＴＥＣＣｏｍｐａｃｔＬＡＮ网卡）

ＳＭＣＣ ＬＡＮ９１Ｃ９６／ＬＡＮ９１Ｃ１１０

ＶＩＡ ＶＩＡＲＨＩＮＥ

各厂商 ｅＣｏｓ所支持的片内（ｏｎｃｈｉｐ）以太网控制器

ＵＳＢ设备

Ｉｎｔｅｌ ＳＡ１１Ｘ０ｏｎｃｈｉｐ

ＮＥＣ ｕＰＤ９８５ｘｘｏｎｃｈｉｐ

计时设备

Ｄａｌｌａｓ ＤＳ１７２４

７３３

附录Ｂ ｅＣｏｓ实时特性

Ｉｎｔｅｌｘ８６ＰＣ实时特性

Ｂｏａｒｄ：ＰＣ

ＣＰＵ：４３３ＭＨｚＣｅｌｅｒｏｎ

Ｓｔａｒｔｕｐ，ｍａｉｎｓｔａｃｋ ：ｓｔａｃｋｕｓｅｄ １２４ｓｉｚｅ ２９１２

Ｓｔａｒｔｕｐ ：Ｉｎｔｅｒｒｕｐｔｓｔａｃｋｕｓｅｄ ２８０ｓｉｚｅ ４１０８

Ｓｔａｒｔｕｐ ：Ｉｄｌｅｔｈｒｅａｄｓｔａｃｋｕｓｅｄ ６２ｓｉｚｅ ２０４８

ｅＣｏｓＫｅｒｎｅｌＴｉｍｉｎｇｓ

Ｎｏｔｅｓ：ａｌｌｔｉｍｅｓａｒｅｉｎｍｉｃｒｏｓｅｃｏｎｄｓ（．０００００１）ｕｎｌｅｓｓｏｔｈｅｒｗｉｓｅｓｔａｔｅｄ

Ｒｅａｄｉｎｇｔｈｅｈａｒｄｗａｒｅｃｌｏｃｋｔａｋｅｓ８′ｔｉｃｋｓ′ｏｖｅｒｈｅａｄ

．．．ｔｈｉｓｖａｌｕｅｗｉｌｌｂｅｆａｃｔｏｒｅｄｏｕｔｏｆａｌｌｏｔｈｅｒｍｅａｓｕｒｅｍｅｎｔｓ

Ｃｌｏｃｋｉｎｔｅｒｒｕｐｔｔｏｏｋ ６．７５ｍｉｃｒｏｓｅｃｏｎｄｓ（８ｒａｗｃｌｏｃｋｔｉｃｋｓ）

Ｔｅｓｔｉｎｇｐａｒａｍｅｔｅｒｓ：

Ｃｌｏｃｋｓａｍｐｌｅｓ： ３２

Ｔｈｒｅａｄｓ： ６４

Ｔｈｒｅａｄｓｗｉｔｃｈｅｓ： １２８

Ｍｕｔｅｘｅｓ： ３２

Ｍａｉｌｂｏｘｅｓ： ３２

Ｓｅｍａｐｈｏｒｅｓ： ３２

Ｓｃｈｅｄｕｌｅｒｏｐｅｒａｔｉｏｎｓ： １２８

Ｃｏｕｎｔｅｒｓ： ３２

Ａｌａｒｍｓ： ３２

Ｃｏｎｆｉｄｅｎｃｅ

Ａｖｅ Ｍｉｎ Ｍａｘ Ｖａｒ Ａｖｅ Ｍｉｎ Ｆｕｎｃｔｉｏｎ

＝＝＝＝ ＝＝＝＝ ＝＝＝＝ ＝＝＝＝ ＝＝＝＝＝ ＝＝＝＝＝＝

３．９３ １．６８ ８．３８ ０．９３ ６８％ ３％Ｃｒｅａｔｅｔｈｒｅａｄ

０．７１ ０．００ ３．３５ ０．８４ ５９％ ５９％Ｙｉｅｌｄｔｈｒｅａｄ［ａｌｌｓｕｓｐｅｎｄｅｄ］

０．６５ ０．００ ５．０３ ０．８４ ６４％ ６４％Ｓｕｓｐｅｎｄ［ｓｕｓｐｅｎｄｅｄ］ｔｈｒｅａｄ

０．６３ ０．００ １．６８ ０．７９ ６２％ ６２％Ｒｅｓｕｍｅｔｈｒｅａｄ

０．７６ ０．００ １．６８ ０．８３ ５４％ ５４％Ｓｅｔｐｒｉｏｒｉｔｙ
０．３９ ０．００ １．６８ ０．６０ ７６％ ７６％Ｇｅｔｐｒｉｏｒｉｔｙ

８３３

１．３４ ０．００ ６．７０ ０．６７ ７３％ ２５％Ｋｉｌｌ［ｓｕｓｐｅｎｄｅｄ］ｔｈｒｅａｄ
０．６８ ０．００ １．６８ ０．８１ ５９％ ５９％Ｙｉｅｌｄ［ｎｏｏｔｈｅｒ］ｔｈｒｅａｄ
０．９２ ０．００ １．６８ ０．８３ ５４％ ４５％Ｒｅｓｕｍｅ［ｓｕｓｐｅｎｄｅｄｌｏｗｐｒｉｏ］ｔｈｒｅａｄ
０．６３ ０．００ １．６８ ０．７９ ６２％ ６２％Ｒｅｓｕｍｅ［ｒｕｎｎａｂｌｅｌｏｗｐｒｉｏ］ｔｈｒｅａｄ
０．８４ ０．００ １．６８ ０．８４ １００％ ５０％Ｓｕｓｐｅｎｄ［ｒｕｎｎａｂｌｅ］ｔｈｒｅａｄ
０．７３ ０．００ １．６８ ０．８２ ５６％ ５６％Ｙｉｅｌｄ［ｏｎｌｙｌｏｗｐｒｉｏ］ｔｈｒｅａｄ
０．５８ ０．００ １．６８ ０．７６ ６５％ ６５％Ｓｕｓｐｅｎｄ［ｒｕｎｎａｂｌｅ＞ｎｏｔｒｕｎｎａｂｌｅ］

１．２６ ０．００ ３．３５ ０．６７ ７１％ ２６％Ｋｉｌｌ［ｒｕｎｎａｂｌｅ］ｔｈｒｅａｄ
０．８６ ０．００ ３．３５ ０．８６ ９８％ ５０％Ｄｅｓｔｒｏｙ［ｄｅａｄ］ｔｈｒｅａｄ
１．４４ ０．００ １．６８ ０．４０ ８５％ １４％Ｄｅｓｔｒｏｙ［ｒｕｎｎａｂｌｅ］ｔｈｒｅａｄ
４．４５ ３．３５ ６．７０ ０．８９ ５３％ ４０％Ｒｅｓｕｍｅ［ｈｉｇｈｐｒｉｏｒｉｔｙ］ｔｈｒｅａｄ
１．６２ ０．００ １．６８ ０．１０ ９６％ ３％Ｔｈｒｅａｄｓｗｉｔｃｈ

０．４１ ０．００ １．６８ ０．６１ ７５％ ７５％Ｓｃｈｅｄｕｌｅｒｌｏｃｋ
０．４８ ０．００ １．６８ ０．６９ ７１％ ７１％Ｓｃｈｅｄｕｌｅｒｕｎｌｏｃｋ［０ｔｈｒｅａｄｓ］

０．５９ ０．００ １．６８ ０．７６ ６４％ ６４％Ｓｃｈｅｄｕｌｅｒｕｎｌｏｃｋ［１ｓｕｓｐｅｎｄｅｄ］

０．４５ ０．００ １．６８ ０．６５ ７３％ ７３％Ｓｃｈｅｄｕｌｅｒｕｎｌｏｃｋ［ｍａｎｙｓｕｓｐｅｎｄｅｄ］

０．４５ ０．００ １．６８ ０．６５ ７３％ ７３％Ｓｃｈｅｄｕｌｅｒｕｎｌｏｃｋ［ｍａｎｙｌｏｗｐｒｉｏ］

０．５２ ０．００ １．６８ ０．７２ ６８％ ６８％Ｉｎｉｔｍｕｔｅｘ
０．７９ ０．００ ５．０３ ０．９３ ９６％ ５９％Ｌｏｃｋ［ｕｎｌｏｃｋｅｄ］ｍｕｔｅｘ
０．８４ ０．００ ５．０３ ０．９４ ９６％ ５６％Ｕｎｌｏｃｋ［ｌｏｃｋｅｄ］ｍｕｔｅｘ
０．６３ ０．００ １．６８ ０．７９ ６２％ ６２％Ｔｒｙｌｏｃｋ［ｕｎｌｏｃｋｅｄ］ｍｕｔｅｘ
０．５２ ０．００ １．６８ ０．７２ ６８％ ６８％Ｔｒｙｌｏｃｋ［ｌｏｃｋｅｄ］ｍｕｔｅｘ
０．５８ ０．００ １．６８ ０．７６ ６５％ ６５％Ｄｅｓｔｒｏｙｍｕｔｅｘ
３．４０ ３．３５ ５．０３ ０．１０ ９６％ ９６％Ｕｎｌｏｃｋ／Ｌｏｃｋｍｕｔｅｘ

０．９９ ０．００ １．６８ ０．８１ ５９％ ４０％Ｃｒｅａｔｅｍｂｏｘ
０．４７ ０．００ １．６８ ０．６８ ７１％ ７１％Ｐｅｅｋ［ｅｍｐｔｙ］ｍｂｏｘ
０．７９ ０．００ ５．０３ ０．９３ ９６％ ５９％Ｐｕｔ［ｆｉｒｓｔ］ｍｂｏｘ
０．４２ ０．００ １．６８ ０．６３ ７５％ ７５％Ｐｅｅｋ［１ｍｓｇ］ｍｂｏｘ
０．７９ ０．００ １．６８ ０．８３ ５３％ ５３％Ｐｕｔ［ｓｅｃｏｎｄ］ｍｂｏｘ
０．３７ ０．００ １．６８ ０．５７ ７８％ ７８％Ｐｅｅｋ［２ｍｓｇｓ］ｍｂｏｘ
０．７３ ０．００ ３．３５ ０．８７ ５９％ ５９％Ｇｅｔ［ｆｉｒｓｔ］ｍｂｏｘ
０．７３ ０．００ １．６８ ０．８２ ５６％ ５６％Ｇｅｔ［ｓｅｃｏｎｄ］ｍｂｏｘ
０．７９ ０．００ ３．３５ ０．８８ ５６％ ５６％Ｔｒｙｐｕｔ［ｆｉｒｓｔ］ｍｂｏｘ
０．７３ ０．００ ３．３５ ０．８７ ５９％ ５９％Ｔｒｙｇｅｔ［ｎｏｎｅｍｐｔｙ］ｍｂｏｘ
０．６８ ０．００ ３．３５ ０．８５ ６２％ ６２％Ｐｅｅｋｉｔｅｍ［ｎｏｎｅｍｐｔｙ］ｍｂｏｘ
０．６３ ０．００ １．６８ ０．７９ ６２％ ６２％Ｐｅｅｋｉｔｅｍ［ｅｍｐｔｙ］ｍｂｏｘ
０．６８ ０．００ １．６８ ０．８１ ５９％ ５９％Ｔｒｙｇｅｔ［ｅｍｐｔｙ］ｍｂｏｘ
０．２６ ０．００ １．６８ ０．４４ ８４％ ８４％ Ｗａｉｔｉｎｇｔｏｇｅｔｍｂｏｘ
０．６３ ０．００ １．６８ ０．７９ ６２％ ６２％ Ｗａｉｔｉｎｇｔｏｐｕｔｍｂｏｘ
０．７３ ０．００ ３．３５ ０．８７ ５９％ ５９％Ｄｅｌｅｔｅｍｂｏｘ

９３３

３．２５ １．６８ ３．３５ ０．２０ ９３％ ６％Ｐｕｔ／Ｇｅｔｍｂｏｘ

０．６３ ０．００ １．６８ ０．７９ ６２％ ６２％Ｉｎｉｔｓｅｍａｐｈｏｒｅ

０．６３ ０．００ １．６８ ０．７９ ６２％ ６２％Ｐｏｓｔ［０］ｓｅｍａｐｈｏｒｅ

０．６３ ０．００ １．６８ ０．７９ ６２％ ６２％ Ｗａｉｔ［１］ｓｅｍａｐｈｏｒｅ

０．５２ ０．００ １．６８ ０．７２ ６８％ ６８％Ｔｒｙｗａｉｔ［０］ｓｅｍａｐｈｏｒｅ

０．５２ ０．００ １．６８ ０．７２ ６８％ ６８％Ｔｒｙｗａｉｔ［１］ｓｅｍａｐｈｏｒｅ

０．５２ ０．００ １．６８ ０．７２ ６８％ ６８％Ｐｅｅｋｓｅｍａｐｈｏｒｅ

０．２１ ０．００ １．６８ ０．３７ ８７％ ８７％Ｄｅｓｔｒｏｙｓｅｍａｐｈｏｒｅ

３．３０ １．６８ ３．３５ ０．１０ ９６％ ３％Ｐｏｓｔ／Ｗａｉｔｓｅｍａｐｈｏｒｅ

０．７９ ０．００ ３．３５ ０．８８ ５６％ ５６％Ｃｒｅａｔｅｃｏｕｎｔｅｒ

０．４２ ０．００ １．６８ ０．６３ ７５％ ７５％Ｇｅｔｃｏｕｎｔｅｒｖａｌｕｅ

０．３７ ０．００ １．６８ ０．５７ ７８％ ７８％Ｓｅｔｃｏｕｎｔｅｒｖａｌｕｅ

０．７３ ０．００ １．６８ ０．８２ ５６％ ５６％Ｔｉｃｋｃｏｕｎｔｅｒ

０．６３ ０．００ １．６８ ０．７９ ６２％ ６２％Ｄｅｌｅｔｅｃｏｕｎｔｅｒ

０．８９ ０．００ ３．３５ ０．８９ ９６％ ５０％Ｃｒｅａｔｅａｌａｒｍ

０．８４ ０．００ １．６８ ０．８４ １００％ ５０％Ｉｎｉｔｉａｌｉｚｅａｌａｒｍ

０．５２ ０．００ １．６８ ０．７２ ６８％ ６８％Ｄｉｓａｂｌｅａｌａｒｍ

０．８９ ０．００ ３．３５ ０．８９ ９６％ ５０％Ｅｎａｂｌｅａｌａｒｍ

０．５８ ０．００ １．６８ ０．７６ ６５％ ６５％Ｄｅｌｅｔｅａｌａｒｍ

０．６３ ０．００ １．６８ ０．７９ ６２％ ６２％Ｔｉｃｋｃｏｕｎｔｅｒ［１ａｌａｒｍ］

５．０３ ３．３５ ６．７０ ０．１０ ９３％ ３％Ｔｉｃｋｃｏｕｎｔｅｒ［ｍａｎｙａｌａｒｍｓ］

０．９４ ０．００ １．６８ ０．８２ ５６％ ４３％Ｔｉｃｋ＆ｆｉｒｅｃｏｕｎｔｅｒ［１ａｌａｒｍ］

１１．１６ １０．０６ １１．７３ ０．７６ ６５％ ３４％Ｔｉｃｋ＆ｆｉｒｅｃｏｕｎｔｅｒｓ［＞１ｔｏｇｅｔｈｅｒ］

５．１９ ５．０３ ６．７０ ０．２８ ９０％ ９０％Ｔｉｃｋ＆ｆｉｒｅｃｏｕｎｔｅｒｓ［＞１ｓｅｐａｒａｔｅｌｙ］

０．０１ ０．００ １．６８ ０．０３ ９９％ ９９％Ａｌａｒｍｌａｔｅｎｃｙ［０ｔｈｒｅａｄｓ］

０．１３ ０．００ １．６８ ０．２４ ９２％ ９２％Ａｌａｒｍｌａｔｅｎｃｙ［２ｔｈｒｅａｄｓ］

０．９４ ０．００ ３．３５ ０．８５ ５３％ ４５％Ａｌａｒｍｌａｔｅｎｃｙ［ｍａｎｙｔｈｒｅａｄｓ］

１．７５ １．６８ ６．７０ ０．１５ ９６％ ９６％Ａｌａｒｍ＞ｔｈｒｅａｄｒｅｓｕｍｅｌａｔｅｎｃｙ

４１ ０ ３６８ （ｍａｉｎｓｔａｃｋ：１０３６） Ｔｈｒｅａｄｓｔａｃｋｕｓｅｄ（１７１２ｔｏｔａｌ）

Ａｌｌｄｏｎｅ，ｍａｉｎｓｔａｃｋ ：ｓｔａｃｋｕｓｅｄ １０３６ｓｉｚｅ ２９１２

Ａｌｌｄｏｎｅ ：Ｉｎｔｅｒｒｕｐｔｓｔａｃｋｕｓｅｄ ３６８ｓｉｚｅ ４１０８

Ａｌｌｄｏｎｅ ：Ｉｄｌｅｔｈｒｅａｄｓｔａｃｋｕｓｅｄ ２８８ｓｉｚｅ ２０４８

Ｔｉｍｉｎｇｃｏｍｐｌｅｔｅ２８５２０ｍｓｔｏｔａｌ

ＰＡＳＳ：＜ＢａｓｉｃｔｉｍｉｎｇＯＫ＞

ＥＸＩＴ：＜ｄｏｎｅ＞

０４３

ＩｎｔｅｌＩＱ８０３１０ＸＳｃａｌｅ开发板实时特性

Ｂｏａｒｄ：ＩｎｔｅｌＩＱ８０３１０ＸＳｃａｌｅＤｅｖｅｌｏｐｍｅｎｔＫｉｔ

ＣＰＵ：ＩｎｔｅｌＸＳｃａｌｅ６００ＭＨｚ

Ｓｔａｒｔｕｐ，ｍａｉｎｓｔａｃｋ ：ｓｔａｃｋｕｓｅｄ ３８８ｓｉｚｅ ２４００

Ｓｔａｒｔｕｐ ：Ｉｎｔｅｒｒｕｐｔｓｔａｃｋｕｓｅｄ １４８ｓｉｚｅ ４０９６

Ｓｔａｒｔｕｐ ：Ｉｄｌｅｔｈｒｅａｄｓｔａｃｋｕｓｅｄ ７６ｓｉｚｅ １１２０

ｅＣｏｓＫｅｒｎｅｌＴｉｍｉｎｇｓ

Ｎｏｔｅｓ：ａｌｌｔｉｍｅｓａｒｅｉｎｍｉｃｒｏｓｅｃｏｎｄｓ（．０００００１）ｕｎｌｅｓｓｏｔｈｅｒｗｉｓｅｓｔａｔｅｄ

Ｒｅａｄｉｎｇｔｈｅｈａｒｄｗａｒｅｃｌｏｃｋｔａｋｅｓ７３′ｔｉｃｋｓ′ｏｖｅｒｈｅａｄ

．．．ｔｈｉｓｖａｌｕｅｗｉｌｌｂｅｆａｃｔｏｒｅｄｏｕｔｏｆａｌｌｏｔｈｅｒｍｅａｓｕｒｅｍｅｎｔｓ

Ｃｌｏｃｋｉｎｔｅｒｒｕｐｔｔｏｏｋ １２．１１ｍｉｃｒｏｓｅｃｏｎｄｓ（３９９ｒａｗｃｌｏｃｋｔｉｃｋｓ）

Ｔｅｓｔｉｎｇｐａｒａｍｅｔｅｒｓ：

Ｃｌｏｃｋｓａｍｐｌｅｓ： ３２
Ｔｈｒｅａｄｓ： ６４
Ｔｈｒｅａｄｓｗｉｔｃｈｅｓ： １２８
Ｍｕｔｅｘｅｓ： ３２
Ｍａｉｌｂｏｘｅｓ： ３２
Ｓｅｍａｐｈｏｒｅｓ： ３２
Ｓｃｈｅｄｕｌｅｒｏｐｅｒａｔｉｏｎｓ： １２８
Ｃｏｕｎｔｅｒｓ： ３２
Ａｌａｒｍｓ： ３２

Ｃｏｎｆｉｄｅｎｃｅ
Ａｖｅ Ｍｉｎ Ｍａｘ Ｖａｒ Ａｖｅ Ｍｉｎ Ｆｕｎｃｔｉｏｎ

＝＝＝＝ ＝＝＝＝ ＝＝＝＝ ＝＝＝＝ ＝＝＝＝＝ ＝＝＝＝＝＝
６．５３ ５．４８ ８．５５ ０．５０ ５３％ ２３％Ｃｒｅａｔｅｔｈｒｅａｄ
０．３７ ０．０３ ３．２４ ０．１８ ８７％ １％Ｙｉｅｌｄｔｈｒｅａｄ［ａｌｌｓｕｓｐｅｎｄｅｄ］

０．２４ ０．００ ２．０６ ０．１２ ８７％ １％Ｓｕｓｐｅｎｄ［ｓｕｓｐｅｎｄｅｄ］ｔｈｒｅａｄ
０．２５ ０．００ ０．７３ ０．０６ ７１％ １％Ｒｅｓｕｍｅｔｈｒｅａｄ
０．３６ ０．０９ ０．８２ ０．１０ ８９％ １％Ｓｅｔｐｒｉｏｒｉｔｙ
０．０３ ０．００ ０．４２ ０．０５ ９０％ ９０％Ｇｅｔｐｒｉｏｒｉｔｙ
１．０７ ０．５２ ６．３９ ０．１８ ９２％ １％Ｋｉｌｌ［ｓｕｓｐｅｎｄｅｄ］ｔｈｒｅａｄ
０．３３ ０．０６ ０．９１ ０．０８ ７８％ ３％Ｙｉｅｌｄ［ｎｏｏｔｈｅｒ］ｔｈｒｅａｄ
０．５５ ０．０３ １．０６ ０．０９ ８５％ １％Ｒｅｓｕｍｅ［ｓｕｓｐｅｎｄｅｄｌｏｗｐｒｉｏ］ｔｈｒｅａｄ
０．２８ ０．００ １．７９ ０．１１ ８４％ ４％Ｒｅｓｕｍｅ［ｒｕｎｎａｂｌｅｌｏｗｐｒｉｏ］ｔｈｒｅａｄ
０．４３ ０．００ １．００ ０．１２ ７６％ １％Ｓｕｓｐｅｎｄ［ｒｕｎｎａｂｌｅ］ｔｈｒｅａｄ

１４３

０．３１ ０．００ １．２４ ０．０９ ８２％ ４％Ｙｉｅｌｄ［ｏｎｌｙｌｏｗｐｒｉｏ］ｔｈｒｅａｄ
０．２１ ０．００ ０．４２ ０．０４ ７３％ １％Ｓｕｓｐｅｎｄ［ｒｕｎｎａｂｌｅ＞ｎｏｔｒｕｎｎａｂｌｅ］

１．００ ０．８８ １．４５ ０．０４ ７８％ ４％Ｋｉｌｌ［ｒｕｎｎａｂｌｅ］ｔｈｒｅａｄ
０．５９ ０．４２ ３．９７ ０．１３ ８１％ ８７％Ｄｅｓｔｒｏｙ［ｄｅａｄ］ｔｈｒｅａｄ
１．４３ １．２７ １．９４ ０．０７ ７８％ ７％Ｄｅｓｔｒｏｙ［ｒｕｎｎａｂｌｅ］ｔｈｒｅａｄ
３．１２ ２．５８ ５．０９ ０．３３ ５６％ ３４％Ｒｅｓｕｍｅ［ｈｉｇｈｐｒｉｏｒｉｔｙ］ｔｈｒｅａｄ
０．８７ ０．３６ １．３９ ０．０７ ８６％ ０％Ｔｈｒｅａｄｓｗｉｔｃｈ

０．１５ ０．００ １．３９ ０．２１ ８１％ ８１％Ｓｃｈｅｄｕｌｅｒｌｏｃｋ
０．１６ ０．００ ０．６４ ０．０８ ８５％ ７％Ｓｃｈｅｄｕｌｅｒｕｎｌｏｃｋ［０ｔｈｒｅａｄｓ］

０．１６ ０．００ ０．６４ ０．０８ ７５％ ８％Ｓｃｈｅｄｕｌｅｒｕｎｌｏｃｋ［１ｓｕｓｐｅｎｄｅｄ］

０．１６ ０．００ ０．７０ ０．０８ ７８％ ６％Ｓｃｈｅｄｕｌｅｒｕｎｌｏｃｋ［ｍａｎｙｓｕｓｐｅｎｄｅｄ］

０．１６ ０．００ ０．６４ ０．０７ ８１％ ４％Ｓｃｈｅｄｕｌｅｒｕｎｌｏｃｋ［ｍａｎｙｌｏｗｐｒｉｏ］

０．４５ ０．００ １．３９ ０．３４ ５６％ ４６％Ｉｎｉｔｍｕｔｅｘ
０．４３ ０．１８ ３．２７ ０．２３ ８７％ ８７％Ｌｏｃｋ［ｕｎｌｏｃｋｅｄ］ｍｕｔｅｘ
０．４８ ０．０９ ３．８８ ０．２６ ８４％ ７１％Ｕｎｌｏｃｋ［ｌｏｃｋｅｄ］ｍｕｔｅｘ
０．３５ ０．２１ ２．２４ ０．２１ ８７％ ８４％Ｔｒｙｌｏｃｋ［ｕｎｌｏｃｋｅｄ］ｍｕｔｅｘ
０．２６ ０．００ ０．６７ ０．１３ ７８％ ９％Ｔｒｙｌｏｃｋ［ｌｏｃｋｅｄ］ｍｕｔｅｘ
０．２１ ０．００ １．２７ ０．２４ ７８％ ７５％Ｄｅｓｔｒｏｙｍｕｔｅｘ
２．５８ ２．０９ ３．０９ ０．１３ ７５％ ９％Ｕｎｌｏｃｋ／Ｌｏｃｋｍｕｔｅｘ

０．９９ ０．２１ ２．４８ ０．４１ ６５％ ２８％Ｃｒｅａｔｅｍｂｏｘ
０．０４ ０．００ ０．３９ ０．０７ ９０％ ８７％Ｐｅｅｋ［ｅｍｐｔｙ］ｍｂｏｘ
０．４７ ０．２７ ３．４８ ０．２９ ９０％ ７８％Ｐｕｔ［ｆｉｒｓｔ］ｍｂｏｘ
０．０２ ０．００ ０．３９ ０．０３ ９０％ ９０％Ｐｅｅｋ［１ｍｓｇ］ｍｂｏｘ
０．２９ ０．１５ ０．５８ ０．０４ ６８％ ３％Ｐｕｔ［ｓｅｃｏｎｄ］ｍｂｏｘ
０．０２ ０．００ ０．４５ ０．０４ ９３％ ９３％Ｐｅｅｋ［２ｍｓｇｓ］ｍｂｏｘ
０．４８ ０．２１ ３．６７ ０．２６ ８４％ ８７％Ｇｅｔ［ｆｉｒｓｔ］ｍｂｏｘ
０．３５ ０．０９ ０．８２ ０．１１ ７５％ ３％Ｇｅｔ［ｓｅｃｏｎｄ］ｍｂｏｘ
０．５０ ０．２１ ３．１８ ０．３３ ９０％ ６８％Ｔｒｙｐｕｔ［ｆｉｒｓｔ］ｍｂｏｘ
０．３９ ０．１５ １．３９ ０．１９ ７８％ ６８％Ｐｅｅｋｉｔｅｍ［ｎｏｎｅｍｐｔｙ］ｍｂｏｘ
０．４３ ０．１８ ３．３３ ０．２３ ８７％ ９０％Ｔｒｙｇｅｔ［ｎｏｎｅｍｐｔｙ］ｍｂｏｘ
０．２８ ０．０３ ０．７９ ０．０６ ６８％ ３％Ｐｅｅｋｉｔｅｍ［ｅｍｐｔｙ］ｍｂｏｘ
０．２８ ０．２１ ０．５８ ０．０５ ７１％ ６５％Ｔｒｙｇｅｔ［ｅｍｐｔｙ］ｍｂｏｘ
０．０１ ０．００ ０．３６ ０．０２ ９６％ ９０％ Ｗａｉｔｉｎｇｔｏｇｅｔｍｂｏｘ
０．０５ ０．００ ０．４５ ０．０９ ８７％ ８４％ Ｗａｉｔｉｎｇｔｏｐｕｔｍｂｏｘ
０．４２ ０．０９ ２．８８ ０．２０ ８４％ １２％Ｄｅｌｅｔｅｍｂｏｘ
１．３９ １．２７ ２．３９ ０．１４ ８７％ ８７％Ｐｕｔ／Ｇｅｔｍｂｏｘ

０．３５ ０．００ １．３６ ０．４５ ７５％ ６８％Ｉｎｉｔｓｅｍａｐｈｏｒｅ
０．１９ ０．００ ０．４５ ０．０４ ８１％ ３％Ｐｏｓｔ［０］ｓｅｍａｐｈｏｒｅ
０．２５ ０．２１ ０．８８ ０．０６ ８４％ ８１％ Ｗａｉｔ［１］ｓｅｍａｐｈｏｒｅ

２４３

０．３２ ０．０６ １．７９ ０．２１ ７８％ ６８％Ｔｒｙｗａｉｔ［０］ｓｅｍａｐｈｏｒｅ
０．２０ ０．００ ０．５２ ０．０６ ６２％ ３％Ｔｒｙｗａｉｔ［１］ｓｅｍａｐｈｏｒｅ
０．０７ ０．００ ０．４５ ０．１０ ８４％ ８１％Ｐｅｅｋｓｅｍａｐｈｏｒｅ
０．０６ ０．００ ０．５２ ０．０６ ７１％ ７８％Ｄｅｓｔｒｏｙｓｅｍａｐｈｏｒｅ
１．４５ １．４２ １．７９ ０．０４ ８７％ ８７％Ｐｏｓｔ／Ｗａｉｔｓｅｍａｐｈｏｒｅ

０．７０ ０．００ ２．８８ ０．４７ ４３％ ３４％Ｃｒｅａｔｅｃｏｕｎｔｅｒ
０．０５ ０．００ ０．４２ ０．０９ ８７％ ８４％Ｇｅｔｃｏｕｎｔｅｒｖａｌｕｅ
０．０２ ０．００ ０．４５ ０．０４ ９３％ ９３％Ｓｅｔｃｏｕｎｔｅｒｖａｌｕｅ
０．３８ ０．１２ ０．５８ ０．０６ ５９％ ３％Ｔｉｃｋｃｏｕｎｔｅｒ
０．０３ ０．００ ０．４８ ０．０５ ９３％ ７８％Ｄｅｌｅｔｅｃｏｕｎｔｅｒ

１．１０ ０．３９ ４．３０ ０．４７ ６２％ ５３％Ｃｒｅａｔｅａｌａｒｍ
０．５８ ０．０３ ３．１２ ０．１８ ８７％ ３％Ｉｎｉｔｉａｌｉｚｅａｌａｒｍ
０．０４ ０．００ ０．４２ ０．０７ ９０％ ９０％Ｄｉｓａｂｌｅａｌａｒｍ
０．５４ ０．３６ １．３６ ０．１２ ８４％ ４３％Ｅｎａｂｌｅａｌａｒｍ
０．０３ ０．００ ０．７０ ０．０６ ８４％ ８４％Ｄｅｌｅｔｅａｌａｒｍ
０．５０ ０．２４ ０．９７ ０．０８ ８４％ ６％Ｔｉｃｋｃｏｕｎｔｅｒ［１ａｌａｒｍ］

５．３０ ５．１２ ５．９７ ０．１４ ８４％ ７５％Ｔｉｃｋｃｏｕｎｔｅｒ［ｍａｎｙａｌａｒｍｓ］

０．８２ ０．６４ １．３６ ０．１１ ７８％ ４３％Ｔｉｃｋ＆ｆｉｒｅｃｏｕｎｔｅｒ［１ａｌａｒｍ］

１４．１３ １３．８５ １４．５５ ０．０９ ７８％ ３％Ｔｉｃｋ＆ｆｉｒｅｃｏｕｎｔｅｒｓ［＞１ｔｏｇｅｔｈｅｒ］

５．５６ ５．４５ ６．００ ０．０９ ７８％ ７１％Ｔｉｃｋ＆ｆｉｒｅｃｏｕｎｔｅｒｓ［＞１ｓｅｐａｒａｔｅｌｙ］

９．６９ ９．４５ １２．５２ ０．２２ ６４％ ７１％Ａｌａｒｍｌａｔｅｎｃｙ［０ｔｈｒｅａｄｓ］

９．９８ ９．４８ １２．７６ ０．２３ ６９％ １４％Ａｌａｒｍｌａｔｅｎｃｙ［２ｔｈｒｅａｄｓ］

１０．３８ ９．４８ ２４．６７ ０．５９ ７４％ ４５％Ａｌａｒｍｌａｔｅｎｃｙ［ｍａｎｙｔｈｒｅａｄｓ］

１１．７２ １１．３０ ２１．３３ ０．３２ ８１％ ５８％Ａｌａｒｍ＞ｔｈｒｅａｄｒｅｓｕｍｅｌａｔｅｎｃｙ

１．８７ １．８２ １０．４２ ０．００ Ｃｌｏｃｋ／ｉｎｔｅｒｒｕｐｔｌａｔｅｎｃｙ

３．０２ ２．５８ ７．６７ ０．００ ＣｌｏｃｋＤＳＲｌａｔｅｎｃｙ

９ ０ ２６０ （ｍａｉｎｓｔａｃｋ： ７７６） Ｔｈｒｅａｄｓｔａｃｋｕｓｅｄ（１１２０ｔｏｔａｌ）

Ａｌｌｄｏｎｅ，ｍａｉｎｓｔａｃｋ ：ｓｔａｃｋｕｓｅｄ ７７６ｓｉｚｅ ２４００
Ａｌｌｄｏｎｅ ：Ｉｎｔｅｒｒｕｐｔｓｔａｃｋｕｓｅｄ ２６８ｓｉｚｅ ４０９６
Ａｌｌｄｏｎｅ ：Ｉｄｌｅｔｈｒｅａｄｓｔａｃｋｕｓｅｄ ２４４ｓｉｚｅ １１２０

Ｔｉｍｉｎｇｃｏｍｐｌｅｔｅ３０３００ｍｓｔｏｔａｌ

ＰＡＳＳ：＜ＢａｓｉｃｔｉｍｉｎｇＯＫ＞
ＥＸＩＴ：＜ｄｏｎｅ＞

ＡＲＭＰＩＤ开发板实时特性

Ｂｏａｒｄ：ＡＲＭＰＩＤＥｖａｌｕａｔｉｏｎＢｏａｒｄ

３４３

ＣＰＵ： ＡＲＭ７ＴＤＭＩ２０ＭＨｚ

Ｓｔａｒｔｕｐ，ｍａｉｎｓｔａｃｋ ：ｓｔａｃｋｕｓｅｄ ４０４ｓｉｚｅ ２４００
Ｓｔａｒｔｕｐ ：Ｉｎｔｅｒｒｕｐｔｓｔａｃｋｕｓｅｄ １３６ｓｉｚｅ ４０９６
Ｓｔａｒｔｕｐ ：Ｉｄｌｅｔｈｒｅａｄｓｔａｃｋｕｓｅｄ ８４ｓｉｚｅ ２０４８

ｅＣｏｓＫｅｒｎｅｌＴｉｍｉｎｇｓ
Ｎｏｔｅｓ：ａｌｌｔｉｍｅｓａｒｅｉｎｍｉｃｒｏｓｅｃｏｎｄｓ（．０００００１）ｕｎｌｅｓｓｏｔｈｅｒｗｉｓｅｓｔａｔｅｄ

Ｒｅａｄｉｎｇｔｈｅｈａｒｄｗａｒｅｃｌｏｃｋｔａｋｅｓ６′ｔｉｃｋｓ′ｏｖｅｒｈｅａｄ
．．．ｔｈｉｓｖａｌｕｅｗｉｌｌｂｅｆａｃｔｏｒｅｄｏｕｔｏｆａｌｌｏｔｈｅｒｍｅａｓｕｒｅｍｅｎｔｓ
Ｃｌｏｃｋｉｎｔｅｒｒｕｐｔｔｏｏｋ １２０．７４ｍｉｃｒｏｓｅｃｏｎｄｓ（１５０ｒａｗｃｌｏｃｋｔｉｃｋｓ）

Ｔｅｓｔｉｎｇｐａｒａｍｅｔｅｒｓ：

Ｃｌｏｃｋｓａｍｐｌｅｓ： ３２
Ｔｈｒｅａｄｓ： ５０
Ｔｈｒｅａｄｓｗｉｔｃｈｅｓ： １２８
Ｍｕｔｅｘｅｓ： ３２
Ｍａｉｌｂｏｘｅｓ： ３２
Ｓｅｍａｐｈｏｒｅｓ： ３２
Ｓｃｈｅｄｕｌｅｒｏｐｅｒａｔｉｏｎｓ： １２８
Ｃｏｕｎｔｅｒｓ： ３２
Ａｌａｒｍｓ： ３２

Ｃｏｎｆｉｄｅｎｃｅ
Ａｖｅ Ｍｉｎ Ｍａｘ Ｖａｒ Ａｖｅ Ｍｉｎ Ｆｕｎｃｔｉｏｎ

＝＝＝＝ ＝＝＝＝ ＝＝＝＝ ＝＝＝＝ ＝＝＝＝＝ ＝＝＝＝＝＝
９９．０１ ６８．００ １２９．６０ １５．６２ ５０％ ２６％Ｃｒｅａｔｅｔｈｒｅａｄ
２１．６０ ２１．６０ ２１．６０ ０．００ １００％１００％Ｙｉｅｌｄｔｈｒｅａｄ［ａｌｌｓｕｓｐｅｎｄｅｄ］

１５．６５ １５．２０ １６．００ ０．３９ ５６％ ４４％Ｓｕｓｐｅｎｄ［ｓｕｓｐｅｎｄｅｄ］ｔｈｒｅａｄ
１５．７９ １５．２０ １６．００ ０．３１ ７４％ ２６％Ｒｅｓｕｍｅｔｈｒｅａｄ
２３．６５ ２３．２０ ２４．００ ０．３９ ５６％ ４４％Ｓｅｔｐｒｉｏｒｉｔｙ
２．２６ １．６０ ２．４０ ０．２４ ８２％ １８％Ｇｅｔｐｒｉｏｒｉｔｙ
５１．３９ ５１．２０ ５２．００ ０．２９ ７６％ ７６％Ｋｉｌｌ［ｓｕｓｐｅｎｄｅｄ］ｔｈｒｅａｄ
２１．６０ ２１．６０ ２１．６０ ０．００ １００％１００％Ｙｉｅｌｄ［ｎｏｏｔｈｅｒ］ｔｈｒｅａｄ
２９．４７ ２８．００ ２９．６０ ０．２２ ８６％ ２％Ｒｅｓｕｍｅ［ｓｕｓｐｅｎｄｅｄｌｏｗｐｒｉｏ］ｔｈｒｅａｄ
１５．６０ １５．２０ １６．００ ０．４０ １００％ ５０％Ｒｅｓｕｍｅ［ｒｕｎｎａｂｌｅｌｏｗｐｒｉｏ］ｔｈｒｅａｄ
２７．７３ ２４．００ ２８．００ ０．４０ ７４％ ２％Ｓｕｓｐｅｎｄ［ｒｕｎｎａｂｌｅ］ｔｈｒｅａｄ
２１．６０ ２１．６０ ２１．６０ ０．００ １００％１００％Ｙｉｅｌｄ［ｏｎｌｙｌｏｗｐｒｉｏ］ｔｈｒｅａｄ
１５．６５ １５．２０ １６．００ ０．３９ ５６％ ４４％Ｓｕｓｐｅｎｄ［ｒｕｎｎａｂｌｅ＞ｎｏｔｒｕｎｎａｂｌｅ］

５１．３９ ５１．２０ ５２．００ ０．２９ ７６％ ７６％Ｋｉｌｌ［ｒｕｎｎａｂｌｅ］ｔｈｒｅａｄ
２７．６６ ２７．２０ ２８．８０ ０．４１ ５４％ ４４％Ｄｅｓｔｒｏｙ［ｄｅａｄ］ｔｈｒｅａｄ
６８．９３ ６４．８０ ６９．６０ ０．３５ ７２％ ２％Ｄｅｓｔｒｏｙ［ｒｕｎｎａｂｌｅ］ｔｈｒｅａｄ

４４３

９１．２６ ９０．４０ １０７．２０ ０．６４ ６６％ ３２％Ｒｅｓｕｍｅ［ｈｉｇｈｐｒｉｏｒｉｔｙ］ｔｈｒｅａｄ
４９．１４ ４８．８０ ４９．６０ ０．３９ ５７％ ５７％Ｔｈｒｅａｄｓｗｉｔｃｈ

２．２０ １．６０ ２．４０ ０．３０ ７５％ ２５％Ｓｃｈｅｄｕｌｅｒｌｏｃｋ
１０．２０ ９．６０ １０．４０ ０．３０ ７５％ ２５％Ｓｃｈｅｄｕｌｅｒｕｎｌｏｃｋ［０ｔｈｒｅａｄｓ］

１０．２０ ９．６０ １０．４０ ０．３０ ７５％ ２５％Ｓｃｈｅｄｕｌｅｒｕｎｌｏｃｋ［１ｓｕｓｐｅｎｄｅｄ］

１０．２０ ９．６０ １０．４０ ０．３０ ７５％ ２５％Ｓｃｈｅｄｕｌｅｒｕｎｌｏｃｋ［ｍａｎｙｓｕｓｐｅｎｄｅｄ］

１０．２０ ９．６０ １０．４０ ０．３０ ７５％ ２５％Ｓｃｈｅｄｕｌｅｒｕｎｌｏｃｋ［ｍａｎｙｌｏｗｐｒｉｏ］

６．８５ ６．４０ ７．２０ ０．３９ ５６％ ４３％Ｉｎｉｔｍｕｔｅｘ
１８．４０ １８．４０ １８．４０ ０．００ １００％１００％Ｌｏｃｋ［ｕｎｌｏｃｋｅｄ］ｍｕｔｅｘ
１９．５７ １９．２０ ２０．００ ０．４０ ５３％ ５３％Ｕｎｌｏｃｋ［ｌｏｃｋｅｄ］ｍｕｔｅｘ
１６．５５ １６．００ １６．８０ ０．３４ ６８％ ３１％Ｔｒｙｌｏｃｋ［ｕｎｌｏｃｋｅｄ］ｍｕｔｅｘ
１４．５５ １４．４０ １５．２０ ０．２４ ８１％ ８１％Ｔｒｙｌｏｃｋ［ｌｏｃｋｅｄ］ｍｕｔｅｘ
３．５５ ３．２０ ４．００ ０．３９ ５６％ ５６％Ｄｅｓｔｒｏｙｍｕｔｅｘ

１１９．８５ １１９．２０ １２０．００ ０．２４ ８１％ １８％Ｕｎｌｏｃｋ／Ｌｏｃｋｍｕｔｅｘ

１２．８５ １２．８０ １３．６０ ０．０９ ９３％ ９３％Ｃｒｅａｔｅｍｂｏｘ
１．６５ １．６０ ２．４０ ０．０９ ９３％ ９３％Ｐｅｅｋ［ｅｍｐｔｙ］ｍｂｏｘ
２０．７０ ２０．００ ２０．８０ ０．１７ ８７％ １２％Ｐｕｔ［ｆｉｒｓｔ］ｍｂｏｘ
１．６５ １．６０ ２．４０ ０．０９ ９３％ ９３％Ｐｅｅｋ［１ｍｓｇ］ｍｂｏｘ
２０．７０ ２０．００ ２０．８０ ０．１７ ８７％ １２％Ｐｕｔ［ｓｅｃｏｎｄ］ｍｂｏｘ
１．６５ １．６０ ２．４０ ０．０９ ９３％ ９３％Ｐｅｅｋ［２ｍｓｇｓ］ｍｂｏｘ
２０．８５ ２０．８０ ２１．６０ ０．０９ ９３％ ９３％Ｇｅｔ［ｆｉｒｓｔ］ｍｂｏｘ
２０．８５ ２０．８０ ２１．６０ ０．０９ ９３％ ９３％Ｇｅｔ［ｓｅｃｏｎｄ］ｍｂｏｘ
１９．９０ １９．２０ ２０．００ ０．１７ ８７％ １２％Ｔｒｙｐｕｔ［ｆｉｒｓｔ］ｍｂｏｘ
１７．６０ １７．６０ １７．６０ ０．００ １００％１００％Ｐｅｅｋｉｔｅｍ［ｎｏｎｅｍｐｔｙ］ｍｂｏｘ
２０．９０ ２０．８０ ２１．６０ ０．１７ ８７％ ８７％Ｔｒｙｇｅｔ［ｎｏｎｅｍｐｔｙ］ｍｂｏｘ
１６．８０ １６．８０ １６．８０ ０．００ １００％１００％Ｐｅｅｋｉｔｅｍ［ｅｍｐｔｙ］ｍｂｏｘ
１７．６５ １７．６０ １８．４０ ０．０９ ９３％ ９３％Ｔｒｙｇｅｔ［ｅｍｐｔｙ］ｍｂｏｘ
１．８５ １．６０ ２．４０ ０．３４ ６８％ ６８％ Ｗａｉｔｉｎｇｔｏｇｅｔｍｂｏｘ
１．８５ １．６０ ２．４０ ０．３４ ６８％ ６８％ Ｗａｉｔｉｎｇｔｏｐｕｔｍｂｏｘ
１９．４０ １９．２０ ２０．００ ０．３０ ７５％ ７５％Ｄｅｌｅｔｅｍｂｏｘ
６５．０５ ６４．８０ ６５．６０ ０．３４ ６８％ ６８％Ｐｕｔ／Ｇｅｔｍｂｏｘ

７．０５ ６．４０ ７．２０ ０．２４ ８１％ １８％Ｉｎｉｔｓｅｍａｐｈｏｒｅ
１５．５５ １５．２０ １６．００ ０．３９ ５６％ ５６％Ｐｏｓｔ［０］ｓｅｍａｐｈｏｒｅ
１７．３５ １６．８０ １７．６０ ０．３４ ６８％ ３１％ Ｗａｉｔ［１］ｓｅｍａｐｈｏｒｅ
１４．６０ １４．４０ １５．２０ ０．３０ ７５％ ７５％Ｔｒｙｗａｉｔ［０］ｓｅｍａｐｈｏｒｅ
１４．２０ １３．６０ １４．４０ ０．３０ ７５％ ２５％Ｔｒｙｗａｉｔ［１］ｓｅｍａｐｈｏｒｅ
４．５５ ４．００ ４．８０ ０．３４ ６８％ ３１％Ｐｅｅｋｓｅｍａｐｈｏｒｅ
３．７５ ３．２０ ４．００ ０．３４ ６８％ ３１％Ｄｅｓｔｒｏｙｓｅｍａｐｈｏｒｅ
７０．８５ ７０．４０ ７１．２０ ０．３９ ５６％ ４３％Ｐｏｓｔ／Ｗａｉｔｓｅｍａｐｈｏｒｅ

５４３

６．０５ ５．６０ ６．４０ ０．３９ ５６％ ４３％Ｃｒｅａｔｅｃｏｕｎｔｅｒ
２．２５ １．６０ ２．４０ ０．２４ ８１％ １８％Ｇｅｔｃｏｕｎｔｅｒｖａｌｕｅ
２．２５ １．６０ ２．４０ ０．２４ ８１％ １８％Ｓｅｔｃｏｕｎｔｅｒｖａｌｕｅ
１９．７０ １９．２０ ２０．００ ０．３７ ６２％ ３７％Ｔｉｃｋｃｏｕｎｔｅｒ
３．４５ ３．２０ ４．００ ０．３４ ６８％ ６８％Ｄｅｌｅｔｅｃｏｕｎｔｅｒ

９．０５ ８．８０ ９．６０ ０．３４ ６８％ ６８％Ｃｒｅａｔｅａｌａｒｍ
２９．６０ ２９．６０ ２９．６０ ０．００ １００％１００％Ｉｎｉｔｉａｌｉｚｅａｌａｒｍ
２．１５ １．６０ ２．４０ ０．３４ ６８％ ３１％Ｄｉｓａｂｌｅａｌａｒｍ
２９．３５ ２８．８０ ２９．６０ ０．３４ ６８％ ３１％Ｅｎａｂｌｅａｌａｒｍ
５．１０ ４．８０ ５．６０ ０．３７ ６２％ ６２％Ｄｅｌｅｔｅａｌａｒｍ
２３．２０ ２３．２０ ２３．２０ ０．００ １００％１００％Ｔｉｃｋｃｏｕｎｔｅｒ［１ａｌａｒｍ］

１３８．００ １３７．６０ １３８．４０ ０．４０ １００％ ５０％Ｔｉｃｋｃｏｕｎｔｅｒ［ｍａｎｙａｌａｒｍｓ］

４０．４０ ４０．００ ４０．８０ ０．４０ １００％ ５０％Ｔｉｃｋ＆ｆｉｒｅｃｏｕｎｔｅｒ［１ａｌａｒｍ］

７０４．２５ ６９７．６０ ８０４．００ １２．４７ ９３％ ９３％Ｔｉｃｋ＆ｆｉｒｅｃｏｕｎｔｅｒｓ［＞１ｔｏｇｅｔｈｅｒ］

１５５．２０ １５５．２０ １５５．２０ ０．００ １００％１００％Ｔｉｃｋ＆ｆｉｒｅｃｏｕｎｔｅｒｓ［＞１ｓｅｐａｒａｔｅｌｙ］

１０５．２０ １０４．８０ １５１．２０ ０．７６ ９９％ ９４％Ａｌａｒｍｌａｔｅｎｃｙ［０ｔｈｒｅａｄｓ］

１１７．５７ １０４．８０ １４９．６０ ７．１３ ５７％ ２５％Ａｌａｒｍｌａｔｅｎｃｙ［２ｔｈｒｅａｄｓ］

１１７．４９ １０４．８０ １４８．８０ ７．１０ ５８％ ２６％Ａｌａｒｍｌａｔｅｎｃｙ［ｍａｎｙｔｈｒｅａｄｓ］

１９２．５９ １７７．６０ ３１６．００ １．９３ ９８％ ０％Ａｌａｒｍ＞ｔｈｒｅａｄｒｅｓｕｍｅｌａｔｅｎｃｙ

２２．１０ ２１．６０ ２４．００ ０．００ Ｃｌｏｃｋ／ｉｎｔｅｒｒｕｐｔｌａｔｅｎｃｙ

３８．６９ ３２．８０ ６１．６０ ０．００ ＣｌｏｃｋＤＳＲｌａｔｅｎｃｙ

２９７ ２７６ ３１６ （ｍａｉｎｓｔａｃｋ： ７５２） Ｔｈｒｅａｄｓｔａｃｋｕｓｅｄ（１１２０ｔｏｔａｌ）

Ａｌｌｄｏｎｅ，ｍａｉｎｓｔａｃｋ ：ｓｔａｃｋｕｓｅｄ ７５２ｓｉｚｅ ２４００
Ａｌｌｄｏｎｅ ：Ｉｎｔｅｒｒｕｐｔｓｔａｃｋｕｓｅｄ ２８８ｓｉｚｅ ４０９６
Ａｌｌｄｏｎｅ ：Ｉｄｌｅｔｈｒｅａｄｓｔａｃｋｕｓｅｄ ２７２ｓｉｚｅ ２０４８

Ｔｉｍｉｎｇｃｏｍｐｌｅｔｅ３０３５０ｍｓｔｏｔａｌ

ＰＡＳＳ：＜ＢａｓｉｃｔｉｍｉｎｇＯＫ＞
ＥＸＩＴ：＜ｄｏｎｅ＞

ＭｏｔｏｒｏｌａＭＢＸ实时特性

Ｂｏａｒｄ：ＭｏｔｏｒｏｌａＭＢＸ
ＣＰＵ ：ＭｏｔｏｒｏｌａＭＰＣ８６０６６ＭＨＺ

Ｓｔａｒｔｕｐ，ｍａｉｎｓｔａｃｋ ：ｓｔａｃｋｕｓｅｄ ６４３ｓｉｚｅ ５６６４

６４３

Ｓｔａｒｔｕｐ ：Ｉｎｔｅｒｒｕｐｔｓｔａｃｋｕｓｅｄ ４２７ｓｉｚｅ ４０９６
Ｓｔａｒｔｕｐ ：Ｉｄｌｅｔｈｒｅａｄｓｔａｃｋｕｓｅｄ ２３６ｓｉｚｅ ２０４８

ｅＣｏｓＫｅｒｎｅｌＴｉｍｉｎｇｓ
Ｎｏｔｅｓ：ａｌｌｔｉｍｅｓａｒｅｉｎｍｉｃｒｏｓｅｃｏｎｄｓ（．０００００１）ｕｎｌｅｓｓｏｔｈｅｒｗｉｓｅｓｔａｔｅｄ

Ｒｅａｄｉｎｇｔｈｅｈａｒｄｗａｒｅｃｌｏｃｋｔａｋｅｓ０‘ｔｉｃｋｓ′ｏｖｅｒｈｅａｄ
．．．ｔｈｉｓｖａｌｕｅｗｉｌｌｂｅｆａｃｔｏｒｅｄｏｕｔｏｆａｌｌｏｔｈｅｒｍｅａｓｕｒｅｍｅｎｔｓ
Ｃｌｏｃｋｉｎｔｅｒｒｕｐｔｔｏｏｋ ２５．３６ｍｉｃｒｏｓｅｃｏｎｄｓ（７９ｒａｗｃｌｏｃｋｔｉｃｋｓ）

Ｔｅｓｔｉｎｇｐａｒａｍｅｔｅｒｓ：

Ｃｌｏｃｋｓａｍｐｌｅｓ： ３２
Ｔｈｒｅａｄｓ： １６
Ｔｈｒｅａｄｓｗｉｔｃｈｅｓ： １２８
Ｍｕｔｅｘｅｓ： ３２
Ｍａｉｌｂｏｘｅｓ： ３２
Ｓｅｍａｐｈｏｒｅｓ： ３２
Ｓｃｈｅｄｕｌｅｒｏｐｅｒａｔｉｏｎｓ： １２８
Ｃｏｕｎｔｅｒｓ： ３２
Ａｌａｒｍｓ： ３２

Ｃｏｎｆｉｄｅｎｃｅ
Ａｖｅ Ｍｉｎ Ｍａｘ Ｖａｒ Ａｖｅ Ｍｉｎ Ｆｕｎｃｔｉｏｎ

＝＝＝＝ ＝＝＝＝ ＝＝＝＝ ＝＝＝＝ ＝＝＝＝＝ ＝＝＝＝＝＝
２７．５８ ２５．６０ ４４．１６ ２．０７ ９３％ ９３％Ｃｒｅａｔｅｔｈｒｅａｄ
５．９４ ５．７６ ７．０４ ０．２２ ９３％ ６２％Ｙｉｅｌｄｔｈｒｅａｄ［ａｌｌｓｕｓｐｅｎｄｅｄ］

６．０６ ５．４４ １０．５６ ０．５７ ７５％ ７５％Ｓｕｓｐｅｎｄ［ｓｕｓｐｅｎｄｅｄ］ｔｈｒｅａｄ
５．４２ ４．８０ ９．６０ ０．５３ ８７％ ８１％Ｒｅｓｕｍｅｔｈｒｅａｄ
７．１０ ６．４０ １４．０８ ０．９０ ９３％ ８７％Ｓｅｔｐｒｉｏｒｉｔｙ
０．８６ ０．６４ １．９２ ０．２２ ９３％ ５０％Ｇｅｔｐｒｉｏｒｉｔｙ
１６．７４ １５．０４ ３６．４８ ２．４７ ９３％ ９３％Ｋｉｌｌ［ｓｕｓｐｅｎｄｅｄ］ｔｈｒｅａｄ
６．１４ ５．７６ １０．５６ ０．５５ ９３％ ９３％Ｙｉｅｌｄ［ｎｏｏｔｈｅｒ］ｔｈｒｅａｄ
９．７４ ８．９６ １８．５６ １．１０ ９３％ ９３％Ｒｅｓｕｍｅ［ｓｕｓｐｅｎｄｅｄｌｏｗｐｒｉｏ］ｔｈｒｅａｄ
５．２８ ４．８０ ９．２８ ０．５４ ９３％ ８１％Ｒｅｓｕｍｅ［ｒｕｎｎａｂｌｅｌｏｗｐｒｉｏ］ｔｈｒｅａｄ
９．４０ ８．３２ １８．５６ １．１４ ９３％ ９３％Ｓｕｓｐｅｎｄ［ｒｕｎｎａｂｌｅ］ｔｈｒｅａｄ
６．０４ ５．７６ ８．９６ ０．３８ ９３％ ９３％Ｙｉｅｌｄ［ｏｎｌｙｌｏｗｐｒｉｏ］ｔｈｒｅａｄ
５．６８ ５．１２ ９．６０ ０．５２ ６８％ ７５％Ｓｕｓｐｅｎｄ［ｒｕｎｎａｂｌｅ＞ｎｏｔｒｕｎｎａｂｌｅ］

１６．１０ １４．４０ ３５．２０ ２．３９ ９３％ ９３％Ｋｉｌｌ［ｒｕｎｎａｂｌｅ］ｔｈｒｅａｄ
８．５４ ７．６８ １６．００ ０．９４ ９３％ ８７％Ｄｅｓｔｒｏｙ［ｄｅａｄ］ｔｈｒｅａｄ
２０．２０ １８．５６ ４０．６４ ２．５５ ９３％ ９３％Ｄｅｓｔｒｏｙ［ｒｕｎｎａｂｌｅ］ｔｈｒｅａｄ
３９．０２ ３６．４８ ５７．２８ ３．２８ ８７％ ８７％Ｒｅｓｕｍｅ［ｈｉｇｈｐｒｉｏｒｉｔｙ］ｔｈｒｅａｄ
１３．１３ １２．８０ ２２．０８ ０．１５ ７８％ ２０％Ｔｈｒｅａｄｓｗｉｔｃｈ

７４３

０．５９ ０．３２ １．６０ ０．０９ ８２％ １６％Ｓｃｈｅｄｕｌｅｒｌｏｃｋ
３．６７ ３．５２ ５．１２ ０．１７ ９９％ ５４％Ｓｃｈｅｄｕｌｅｒｕｎｌｏｃｋ［０ｔｈｒｅａｄｓ］

３．６７ ３．５２ ４．８０ ０．１７ ９９％ ５３％Ｓｃｈｅｄｕｌｅｒｕｎｌｏｃｋ［１ｓｕｓｐｅｎｄｅｄ］

３．６７ ３．５２ ４．８０ ０．１７ ５４％ ５４％Ｓｃｈｅｄｕｌｅｒｕｎｌｏｃｋ［ｍａｎｙｓｕｓｐｅｎｄｅｄ］

３．６９ ３．５２ ５．１２ ０．１７ ９９％ ５０％Ｓｃｈｅｄｕｌｅｒｕｎｌｏｃｋ［ｍａｎｙｌｏｗｐｒｉｏ］

２．４１ ２．２４ ５．４４ ０．２５ ９６％ ７５％Ｉｎｉｔｍｕｔｅｘ
６．８３ ６．４０ １１．８４ ０．３４ ７５％ ９０％Ｌｏｃｋ［ｕｎｌｏｃｋｅｄ］ｍｕｔｅｘ
６．７４ ６．４０ １３．１２ ０．４０ ９６％ ９６％Ｕｎｌｏｃｋ［ｌｏｃｋｅｄ］ｍｕｔｅｘ
５．５３ ５．１２ ９．６０ ０．２５ ８４％ １２％Ｔｒｙｌｏｃｋ［ｕｎｌｏｃｋｅｄ］ｍｕｔｅｘ
４．８４ ４．４８ ７．３６ ０．１７ ７８％ １５％Ｔｒｙｌｏｃｋ［ｌｏｃｋｅｄ］ｍｕｔｅｘ
０．３４ ０．００ ０．９６ ０．０６ ９０％ ３％Ｄｅｓｔｒｏｙｍｕｔｅｘ
５６．１０ ５５．６８ ５９．５２ ０．２１ ９３％ ３％Ｕｎｌｏｃｋ／Ｌｏｃｋｍｕｔｅｘ

４．７２ ４．４８ １０．２４ ０．３７ ９６％ ９６％Ｃｒｅａｔｅｍｂｏｘ
０．７５ ０．６４ １．９２ ０．１６ ７５％ ７５％Ｐｅｅｋ［ｅｍｐｔｙ］ｍｂｏｘ
６．７９ ６．４０ １２．８０ ０．４１ ９６％ ９０％Ｐｕｔ［ｆｉｒｓｔ］ｍｂｏｘ
０．４６ ０．３２ １．６０ ０．１９ ９３％ ６８％Ｐｅｅｋ［１ｍｓｇ］ｍｂｏｘ
６．６８ ６．４０ １２．１６ ０．３７ ９６％ ９６％Ｐｕｔ［ｓｅｃｏｎｄ］ｍｂｏｘ
０．５０ ０．３２ １．６０ ０．２０ ９３％ ５６％Ｐｅｅｋ［２ｍｓｇｓ］ｍｂｏｘ
７．１３ ６．４０ １４．０８ ０．４９ ９０％ ４６％Ｇｅｔ［ｆｉｒｓｔ］ｍｂｏｘ
６．９７ ６．４０ １３．４４ ０．４７ ８４％ ７８％Ｇｅｔ［ｓｅｃｏｎｄ］ｍｂｏｘ
６．２４ ５．７６ １１．５２ ０．３８ ７８％ ８１％Ｔｒｙｐｕｔ［ｆｉｒｓｔ］ｍｂｏｘ
５．９８ ５．４４ １１．２０ ０．３９ ７８％ ６２％Ｐｅｅｋｉｔｅｍ［ｎｏｎｅｍｐｔｙ］ｍｂｏｘ
６．５２ ６．０８ １３．１２ ０．４９ ９３％ ８１％Ｔｒｙｇｅｔ［ｎｏｎｅｍｐｔｙ］ｍｂｏｘ
５．５０ ５．１２ １０．２４ ０．３０ ６８％ ２８％Ｐｅｅｋｉｔｅｍ［ｅｍｐｔｙ］ｍｂｏｘ
５．７６ ５．４４ １０．８８ ０．３２ ９６％ ９６％Ｔｒｙｇｅｔ［ｅｍｐｔｙ］ｍｂｏｘ
０．５０ ０．３２ １．６０ ０．１９ ９６％ ５３％ Ｗａｉｔｉｎｇｔｏｇｅｔｍｂｏｘ
０．５０ ０．３２ １．６０ ０．１９ ９６％ ５３％ Ｗａｉｔｉｎｇｔｏｐｕｔｍｂｏｘ
７．４５ ７．０４ １５．０４ ０．４９ ９６％ ９３％Ｄｅｌｅｔｅｍｂｏｘ
３７．４７ ３６．８０ ４８．６４ ０．７０ ９６％ ９６％Ｐｕｔ／Ｇｅｔｍｂｏｘ

２．４９ ２．２４ ６．０８ ０．２８ ９６％ ５６％Ｉｎｉｔｓｅｍａｐｈｏｒｅ
５．０９ ４．８０ ８．６４ ０．２７ ４６％ ４６％Ｐｏｓｔ［０］ｓｅｍａｐｈｏｒｅ
６．２５ ５．７６ １０．８８ ０．３２ ９３％ ３％ Ｗａｉｔ［１］ｓｅｍａｐｈｏｒｅ
４．８４ ４．４８ ８．３２ ０．２３ ６８％ ２５％Ｔｒｙｗａｉｔ［０］ｓｅｍａｐｈｏｒｅ
４．９８ ４．８０ ８．００ ０．２６ ９６％ ７１％Ｔｒｙｗａｉｔ［１］ｓｅｍａｐｈｏｒｅ
１．６６ １．２８ ３．８４ ０．２０ ６８％ １５％Ｐｅｅｋｓｅｍａｐｈｏｒｅ
１．２４ ０．９６ ３．２０ ０．１７ ６５％ ３１％Ｄｅｓｔｒｏｙｓｅｍａｐｈｏｒｅ
４０．７４ ４０．３２ ４９．２８ ０．５３ ９６％ ９６％Ｐｏｓｔ／Ｗａｉｔｓｅｍａｐｈｏｒｅ

２．６５ ２．２４ ６．０８ ０．２３ ８４％ ９％Ｃｒｅａｔｅｃｏｕｎｔｅｒ
０．８５ ０．６４ ２．２４ ０．２２ ９０％ ５３％Ｇｅｔｃｏｕｎｔｅｒｖａｌｕｅ

８４３

０．６８ ０．６４ １．９２ ０．０８ ９６％ ９６％Ｓｅｔｃｏｕｎｔｅｒｖａｌｕｅ
７．１３ ６．７２ ８．６４ ０．２４ ７８％ １８％Ｔｉｃｋｃｏｕｎｔｅｒ
１．３０ ０．９６ ３．２０ ０．１２ ８４％ １２％Ｄｅｌｅｔｅｃｏｕｎｔｅｒ

３．６９ ３．５２ ７．６８ ０．２９ ９６％ ８４％Ｃｒｅａｔｅａｌａｒｍ
８．９８ ８．３２ １７．６０ ０．６１ ６８％ ６２％Ｉｎｉｔｉａｌｉｚｅａｌａｒｍ
０．９６ ０．６４ ２．８８ ０．１４ ７１％ ２１％Ｄｉｓａｂｌｅａｌａｒｍ
８．７６ ８．３２ １７．６０ ０．５９ ９６％ ８７％Ｅｎａｂｌｅａｌａｒｍ
１．９９ １．６０ ５．１２ ０．２１ ８１％ １２％Ｄｅｌｅｔｅａｌａｒｍ
７．４４ ７．３６ ９．９２ ０．１５ ９６％ ９６％Ｔｉｃｋｃｏｕｎｔｅｒ［１ａｌａｒｍ］

２１．６８ ２１．４４ ２４．６４ ０．２５ ９６％ ５３％Ｔｉｃｋｃｏｕｎｔｅｒ［ｍａｎｙａｌａｒｍｓ］

１０．９５ １０．５６ １５．０４ ０．２６ ７８％ １８％Ｔｉｃｋ＆ｆｉｒｅｃｏｕｎｔｅｒ［１ａｌａｒｍ］

１３２．７９ １３２．４８ １３６．３２ ０．２３ ５９％ ３７％Ｔｉｃｋ＆ｆｉｒｅｃｏｕｎｔｅｒｓ［＞１ｔｏｇｅｔｈｅｒ］

２５．１８ ２４．９６ ２８．８０ ０．２９ ９６％ ６５％Ｔｉｃｋ＆ｆｉｒｅｃｏｕｎｔｅｒｓ［＞１ｓｅｐａｒａｔｅｌｙ］

２３．０６ ２２．７２ ４７．３６ ０．４０ ９８％ ９８％Ａｌａｒｍｌａｔｅｎｃｙ［０ｔｈｒｅａｄｓ］

３１．５３ ２７．２０ ５６．００ ０．６３ ９６％ ０％Ａｌａｒｍｌａｔｅｎｃｙ［２ｔｈｒｅａｄｓ］

３６．８６ ３０．４０ ５８．８８ ４．１５ ５０％ ２８％Ａｌａｒｍｌａｔｅｎｃｙ［ｍａｎｙｔｈｒｅａｄｓ］

１１．４１ ８．９６ １６．３２ ０．００ Ｃｌｏｃｋ／ｉｎｔｅｒｒｕｐｔｌａｔｅｎｃｙ

６０９ ６０３ ６５１ （ｍａｉｎｓｔａｃｋ：１０５９） Ｔｈｒｅａｄｓｔａｃｋｕｓｅｄ（１７０４ｔｏｔａｌ）

Ａｌｌｄｏｎｅ，ｍａｉｎｓｔａｃｋ ：ｓｔａｃｋｕｓｅｄ １０５９ｓｉｚｅ ５６６４
Ａｌｌｄｏｎｅ ：Ｉｎｔｅｒｒｕｐｔｓｔａｃｋｕｓｅｄ ２５１ｓｉｚｅ ４０９６
Ａｌｌｄｏｎｅ ：Ｉｄｌｅｔｈｒｅａｄｓｔａｃｋｕｓｅｄ ５８７ｓｉｚｅ ２０４８

Ｔｉｍｉｎｇｃｏｍｐｌｅｔｅ２３６９０ｍｓｔｏｔａｌ

ＰＡＳＳ：＜ＢａｓｉｃｔｉｍｉｎｇＯＫ＞
ＥＸＩＴ：＜ｄｏｎｅ＞

ＩｎｔｅｌＳＡ１１００（Ｂｒｕｔｕｓ）实时特性

Ｂｏａｒｄ：ＩｎｔｅｌＳＡ１１００（Ｂｒｕｔｕｓ）

ＣＰＵ： ＳｔｒｏｎｇＡＲＭ２２１．２ＭＨｚ

ＭｉｃｒｏｓｅｃｏｎｄｓｆｏｒｏｎｅｒｕｎｔｈｒｏｕｇｈＤｈｒｙｓｔｏｎｅ： ３．３
ＤｈｒｙｓｔｏｎｅｓｐｅｒＳｅｃｏｎｄ： ３０６７４８．５

ＶＡＸＭＩＰＳｒａｔｉｎｇ＝ １７４．５８６

Ｓｔａｒｔｕｐ，ｍａｉｎｓｔａｃｋ ：ｓｔａｃｋｕｓｅｄ ４０４ｓｉｚｅ ２４００
Ｓｔａｒｔｕｐ ：Ｉｎｔｅｒｒｕｐｔｓｔａｃｋｕｓｅｄ １３６ｓｉｚｅ ４０９６

９４３

Ｓｔａｒｔｕｐ ：Ｉｄｌｅｔｈｒｅａｄｓｔａｃｋｕｓｅｄ ８７ｓｉｚｅ ２０４８

ｅＣｏｓＫｅｒｎｅｌＴｉｍｉｎｇｓ
Ｎｏｔｅｓ：ａｌｌｔｉｍｅｓａｒｅｉｎｍｉｃｒｏｓｅｃｏｎｄｓ（．０００００１）ｕｎｌｅｓｓｏｔｈｅｒｗｉｓｅｓｔａｔｅｄ

Ｒｅａｄｉｎｇｔｈｅｈａｒｄｗａｒｅｃｌｏｃｋｔａｋｅｓ０‘ｔｉｃｋｓ′ｏｖｅｒｈｅａｄ
．．．ｔｈｉｓｖａｌｕｅｗｉｌｌｂｅｆａｃｔｏｒｅｄｏｕｔｏｆａｌｌｏｔｈｅｒｍｅａｓｕｒｅｍｅｎｔｓ
Ｃｌｏｃｋｉｎｔｅｒｒｕｐｔｔｏｏｋ ３．０９ｍｉｃｒｏｓｅｃｏｎｄｓ（１１ｒａｗｃｌｏｃｋｔｉｃｋｓ）

Ｔｅｓｔｉｎｇｐａｒａｍｅｔｅｒｓ：

Ｃｌｏｃｋｓａｍｐｌｅｓ： ３２
Ｔｈｒｅａｄｓ： ６４
Ｔｈｒｅａｄｓｗｉｔｃｈｅｓ： １２８
Ｍｕｔｅｘｅｓ： ３２
Ｍａｉｌｂｏｘｅｓ： ３２
Ｓｅｍａｐｈｏｒｅｓ： ３２
Ｓｃｈｅｄｕｌｅｒｏｐｅｒａｔｉｏｎｓ： １２８
Ｃｏｕｎｔｅｒｓ： ３２
Ａｌａｒｍｓ： ３２

Ｃｏｎｆｉｄｅｎｃｅ
Ａｖｅ Ｍｉｎ Ｍａｘ Ｖａｒ Ａｖｅ Ｍｉｎ Ｆｕｎｃｔｉｏｎ

＝＝＝＝ ＝＝＝＝ ＝＝＝＝ ＝＝＝＝ ＝＝＝＝＝ ＝＝＝＝＝＝
６．６３ ５．４３ １８．９９ ０．７７ ７０％ ３７％Ｃｒｅａｔｅｔｈｒｅａｄ
０．８３ ０．８１ ２．１７ ０．０４ ９８％ ９８％Ｙｉｅｌｄｔｈｒｅａｄ［ａｌｌｓｕｓｐｅｎｄｅｄ］

１．２７ ０．８１ ５．１５ ０．３０ ６８％ ７３％Ｓｕｓｐｅｎｄ［ｓｕｓｐｅｎｄｅｄ］ｔｈｒｅａｄ
１．２５ ０．８１ ５．１５ ０．２５ ８２％ １％Ｒｅｓｕｍｅｔｈｒｅａｄ
１．５２ １．０９ ７．８７ ０．３０ ７８％ ７５％Ｓｅｔｐｒｉｏｒｉｔｙ
０．９７ ０．５４ ２．７１ ０．２８ ６４％ ５１％Ｇｅｔｐｒｉｏｒｉｔｙ
３．４５ ２．７１ １９．５３ ０．６６ ８４％ ７６％Ｋｉｌｌ［ｓｕｓｐｅｎｄｅｄ］ｔｈｒｅａｄ
０．９０ ０．８１ ６．２４ ０．１７ ９８％ ９８％Ｙｉｅｌｄ［ｎｏｏｔｈｅｒ］ｔｈｒｅａｄ
１．８６ １．３６ ６．２４ ０．３３ ６８％ ５０％Ｒｅｓｕｍｅ［ｓｕｓｐｅｎｄｅｄｌｏｗｐｒｉｏ］ｔｈｒｅａｄ
１．２５ ０．８１ ５．１５ ０．２５ ８２％ １％Ｒｅｓｕｍｅ［ｒｕｎｎａｂｌｅｌｏｗｐｒｉｏ］ｔｈｒｅａｄ
２．０１ １．６３ １０．０４ ０．３２ ７０％ ８４％Ｓｕｓｐｅｎｄ［ｒｕｎｎａｂｌｅ］ｔｈｒｅａｄ
０．９０ ０．８１ ６．２４ ０．１７ ９８％ ９８％Ｙｉｅｌｄ［ｏｎｌｙｌｏｗｐｒｉｏ］ｔｈｒｅａｄ
１．２５ ０．８１ ５．１５ ０．２４ ８４％ １％Ｓｕｓｐｅｎｄ［ｒｕｎｎａｂｌｅ＞ｎｏｔｒｕｎｎａｂｌｅ］

２．９２ １．９０ １８．７２ ０．５７ ８５％ ４３％Ｋｉｌｌ［ｒｕｎｎａｂｌｅ］ｔｈｒｅａｄ
２．４５ １．９０ １０．３１ ０．３３ ９５％ ５４％Ｄｅｓｔｒｏｙ［ｄｅａｄ］ｔｈｒｅａｄ
３．９５ ２．７１ ２３．６０ ０．８９ ６８％ ５４％Ｄｅｓｔｒｏｙ［ｒｕｎｎａｂｌｅ］ｔｈｒｅａｄ
８．５５ ６．２４ １９．５３ １．１５ ６０％ ２３％Ｒｅｓｕｍｅ［ｈｉｇｈｐｒｉｏｒｉｔｙ］ｔｈｒｅａｄ
１．８５ １．６３ １１．９４ ０．２１ ４９％ ４９％Ｔｈｒｅａｄｓｗｉｔｃｈ

０．２５ ０．００ １．６３ ０．０５ ８９％ １０％Ｓｃｈｅｄｕｌｅｒｌｏｃｋ

０５３

０．５２ ０．２７ １．９０ ０．０７ ８５％ １３％Ｓｃｈｅｄｕｌｅｒｕｎｌｏｃｋ［０ｔｈｒｅａｄｓ］

０．５１ ０．２７ １．３６ ０．０６ ８５％ １３％Ｓｃｈｅｄｕｌｅｒｕｎｌｏｃｋ［１ｓｕｓｐｅｎｄｅｄ］

０．５１ ０．２７ １．３６ ０．０６ ８５％ １３％Ｓｃｈｅｄｕｌｅｒｕｎｌｏｃｋ［ｍａｎｙｓｕｓｐｅｎｄｅｄ］

０．５１ ０．２７ １．６３ ０．０６ ８５％ １３％Ｓｃｈｅｄｕｌｅｒｕｎｌｏｃｋ［ｍａｎｙｌｏｗｐｒｉｏ］

０．５８ ０．２７ ３．５３ ０．２０ ７１％ ２１％Ｉｎｉｔｍｕｔｅｘ
１．０７ ０．５４ ５．７０ ０．３５ ８７％ ５９％Ｌｏｃｋ［ｕｎｌｏｃｋｅｄ］ｍｕｔｅｘ
１．１４ ０．８１ ６．５１ ０．４０ ９６％ ８１％Ｕｎｌｏｃｋ［ｌｏｃｋｅｄ］ｍｕｔｅｘ
０．９６ ０．５４ ５．１５ ０．３４ ６８％ ６５％Ｔｒｙｌｏｃｋ［ｕｎｌｏｃｋｅｄ］ｍｕｔｅｘ
０．９４ ０．５４ ４．８８ ０．３４ ６５％ ６５％Ｔｒｙｌｏｃｋ［ｌｏｃｋｅｄ］ｍｕｔｅｘ
０．３３ ０．２７ ２．１７ ０．１１ ９６％ ９６％Ｄｅｓｔｒｏｙｍｕｔｅｘ
４．２１ ３．８０ １０．８５ ０．４１ ７１％ ９６％Ｕｎｌｏｃｋ／Ｌｏｃｋｍｕｔｅｘ
０．７６ ０．５４ ４．０７ ０．２５ ９６％ ５６％Ｃｒｅａｔｅｍｂｏｘ
０．７５ ０．５４ １．９０ ０．２０ ８４％ ５０％Ｐｅｅｋ［ｅｍｐｔｙ］ｍｂｏｘ
１．５６ １．０９ ６．７８ ０．３９ ６８％ ５９％Ｐｕｔ［ｆｉｒｓｔ］ｍｂｏｘ
０．７５ ０．５４ １．９０ ０．２０ ８４％ ５０％Ｐｅｅｋ［１ｍｓｇ］ｍｂｏｘ
１．５５ １．０９ ６．７８ ０．４０ ６８％ ６２％Ｐｕｔ［ｓｅｃｏｎｄ］ｍｂｏｘ
０．７７ ０．５４ １．６３ ０．１７ ４６％ ３７％Ｐｅｅｋ［２ｍｓｇｓ］ｍｂｏｘ
１．６７ １．０９ ６．２４ ０．３１ ８７％ ３４％Ｇｅｔ［ｆｉｒｓｔ］ｍｂｏｘ
１．６３ １．０９ ６．２４ ０．３１ ７５％ ３４％Ｇｅｔ［ｓｅｃｏｎｄ］ｍｂｏｘ
１．５０ １．０９ ６．５１ ０．４０ ５６％ ６２％Ｔｒｙｐｕｔ［ｆｉｒｓｔ］ｍｂｏｘ
１．５８ １．０９ ５．４３ ０．３７ ６８％ ５３％Ｐｅｅｋｉｔｅｍ［ｎｏｎｅｍｐｔｙ］ｍｂｏｘ
１．７９ １．０９ ７．０５ ０．４３ ７１％ ２５％Ｔｒｙｇｅｔ［ｎｏｎｅｍｐｔｙ］ｍｂｏｘ
１．２９ １．０９ ５．１５ ０．３２ ８７％ ８７％Ｐｅｅｋｉｔｅｍ［ｅｍｐｔｙ］ｍｂｏｘ
１．３３ １．０９ ５．９７ ０．３７ ９６％ ８４％Ｔｒｙｇｅｔ［ｅｍｐｔｙ］ｍｂｏｘ
０．７３ ０．５４ １．９０ ０．２１ ８４％ ５６％ Ｗａｉｔｉｎｇｔｏｇｅｔｍｂｏｘ
０．７６ ０．５４ １．９０ ０．１９ ４０％ ４３％ Ｗａｉｔｉｎｇｔｏｐｕｔｍｂｏｘ
１．４７ １．０９ ６．７８ ０．３９ ５９％ ８４％Ｄｅｌｅｔｅｍｂｏｘ
２．７０ ２．１７ １２．７５ ０．６３ ９６％ ９６％Ｐｕｔ／Ｇｅｔｍｂｏｘ

０．４７ ０．２７ ２．７１ ０．２０ ９６％ ５０％Ｉｎｉｔｓｅｍａｐｈｏｒｅ
０．８９ ０．５４ ４．８８ ０．３３ ５６％ ７５％Ｐｏｓｔ［０］ｓｅｍａｐｈｏｒｅ
０．９６ ０．５４ ５．１５ ０．３３ ７１％ ７５％ Ｗａｉｔ［１］ｓｅｍａｐｈｏｒｅ
０．８６ ０．５４ ４．８８ ０．３２ ９６％ ８１％Ｔｒｙｗａｉｔ［０］ｓｅｍａｐｈｏｒｅ
０．６９ ０．５４ ３．２６ ０．２２ ９６％ ７５％Ｔｒｙｗａｉｔ［１］ｓｅｍａｐｈｏｒｅ
０．４９ ０．２７ ３．２６ ０．２８ ８４％ ８４％Ｐｅｅｋｓｅｍａｐｈｏｒｅ
０．３９ ０．２７ ２．４４ ０．１９ ９６％ ７８％Ｄｅｓｔｒｏｙｓｅｍａｐｈｏｒｅ
２．８３ ２．４４ １１．６６ ０．５５ ９６％ ９６％Ｐｏｓｔ／Ｗａｉｔｓｅｍａｐｈｏｒｅ

０．５２ ０．２７ ３．２６ ０．２０ ５６％ ４０％Ｃｒｅａｔｅｃｏｕｎｔｅｒ
０．５９ ０．００ ２．７１ ０．３４ ８１％ ４６％Ｇｅｔｃｏｕｎｔｅｒｖａｌｕｅ
０．３６ ０．００ ２．４４ ０．２１ ８１％ ９％Ｓｅｔｃｏｕｎｔｅｒｖａｌｕｅ
１．１３ ０．８１ ２．９８ ０．２６ ５９％ ３７％Ｔｉｃｋｃｏｕｎｔｅｒ

１５３

０．３９ ０．２７ １．９０ ０．１９ ９０％ ７８％Ｄｅｌｅｔｅｃｏｕｎｔｅｒ

０．８６ ０．５４ ４．０７ ０．２４ ６５％ ３１％Ｃｒｅａｔｅａｌａｒｍ
１．８６ １．３６ ９．７７ ０．５４ ９６％ ９０％Ｉｎｉｔｉａｌｉｚｅａｌａｒｍ
０．７７ ０．５４ ２．７１ ０．２３ ８４％ ５０％Ｄｉｓａｂｌｅａｌａｒｍ
１．８６ １．３６ ９．２２ ０．５１ ９６％ ７５％Ｅｎａｂｌｅａｌａｒｍ
０．８９ ０．５４ ３．２６ ０．２５ ６５％ ２１％Ｄｅｌｅｔｅａｌａｒｍ
０．９９ ０．８１ ３．２６ ０．２１ ９６％ ５９％Ｔｉｃｋｃｏｕｎｔｅｒ［１ａｌａｒｍ］

４．２２ ４．０７ ６．７８ ０．２２ ９６％ ７１％Ｔｉｃｋｃｏｕｎｔｅｒ［ｍａｎｙａｌａｒｍｓ］

１．５１ １．３６ ４．６１ ０．２４ ９６％ ７８％Ｔｉｃｋ＆ｆｉｒｅｃｏｕｎｔｅｒ［１ａｌａｒｍ］

２０．２９ ２０．０７ ２３．３３ ０．２３ ９６％ ５３％Ｔｉｃｋ＆ｆｉｒｅｃｏｕｎｔｅｒｓ［＞１ｔｏｇｅｔｈｅｒ］

４．７１ ４．６１ ７．８７ ０．２０ ９６％ ９６％Ｔｉｃｋ＆ｆｉｒｅｃｏｕｎｔｅｒｓ［＞１ｓｅｐａｒａｔｅｌｙ］

２．８８ ２．７１ ２３．８７ ０．３３ ９９％ ９９％Ａｌａｒｍｌａｔｅｎｃｙ［０ｔｈｒｅａｄｓ］

３．２４ ２．７１ １７．３６ ０．４０ ７９％ ５８％Ａｌａｒｍｌａｔｅｎｃｙ［２ｔｈｒｅａｄｓ］

１５．７１ １２．４８ ２７．４０ １．４７ ５３％ １７％Ａｌａｒｍｌａｔｅｎｃｙ［ｍａｎｙｔｈｒｅａｄｓ］

５．９５ ５．４３ ６４．５６ １．０２ ９７％ ９７％Ａｌａｒｍ＞ｔｈｒｅａｄｒｅｓｕｍｅｌａｔｅｎｃｙ

３．２５ ０．８１ １４．１１ ０．００ Ｃｌｏｃｋ／ｉｎｔｅｒｒｕｐｔｌａｔｅｎｃｙ

２．６８ １．０９ １２．７５ ０．００ ＣｌｏｃｋＤＳＲｌａｔｅｎｃｙ

２９ ０ ３１６ （ｍａｉｎｓｔａｃｋ： ７６４） Ｔｈｒｅａｄｓｔａｃｋｕｓｅｄ（１１２０ｔｏｔａｌ）

Ａｌｌｄｏｎｅ，ｍａｉｎｓｔａｃｋ ：ｓｔａｃｋｕｓｅｄ ７６４ｓｉｚｅ ２４００
Ａｌｌｄｏｎｅ ：Ｉｎｔｅｒｒｕｐｔｓｔａｃｋｕｓｅｄ ２８８ｓｉｚｅ ４０９６
Ａｌｌｄｏｎｅ ：Ｉｄｌｅｔｈｒｅａｄｓｔａｃｋｕｓｅｄ ２６０ｓｉｚｅ ２０４８

Ｔｉｍｉｎｇｃｏｍｐｌｅｔｅ３０２８０ｍｓｔｏｔａｌ

ＣｏｇｅｎｔＣＭＡＭＰＣ８６０（ＰｏｗｅｒＰＣ）评估板实时特性

Ｂｏａｒｄ：ＣｏｇｅｎｔＣＭＡＭＰＣ８６０（ＰｏｗｅｒＰＣ）Ｅｖａｌｕａｔｉｏｎ
ＣＰＵ ：ＭＰＣ８６０，ｒｅｖｉｓｉｏｎＡ３３３ＭＨｚ

ｅＣＯＳＫｅｒｎｅｌＴｉｍｉｎｇｓ
Ｎｏｔｅ：ａｌｌｔｉｍｅｓａｒｅｉｎｍｉｃｒｏｓｅｃｏｎｄｓ（．０００００１）ｕｎｌｅｓｓｏｔｈｅｒｗｉｓｅｓｔａｔｅｄ

Ｒｅａｄｉｎｇｔｈｅｈａｒｄｗａｒｅｃｌｏｃｋｔａｋｅｓ０′ｔｉｃｋｓ′ｏｖｅｒｈｅａｄ
．．．ｔｈｉｓｖａｌｕｅｗｉｌｌｂｅｆａｃｔｏｒｅｄｏｕｔｏｆａｌｌｏｔｈｅｒｍｅａｓｕｒｅｍｅｎｔｓ
Ｃｌｏｃｋｉｎｔｅｒｒｕｐｔｔｏｏｋ １４．４６ｍｉｃｒｏｓｅｃｏｎｄｓ（３０ｒａｗｃｌｏｃｋｔｉｃｋｓ）

Ｔｅｓｔｉｎｇｐａｒａｍｅｔｅｒｓ：

Ｃｌｏｃｋｓａｍｐｌｅｓ： ３２

２５３

Ｔｈｒｅａｄｓ： ２４
Ｔｈｒｅａｄｓｗｉｔｃｈｅｓ： １２８
Ｍｕｔｅｘｅｓ： ３２
Ｍａｉｌｂｏｘｅｓ： ３２
Ｓｅｍａｐｈｏｒｅｓ： ３２
Ｓｃｈｅｄｕｌｅｒｏｐｅｒａｔｉｏｎｓ： １２８
Ｃｏｕｎｔｅｒｓ： ３２
Ａｌａｒｍｓ： ３２

Ｃｏｎｆｉｄｅｎｃｅ
Ａｖｅ Ｍｉｎ Ｍａｘ Ｖａｒ Ａｖｅ Ｍｉｎ Ｆｕｎｃｔｉｏｎ

＝＝＝＝ ＝＝＝＝ ＝＝＝＝ ＝＝＝＝ ＝＝＝＝＝ ＝＝＝＝＝＝
２６．７８ ２３．５２ ４１．７６ １．９７ ６６％ ３７％Ｃｒｅａｔｅｔｈｒｅａｄ
４．００ ３．８４ ４．８０ ０．２３ ７０％ ７０％Ｙｉｅｌｄｔｈｒｅａｄ［ａｌｌｓｕｓｐｅｎｄｅｄ］

３．７８ ３．３６ ７．６８ ０．３８ ５０％ ４５％Ｓｕｓｐｅｎｄ［ｓｕｓｐｅｎｄｅｄ］ｔｈｒｅａｄ
３．５６ ３．３６ ７．６８ ０．３７ ９５％ ９１％Ｒｅｓｕｍｅｔｈｒｅａｄ
５．２８ ４．３２ １２．９６ ０．７６ ８３％ ６６％Ｓｅｔｐｒｉｏｒｉｔｙ
０．８４ ０．４８ ３．８４ ０．３９ ９１％ ５４％Ｇｅｔｐｒｉｏｒｉｔｙ
１１．７６ １０．０８ ３２．１６ １．７０ ９５％ ９５％Ｋｉｌｌ［ｓｕｓｐｅｎｄｅｄ］ｔｈｒｅａｄ
４．１４ ３．８４ ８．６４ ０．４５ ９５％ ７５％Ｙｉｅｌｄ［ｎｏｏｔｈｅｒ］ｔｈｒｅａｄ
７．１４ ５．７６ １７．７６ １．０７ ７９％ ７０％Ｒｅｓｕｍｅ［ｓｕｓｐｅｎｄｅｄｌｏｗｐｒｉｏ］ｔｈｒｅａｄ
３．６０ ３．３６ ８．１６ ０．４２ ９５％ ８７％Ｒｅｓｕｍｅ［ｒｕｎｎａｂｌｅｌｏｗｐｒｉｏ］ｔｈｒｅａｄ
６．１０ ５．２８ １４．８８ ０．８０ ６２％ ７０％Ｓｕｓｐｅｎｄ［ｒｕｎｎａｂｌｅ］ｔｈｒｅａｄ
４．００ ３．８４ ５．７６ ０．２５ ７９％ ７９％Ｙｉｅｌｄ［ｏｎｌｙｌｏｗｐｒｉｏ］ｔｈｒｅａｄ
３．６６ ３．３６ ８．６４ ０．４７ ９５％ ７９％Ｓｕｓｐｅｎｄ［ｒｕｎｎａｂｌｅ＞ｎｏｔｒｕｎｎａｂｌｅ］

１１．６６ １０．０８ ３０．２４ １．５８ ７９％ ９１％Ｋｉｌｌ［ｒｕｎｎａｂｌｅ］ｔｈｒｅａｄ
３１．１２ ２７．８４ ５３．２８ ２．３５ ８７％ ５０％Ｒｅｓｕｍｅ［ｈｉｇｈｐｒｉｏｒｉｔｙ］ｔｈｒｅａｄ
７．５２ ７．２０ １５．８４ ０．３０ ５０％ ４８％Ｔｈｒｅａｄｓｗｉｔｃｈ

１．００ ０．４８ ２．８８ ０．２１ ６３％ １４％Ｓｃｈｅｄｕｌｅｒｌｏｃｋ
２．５７ ２．４０ ３．８４ ０．２３ ６５％ ６５％Ｓｃｈｅｄｕｌｅｒｕｎｌｏｃｋ［０ｔｈｒｅａｄｓ］

２．５８ ２．４０ ４．３２ ０．２３ ６４％ ６４％Ｓｃｈｅｄｕｌｅｒｕｎｌｏｃｋ［１ｓｕｓｐｅｎｄｅｄ］

２．５９ ２．４０ ４．３２ ０．２４ ６２％ ６２％Ｓｃｈｅｄｕｌｅｒｕｎｌｏｃｋ［ｍａｎｙｓｕｓｐｅｎｄｅｄ］

２．５９ ２．４０ ４．３２ ０．２４ ６１％ ６１％Ｓｃｈｅｄｕｌｅｒｕｎｌｏｃｋ［ｍａｎｙｌｏｗｐｒｉｏ］

１．６９ １．４４ ５．７６ ０．３７ ９６％ ７１％Ｉｎｉｔｍｕｔｅｘ
４．１５ ３．８４ １０．５６ ０．４７ ９６％ ７５％Ｌｏｃｋ［ｕｎｌｏｃｋｅｄ］ｍｕｔｅｘ
５．８２ ５．２８ １０．５６ ０．３８ ６２％ ２８％Ｕｎｌｏｃｋ［ｌｏｃｋｅｄ］ｍｕｔｅｘ
３．７０ ３．３６ ８．６４ ０．４１ ９６％ ５９％Ｔｒｙｌｏｃｋ［ｕｎｌｏｃｋｅｄ］ｍｕｔｅｘ
３．４２ ２．８８ ６．７２ ０．２６ ７５％ １５％Ｔｒｙｌｏｃｋ［ｌｏｃｋｅｄ］ｍｕｔｅｘ
０．３６ ０．００ １．９２ ０．２５ ６２％ ３４％Ｄｅｓｔｒｏｙｍｕｔｅｘ
４３．４１ ４２．７２ ４５．１２ ０．３４ ８１％ ３％Ｕｎｌｏｃｋ／Ｌｏｃｋｍｕｔｅｘ

３５３

３．２７ ２．８８ ８．１６ ０．３９ ９６％ ５０％Ｃｒｅａｔｅｍｂｏｘ
０．５７ ０．００ ２．４０ ０．３４ ５０％ ２１％Ｐｅｅｋ［ｅｍｐｔｙ］ｍｂｏｘ
６．１６ ５．７６ １１．０４ ０．４８ ８７％ ８７％Ｐｕｔ［ｆｉｒｓｔ］ｍｂｏｘ
０．４８ ０．００ １．９２ ０．２７ ５０％ ２８％Ｐｅｅｋ［１ｍｓｇ］ｍｂｏｘ
５．９２ ５．２８ １０．５６ ０．３５ ９０％ ６％Ｐｕｔ［ｓｅｃｏｎｄ］ｍｂｏｘ
０．６０ ０．００ ２．４０ ０．３０ ６２％ １２％Ｐｅｅｋ［２ｍｓｇｓ］ｍｂｏｘ
４．６９ ４．３２ １２．００ ０．５４ ９３％ ９３％Ｇｅｔ［ｆｉｒｓｔ］ｍｂｏｘ
４．６８ ４．３２ １１．５２ ０．５２ ９３％ ９３％Ｇｅｔ［ｓｅｃｏｎｄ］ｍｂｏｘ
５．８６ ５．２８ １１．０４ ０．４７ ６２％ ３１％Ｔｒｙｐｕｔ［ｆｉｒｓｔ］ｍｂｏｘ
４．００ ３．３６ ９．１２ ０．３８ ８７％ ９％Ｐｅｅｋｉｔｅｍ［ｎｏｎｅｍｐｔｙ］ｍｂｏｘ
４．５９ ３．８４ １２．４８ ０．６１ ７１％ ７５％Ｔｒｙｇｅｔ［ｎｏｎｅｍｐｔｙ］ｍｂｏｘ
３．７５ ３．３６ ７．６８ ０．３４ ５３％ ４３％Ｐｅｅｋｉｔｅｍ［ｅｍｐｔｙ］ｍｂｏｘ
３．９３ ３．３６ ９．６０ ０．４５ ６５％ ３１％Ｔｒｙｇｅｔ［ｅｍｐｔｙ］ｍｂｏｘ
０．６３ ０．００ ２．４０ ０．２８ ６８％ ６％ Ｗａｉｔｉｎｇｔｏｇｅｔｍｂｏｘ
０．５４ ０．００ １．９２ ０．１９ ７５％ ９％ Ｗａｉｔｉｎｇｔｏｐｕｔｍｂｏｘ
４．８４ ４．３２ １２．００ ０．４７ ５６％ ４０％Ｄｅｌｅｔｅｍｂｏｘ
２４．１８ ２３．５２ ２９．７６ ０．６６ ８１％ ７５％Ｐｕｔ／Ｇｅｔｍｂｏｘ

１．７２ ０．９６ ３．８４ ０．３３ ９０％ ６％Ｉｎｉｔｓｅｍａｐｈｏｒｅ
３．１５ ２．８８ ６．２４ ０．３４ ９６％ ６２％Ｐｏｓｔ［０］ｓｅｍａｐｈｏｒｅ
３．８５ ３．３６ ８．６４ ０．３０ ６８％ ２８％ Ｗａｉｔ［１］ｓｅｍａｐｈｏｒｅ
３．２４ ２．８８ ６．２４ ０．３４ ４６％ ４６％Ｔｒｙｗａｉｔ［０］ｓｅｍａｐｈｏｒｅ
３．２２ ２．８８ ６．２４ ０．３２ ５０％ ４６％Ｔｒｙｗａｉｔ［１］ｓｅｍａｐｈｏｒｅ
０．９６ ０．４８ ２．８８ ０．１２ ８４％ １２％Ｐｅｅｋｓｅｍａｐｈｏｒｅ
０．９９ ０．９６ １．９２ ０．０６ ９６％ ９６％Ｄｅｓｔｒｏｙｓｅｍａｐｈｏｒｅ
２４．７１ ２４．００ ２８．８０ ０．４０ ８７％ ６％Ｐｏｓｔ／Ｗａｉｔｓｅｍａｐｈｏｒｅ

２．３１ １．４４ ６．２４ ０．７７ ４６％ ５６％Ｃｒｅａｔｅｃｏｕｎｔｅｒ
０．４５ ０．００ ０．９６ ０．０８ ８７％ ９％Ｇｅｔｃｏｕｎｔｅｒｖａｌｕｅ
０．４２ ０．００ ０．９６ ０．１６ ７５％ １８％Ｓｅｔｃｏｕｎｔｅｒｖａｌｕｅ
４．１４ ３．８４ ４．８０ ０．２６ ５０％ ４３％Ｔｉｃｋｃｏｕｎｔｅｒ
０．９１ ０．４８ ２．４０ ０．１９ ７１％ ２１％Ｄｅｌｅｔｅｃｏｕｎｔｅｒ

５．２３ ４．３２ ７．６８ ０．６１ ６５％ ５３％Ｃｒｅａｔｅａｌａｒｍ
５．５８ ４．８０ １２．９６ ０．７２ ６８％ ８４％Ｉｎｉｔｉａｌｉｚｅａｌａｒｍ
０．７５ ０．４８ １．９２ ０．３０ ９０％ ５６％Ｄｉｓａｂｌｅａｌａｒｍ
８．０２ ７．２０ １４．４０ ０．５３ ８４％ ６８％Ｅｎａｂｌｅａｌａｒｍ
１．３２ ０．９６ ３．８４ ０．２９ ５６％ ４０％Ｄｅｌｅｔｅａｌａｒｍ
４．６３ ４．３２ ６．２４ ０．２８ ５３％ ４３％Ｔｉｃｋｃｏｕｎｔｅｒ［１ａｌａｒｍ］

２３．６７ ２３．５２ ２５．４４ ０．２３ ７８％ ７８％Ｔｉｃｋｃｏｕｎｔｅｒ［ｍａｎｙａｌａｒｍｓ］

７．２４ ６．７２ １０．５６ ０．２１ ８４％ １２％Ｔｉｃｋ＆ｆｉｒｅｃｏｕｎｔｅｒ［１ａｌａｒｍ］

１０６．８３ １０６．５６ １１０．４０ ０．３５ ９６％ ６５％Ｔｉｃｋ＆ｆｉｒｅｃｏｕｎｔｅｒｓ［＞１ｔｏｇｅｔｈｅｒ］

２６．１８ ２５．４４ ２９．７６ ０．４６ ８１％ ９％Ｔｉｃｋ＆ｆｉｒｅｃｏｕｎｔｅｒｓ［＞１ｓｅｐａｒａｔｅｌｙ］

４５３

１０．７９ １０．０８ ２９．２８ ０．６６ ５３％ ５５％Ａｌａｒｍｌａｔｅｎｃｙ［０ｔｈｒｅａｄｓ］

１７．２０ １３．９２ ３５．５２ １．４８ ６７％ ２１％Ａｌａｒｍｌａｔｅｎｃｙ［２ｔｈｒｅａｄｓ］

２９．６９ ２２．５６ ４７．０４ ３．５８ ５７％ １７％Ａｌａｒｍｌａｔｅｎｃｙ［ｍａｎｙｔｈｒｅａｄｓ］

７．６６ ３．８４ １９．２０ ０．００ Ｃｌｏｃｋ／ｉｎｔｅｒｒｕｐｔｌａｔｅｎｃｙ

Ｔｉｍｉｎｇｃｏｍｐｌｅｔｅ２３５３０ｍｓｔｏｔａｌ

ＰＡＳＳ：＜ＢａｓｉｃｔｉｍｉｎｇＯＫ＞
ＥＸＩＴ：＜ｄｏｎｅ＞

５５３

参 考 文 献

１ ＮｉｃｋＧａｒｎｅｔｔ，ＪｏｎａｔｈａｎＬａｒｍｏｕｒ，ＡｎｄｒｅｗＬｕｎｎ，ＧａｒｙＴｈｏｍａｓ，ＢａｒｔＶｅｅｒ．ｅＣｏｓＲｅｆｅｒｅｎｃｅ
Ｍａｎｕａｌ．ＲｅｄＨａｔＩｎｃ．，２００３

２ ｅＣｏｓＵｓｅｒ’ｓＧｕｉｄｅ．ＲｅｄＨａｔＩｎｃ．＆ｅＣｏｓＣｅｎｔｒｉｃＬｔｄ．，２００３
３ ｅＣｏｓＴｕｔｏｒｉａｌ．ＲｅｄＨａｔＩｎｃ．，２００２
４ ＢａｒｔＶｅｅｒ，ＪｏｈｎＤａｌｌａｗａｙ．ＴｈｅｅＣｏｓＣｏｍｐｏｎｅｎｔＷｒｉｔｅｒ’ｓＧｕｉｄｅ．ＲｅｄＨａｔＩｎｃ．，２００１
５ ＡｎｔｈｏｎｙＪ．Ｍａｓｓａ，ＥｍｂｅｄｄｅｄＳｏｆｔｗａｒｅＤｅｖｅｌｏｐｍｅｎｔｗｉｔｈｅＣｏｓ．ＰｒｅｎｔｉｃｅＨａｌｌＰＴＲ，２００２
６ ＬｉｂＨＴＴＰＤＡＰＩＧｕｉｄｅａｎｄＲｅｆｅｒｅｎｃｅ．ＨｕｇｈｅｓＴｅｃｈｎｏｌｏｇｉｅｓＰｔｙＬｔｄ．，２００２

６５３

	第1章 概述 12页
	1.1 什么是eCos 12页
	1.1.1 起源与历史 13页
	1.1.2 功能与特性 14页
	1.1.3 eCos核心组件 15页
	1.1.4 对硬件的支持 16页
	1.1.5 eCos资源 16页

	1.2 eCos的可配置性 17页
	1.2.1 配置的必要性 18页
	1.2.2 配置方法 18页

	1.3 eCos的组织结构 19页
	1.3.1 eCos的层次结构 20页
	1.3.2 eCos源码结构 22页

	1.4 eCos的一些基本概念 23页
	1.4.1 组件框架 23页
	1.4.2 配置选项 23页
	1.4.3 组件 23页
	1.4.4 包 24页
	1.4.5 组件仓库 24页
	1.4.6 配置 24页
	1.4.7 目标系统 25页
	1.4.8 模板 25页
	1.4.9 属性 25页
	1.4.10 约束条件 26页
	1.4.11 冲突 26页
	1.4.12 组件定义语言CDL 26页

	第2章 eCos开发环境的建立 27页
	2.1 系统需求 27页
	2.1.1 主机系统需求 27页
	2.1.2 目标系统需求 27页

	2.2 开发工具 28页
	2.2.1 Cygwin 29页
	2.2.2 交叉编译工具 29页
	2.2.3 eCos配置工具 30页

	2.3 Cygwin的安装与设置 30页
	2.4 GNU 交叉编译工具的编译与配置 33页
	2.5 eCos源码与配置工具的安装 36页
	2.5.1 eCos的安装 37页
	2.5.2 eCos配置工具 39页

	2.6 建立eCos开发环境 41页
	2.6.1 基于x86的eCos开发平台 41页
	2.6.2 建立 RedBoot引导环境 42页

	第3章 eCos配置工具与编程实例 45页
	3.1 eCos图形配置工具 45页
	3.2 图形配置工具的使用 46页
	3.2.1 组件仓库位置 46页
	3.2.2 配置文件的管理 47页
	3.2.3 模板选择 47页
	3.2.4 选项配置 48页
	3.2.5 冲突的解决 50页
	3.2.6 配置选项的查找 51页
	3.2.7 编译 51页
	3.2.8 执行 53页

	3.3 命令行配置工具 55页
	3.3.1 ecosconfig配置工具 55页
	3.3.2 使用ecosconfig配置eCos 56页

	3.4 eCos应用程序 57页
	3.4.1 使用编译工具 57页
	3.4.2 简单的hello程序 58页
	3.4.3 多线程编程例子 60页
	3.4.4 时钟和告警处理程序 62页

	第4章 RedBoot 66页
	4.1 功能与应用 66页
	4.1.1 RedBoot的安装 66页
	4.1.2 RedBoot用户界面 67页
	4.1.3 RedBoot环境配置 67页

	4.2 RedBoot命令 69页
	4.2.1 基本命令格式 69页
	4.2.2 RedBoot普通命令 71页
	4.2.3 Flash映像系统(FIS) 74页
	4.2.4 Flash内配置信息的管理 77页
	4.2.5 RedBoot程序执行控制 79页

	4.3 RedBoot的配置与编译 79页
	4.3.1 RedBoot软件结构 79页
	4.3.2 使用eCos图形配置工具 80页
	4.3.3 使用命令行配置工具ecosconfig 83页

	4.4 RedBoot的更新与运行 84页

	第5章 系统内核 87页
	5.1 系统内核结构 87页
	5.2 内核调度机制 88页
	5.2.1 位图调度器 89页
	5.2.2 多级队列调度器 89页
	5.2.3 调度器操作及 API函数 90页

	5.3 内存分配 91页
	5.3.1 内存分配机制 92页
	5.3.2 固定长度内存分配 API 93页
	5.3.3 可变长度内存分配 API 95页

	5.4 中断处理 97页
	5.4.1 线程与中断处理程序 97页
	5.4.2 中断的处理 98页
	5.4.3 内核中断处理 API函数 99页

	5.5 例外处理 102页
	5.5.1 例外处理程序 103页
	5.5.2 例外处理内核 API函数 104页

	5.6 SMP支持 104页
	5.6.1 SMP系统的启动 105页
	5.6.2 SMP系统的调度 105页
	5.6.3 SMP系统的中断处理 106页

	5.7 计数器与时钟 106页
	5.7.1 计数器 107页
	5.7.2 时钟 109页
	5.7.3 告警器 111页

	5.8 应用程序入口 113页
	5.8.1 调用环境 113页
	5.8.2 应用程序编程要求 114页
	5.8.3 应用程序的启动 115页

	第6章 线程与同步 117页
	6.1 线程的创建 117页
	6.1.1 创建新线程 117页
	6.1.2 线程入口函数 118页
	6.1.3 线程优先级 119页
	6.1.4 堆栈和堆栈大小 119页
	6.1.5 线程创建例子程序 120页

	6.2 线程信息的获取 121页
	6.3 线程的控制 122页
	6.4 线程的终止和消除 123页
	6.4.1 线程终止函数 123页
	6.4.2 线程消除函数 124页

	6.5 线程优先级操作 124页
	6.6 perthread数据 125页
	6.7 同步原语 127页
	6.8 互斥体 128页
	6.8.1 互斥体的实现与操作 129页
	6.8.2 互斥体 API函数 129页
	6.8.3 优先级倒置 131页

	6.9 条件变量 133页
	6.9.1 条件变量的使用 133页
	6.9.2 条件变量 API函数 135页

	6.10 信号量 136页
	6.10.1 信号量的使用 137页
	6.10.2 信号量 API函数 137页

	6.11 信箱 139页
	6.11.1 信箱的使用 139页
	6.11.2 信箱 API函数 140页

	6.12 事件标志 142页
	6.12.1 事件标志的使用 143页
	6.12.2 事件标志 API函数 144页

	6.13 Spinlock 146页
	6.13.1 Spinlock的使用 146页
	6.13.2 Spinlock内核 API函数 147页

	第7章 标准C与数学库 149页
	7.1 标准C与数学库的配置 149页
	7.2 非ISO标准函数 150页
	7.3 数学库兼容方式 151页
	7.4 一些实现细节 152页
	7.5 线程安全性 154页
	7.6 C库启动函数 155页

	第8章 设备驱动程序与PCI库 156页
	8.1 设备驱动程序用户 API 156页
	8.1.1 设备的查找 157页
	8.1.2 向设备传送数据 157页
	8.1.3 读取设备数据 157页
	8.1.4 读取设备配置信息 157页
	8.1.5 对设备的配置 158页

	8.2 驱动程序与内核及 HAL的接口 158页
	8.2.1 eCos中断模块 158页
	8.2.2 同步 159页
	8.2.3 SMP支持 161页
	8.2.4 驱动程序模式 161页
	8.2.5 驱动程序与内核及 HAL的接口 API函数 162页

	8.3 eCos驱动程序设计 174页
	8.3.1 设备驱动程序的基本结构 174页
	8.3.2 串口驱动程序设计 176页

	8.4 串口驱动程序 179页
	8.4.1 串口(rawserial)驱动程序 179页
	8.4.2 TTY驱动程序 184页

	8.5 PCI库 186页
	8.5.1 PCI总线操作 186页
	8.5.2 PCI库 API 192页

	第9章 文件系统 199页
	9.1 文件系统表格 199页
	9.1.1 文件系统表(FileSystemTable) 199页
	9.1.2 安装表(MountTable) 201页
	9.1.3 文件表 203页

	9.2 文件目录 205页
	9.3 同步 205页
	9.4 初始化和安装 206页
	9.5 文件操作 207页
	9.5.1 文件系统的安装 mount与卸载umount 208页
	9.5.2 open、creat和close函数 209页
	9.5.3 read、write和lseek函数 209页
	9.5.4 fcntl函数 210页
	9.5.5 dup和dup2函数 211页
	9.5.6 stat和fstat函数 212页
	9.5.7 access函数 213页
	9.5.8 link,unlink,remove和rename函数 213页
	9.5.9 mkdir和rmdir函数 214页
	9.5.10 opendir、readdir、rewinddir和closedir函数 214页
	9.5.11 chdir和getcwd函数 215页
	9.5.12 Socket操作 215页

	9.6 创建文件系统 216页
	9.7 RAM 文件系统 220页
	9.7.1 文件和目录节点 220页
	9.7.2 目录 222页
	9.7.3 数据存储机制 222页

	9.8 ROM 文件系统 224页
	9.9 文件操作实例 225页

	第10章 网络支持与编程 233页
	10.1 eCos网络配置 233页
	10.2 以太网驱动程序设计 234页
	10.2.1 底层驱动程序基本框架 235页
	10.2.2 驱动程序内部函数的实现 238页
	10.2.3 高层驱动程序函数 242页
	10.2.4 数据的发送和接收过程 242页

	10.3 TCP/IP协议栈支持 243页
	10.3.1 特性支持与配置 244页
	10.3.2 API函数 245页

	10.4 FTP客户端 247页
	10.5 DNS客户端 248页
	10.6 eCos网络编程实例 249页
	10.6.1 网络通信测试程序 249页
	10.6.2 编程实例---ping程序 250页

	第11章 硬件抽象层与eCos移植 256页
	11.1 硬件抽象层 HAL 256页
	11.2 硬件抽象层的结构 258页
	11.2.1 HAL的类型 258页
	11.2.2 硬件抽象层文件描述 259页

	11.3 硬件抽象层接口 261页
	11.3.1 基本定义 261页
	11.3.2 体系结构描述 262页
	11.3.3 中断处理 266页
	11.3.4 I/O操作 269页
	11.3.5 Cache控制 270页
	11.3.6 SMP支持 272页
	11.3.7 诊断支持 275页
	11.3.8 链接脚本 276页

	11.4 例外处理 277页
	11.4.1 HAL的启动处理 277页
	11.4.2 同步例外与异步中断的处理 278页

	11.5 虚拟向量 280页
	11.6 eCos的移植 281页
	11.6.1 平台抽象层的移植 282页
	11.6.2 变体抽象层的移植 290页
	11.6.3 体系结构抽象层的移植 293页

	第12章 组件结构与CDL 301页
	12.1 eCos的配置机制 301页
	12.2 eCos组织结构及编译过程 302页
	12.2.1 软件包与组件仓库 302页
	12.2.2 软件包的内容与格式 303页
	12.2.3 编译过程 304页

	12.3 组件定义语言CDL 305页
	12.3.1 CDL命令 306页
	12.3.2 CDL属性 309页

	12.4 选项命名约定 316页
	12.5 Tcl简介 318页
	12.5.1 基本语法 318页
	12.5.2 变量 319页
	12.5.3 命令替换 319页
	12.5.4 引号和花括弧的使用 319页
	12.5.5 反斜杠和注释 320页

	12.6 表达式和值 321页
	12.6.1 选项的值 321页
	12.6.2 普通表达式 323页
	12.6.3 目标表达式 324页
	12.6.4 列表表达式 325页

	12.7 接口 325页
	12.8 更新ecos.db数据库 327页

	第13章 eCos嵌入式 Web服务器 329页
	13.1 嵌入式 Web服务器LibHTTPD 329页
	13.2 配置和建造eCos 331页
	13.3 Web服务器编程 332页
	13.4 运行 Web服务器 339页

	附录 343页
	附录 A eCos硬件支持情况 343页
	附录B eCos实时特性 349页

	参考文献 367页

